Skip to main content
Top
Published in: Journal of Translational Medicine 1/2016

Open Access 01-12-2016 | Methodology

Kinetics of human myeloid-derived suppressor cells after blood draw

Authors: Eva Grützner, Renate Stirner, Lukas Arenz, Anastasia P. Athanasoulia, Kathrin Schrödl, Carola Berking, Johannes R. Bogner, Rika Draenert

Published in: Journal of Translational Medicine | Issue 1/2016

Login to get access

Abstract

Background

Human myeloid-derived suppressor cells (MDSC) have been described as a group of immature myeloid cells which exert immunosuppressive action by inhibiting function of T lymphocytes. While there is a huge scientific interest to study these cells in multiple human diseases, the methodological approach varies substantially between published studies. This is problematic as human MDSC seem to be a sensible cell type concerning not only cryopreservation but also time point after blood draw. To date data on delayed blood processing influencing cell numbers and phenotype is missing. We therefore evaluated the kinetics of granulocytic MDSC (gMDSC) and monocytic MDSC (mMDSC) frequencies after blood draw in order to determine the best time point for analysis of this recently defined cell type.

Methods

In this study, we isolated peripheral blood mononuclear cells (PBMC) of patients with HIV infection or solid tumors directly after blood draw. We then analyzed the frequencies of gMDSC and mMDSC 2, 4 and 6 h after blood draw and after an overnight rest by FACS analysis using the standard phenotypic markers. In addition, part of the cells was frozen directly after PBMC preparation and was measured after thawing.

Results

gMDSC levels showed no significant difference using fresh PBMC over time with a limitation for the overnight sample. However they were massively diminished after freezing (p = 0.0001 for all subjects). In contrast, frequencies of fresh mMDSC varied over time with no difference between time point 2 and 4 h but a significantly reduction after 6 h and overnight rest (p = 0.0005 and p = 0.005 respectively). Freezing of PBMC decreased the yield of mMDSC reaching statistical significance (p = 0.04). For both MDSC subgroups, FACS analysis became more difficult over time due to less sharp divisions between populations.

Conclusions

According to our data human MDSC need to be studied on fresh PBMC. gMDSC can be studied with delay, mMDSC however should be studied no later than 4 h after blood draw. These results are crucial as an increasing number of clinical trials aim at analyzing MDSC nowadays and the logistics of blood processing implies delayed sample processing in some cases.
Appendix
Available only for authorised users
Literature
2.
go back to reference Dumitru, Moses K, Trellakis S, Lang S, Brandau S. Neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol Immunother. 2013;61:1155–67.CrossRef Dumitru, Moses K, Trellakis S, Lang S, Brandau S. Neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol Immunother. 2013;61:1155–67.CrossRef
3.
go back to reference Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology. 2008;135:234–43.CrossRefPubMed Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology. 2008;135:234–43.CrossRefPubMed
4.
go back to reference Brandau S, Trellakis S, Bruderek K, Schmaltz D, Steller G, Elian M, et al. Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J Leukoc Biol. 2011;89:311–7.CrossRefPubMed Brandau S, Trellakis S, Bruderek K, Schmaltz D, Steller G, Elian M, et al. Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J Leukoc Biol. 2011;89:311–7.CrossRefPubMed
5.
go back to reference Duffy A, Zhao F, Haile L, Gamrekelashvili J, Fioravanti S, Ma C, et al. Comparative analysis of monocytic and granulocytic myeloid-derived suppressor cell subsets in patients with gastrointestinal malignancies. Cancer Immunol Immunother. 2013;62:299–307.CrossRefPubMed Duffy A, Zhao F, Haile L, Gamrekelashvili J, Fioravanti S, Ma C, et al. Comparative analysis of monocytic and granulocytic myeloid-derived suppressor cell subsets in patients with gastrointestinal malignancies. Cancer Immunol Immunother. 2013;62:299–307.CrossRefPubMed
6.
go back to reference Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, et al. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol. 2007;25:2546–53.CrossRefPubMed Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, et al. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol. 2007;25:2546–53.CrossRefPubMed
7.
go back to reference Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R. Immature immunosuppressive CD14 + HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res. 2010;70:4335–45.CrossRefPubMed Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R. Immature immunosuppressive CD14 + HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res. 2010;70:4335–45.CrossRefPubMed
8.
go back to reference Vollbrecht T, Stirner R, Tufman A, Roider J, Huber RM, Bogner JR, et al. Chronic progressive HIV-1 infection is associated with elevated levels of myeloid-derived suppressor cells. AIDS. 2012;26:F31–7.CrossRefPubMed Vollbrecht T, Stirner R, Tufman A, Roider J, Huber RM, Bogner JR, et al. Chronic progressive HIV-1 infection is associated with elevated levels of myeloid-derived suppressor cells. AIDS. 2012;26:F31–7.CrossRefPubMed
9.
go back to reference du Plessis N, Loebenberg L, Kriel M, von Groote-Bidlingmaier F, Ribechini E, Loxton AG, et al. Increased frequency of myeloid-derived suppressor cells during active tuberculosis and after recent mycobacterium tuberculosis infection suppresses T-cell function. Am J Respir Crit Care Med. 2013;188:724–32.CrossRefPubMed du Plessis N, Loebenberg L, Kriel M, von Groote-Bidlingmaier F, Ribechini E, Loxton AG, et al. Increased frequency of myeloid-derived suppressor cells during active tuberculosis and after recent mycobacterium tuberculosis infection suppresses T-cell function. Am J Respir Crit Care Med. 2013;188:724–32.CrossRefPubMed
10.
go back to reference Nonnenmann J, Stirner R, Roider J, Jung MC, Schrodl K, Bogner JR, et al. Lack of significant elevation of myeloid-derived suppressor cells in peripheral blood of chronically hepatitis C virus-infected individuals. J Virol. 2014;88:7678–82.CrossRefPubMedCentralPubMed Nonnenmann J, Stirner R, Roider J, Jung MC, Schrodl K, Bogner JR, et al. Lack of significant elevation of myeloid-derived suppressor cells in peripheral blood of chronically hepatitis C virus-infected individuals. J Virol. 2014;88:7678–82.CrossRefPubMedCentralPubMed
11.
go back to reference Tacke RS, Lee HC, Goh C, Courtney J, Polyak SJ, Rosen HR, et al. Myeloid suppressor cells induced by hepatitis C virus suppress T-cell responses through the production of reactive oxygen species. Hepatology. 2012;55:343–53.CrossRefPubMedCentralPubMed Tacke RS, Lee HC, Goh C, Courtney J, Polyak SJ, Rosen HR, et al. Myeloid suppressor cells induced by hepatitis C virus suppress T-cell responses through the production of reactive oxygen species. Hepatology. 2012;55:343–53.CrossRefPubMedCentralPubMed
12.
go back to reference Cai W, Qin A, Guo P, Yan D, Hu F, Yang Q, et al. Clinical significance and functional studies of myeloid-derived suppressor cells in chronic hepatitis C patients. J Clin Immunol. 2013;33:798–808.CrossRefPubMed Cai W, Qin A, Guo P, Yan D, Hu F, Yang Q, et al. Clinical significance and functional studies of myeloid-derived suppressor cells in chronic hepatitis C patients. J Clin Immunol. 2013;33:798–808.CrossRefPubMed
13.
go back to reference Qin A, Cai W, Pan T, Wu K, Yang Q, Wang N, et al. Expansion of monocytic myeloid-derived suppressor cells dampens T cell function in HIV-1-seropositive individuals. J Virol. 2013;87:1477–90.CrossRefPubMedCentralPubMed Qin A, Cai W, Pan T, Wu K, Yang Q, Wang N, et al. Expansion of monocytic myeloid-derived suppressor cells dampens T cell function in HIV-1-seropositive individuals. J Virol. 2013;87:1477–90.CrossRefPubMedCentralPubMed
14.
go back to reference Rieber N, Brand A, Hector A, Graepler-Mainka U, Ost M, Schafer I, et al. Flagellin induces myeloid-derived suppressor cells: implications for Pseudomonas aeruginosa infection in cystic fibrosis lung disease. J Immunol. 2013;190:1276–84.CrossRefPubMed Rieber N, Brand A, Hector A, Graepler-Mainka U, Ost M, Schafer I, et al. Flagellin induces myeloid-derived suppressor cells: implications for Pseudomonas aeruginosa infection in cystic fibrosis lung disease. J Immunol. 2013;190:1276–84.CrossRefPubMed
15.
go back to reference Kotsakis A, Harasymczuk M, Schilling B, Georgoulias V, Argiris A, Whiteside TL. Myeloid-derived suppressor cell measurements in fresh and cryopreserved blood samples. J Immunol Methods. 2012;381:14–22.CrossRefPubMedCentralPubMed Kotsakis A, Harasymczuk M, Schilling B, Georgoulias V, Argiris A, Whiteside TL. Myeloid-derived suppressor cell measurements in fresh and cryopreserved blood samples. J Immunol Methods. 2012;381:14–22.CrossRefPubMedCentralPubMed
16.
go back to reference Trellakis S, Bruderek K, Hutte J, Elian M, Hoffmann TK, Lang S, et al. Granulocytic myeloid-derived suppressor cells are cryosensitive and their frequency does not correlate with serum concentrations of colony-stimulating factors in head and neck cancer. Innate Immun. 2013;19:328–36.CrossRefPubMed Trellakis S, Bruderek K, Hutte J, Elian M, Hoffmann TK, Lang S, et al. Granulocytic myeloid-derived suppressor cells are cryosensitive and their frequency does not correlate with serum concentrations of colony-stimulating factors in head and neck cancer. Innate Immun. 2013;19:328–36.CrossRefPubMed
17.
go back to reference Rieber N, Gille C, Kostlin N, Schafer I, Spring B, Ost M, et al. Neutrophilic myeloid-derived suppressor cells in cord blood modulate innate and adaptive immune responses. Clin Exp Immunol. 2013;174:45–52.CrossRefPubMedCentralPubMed Rieber N, Gille C, Kostlin N, Schafer I, Spring B, Ost M, et al. Neutrophilic myeloid-derived suppressor cells in cord blood modulate innate and adaptive immune responses. Clin Exp Immunol. 2013;174:45–52.CrossRefPubMedCentralPubMed
18.
go back to reference Skornick Y, Topalian S, Rosenberg SA. Comparative studies of the long-term growth of lymphocytes from tumor infiltrates, tumor-draining lymph nodes, and peripheral blood by repeated in vitro stimulation with autologous tumor. J Biol Response Mod. 1990;9:431–8.PubMed Skornick Y, Topalian S, Rosenberg SA. Comparative studies of the long-term growth of lymphocytes from tumor infiltrates, tumor-draining lymph nodes, and peripheral blood by repeated in vitro stimulation with autologous tumor. J Biol Response Mod. 1990;9:431–8.PubMed
19.
go back to reference Jackson HM, Dimopoulos N, Chen Q, Luke T, Yee Tai T, Maraskovsky E, et al. A robust human T-cell culture method suitable for monitoring CD8 + and CD4 + T-cell responses from cancer clinical trial samples. J Immunol Methods. 2004;291:51–62.CrossRefPubMed Jackson HM, Dimopoulos N, Chen Q, Luke T, Yee Tai T, Maraskovsky E, et al. A robust human T-cell culture method suitable for monitoring CD8 + and CD4 + T-cell responses from cancer clinical trial samples. J Immunol Methods. 2004;291:51–62.CrossRefPubMed
20.
go back to reference Garbrecht FC, Russo C, Weksler ME. Long-term growth of human T cell lines and clones on anti-CD3 antibody-treated tissue culture plates. J Immunol Methods. 1988;107:137–42.CrossRefPubMed Garbrecht FC, Russo C, Weksler ME. Long-term growth of human T cell lines and clones on anti-CD3 antibody-treated tissue culture plates. J Immunol Methods. 1988;107:137–42.CrossRefPubMed
21.
go back to reference Kleeberger CA, Lyles RH, Margolick JB, Rinaldo CR, Phair JP, Giorgi JV. Viability and recovery of peripheral blood mononuclear cells cryopreserved for up to 12 years in a multicenter study. Clin Diagn Lab Immunol. 1999;6:14–9.PubMedCentralPubMed Kleeberger CA, Lyles RH, Margolick JB, Rinaldo CR, Phair JP, Giorgi JV. Viability and recovery of peripheral blood mononuclear cells cryopreserved for up to 12 years in a multicenter study. Clin Diagn Lab Immunol. 1999;6:14–9.PubMedCentralPubMed
22.
go back to reference Reimann KA, Chernoff M, Wilkening CL, Nickerson CE, Landay AL. Preservation of lymphocyte immunophenotype and proliferative responses in cryopreserved peripheral blood mononuclear cells from human immunodeficiency virus type 1-infected donors: implications for multicenter clinical trials. The ACTG Immunology Advanced Technology Laboratories. Clin Diagn Lab Immunol. 2000;7:352–9.PubMedCentralPubMed Reimann KA, Chernoff M, Wilkening CL, Nickerson CE, Landay AL. Preservation of lymphocyte immunophenotype and proliferative responses in cryopreserved peripheral blood mononuclear cells from human immunodeficiency virus type 1-infected donors: implications for multicenter clinical trials. The ACTG Immunology Advanced Technology Laboratories. Clin Diagn Lab Immunol. 2000;7:352–9.PubMedCentralPubMed
23.
go back to reference Costantini A, Mancini S, Giuliodoro S, Butini L, Regnery CM, Silvestri G, et al. Effects of cryopreservation on lymphocyte immunophenotype and function. J Immunol Methods. 2003;278:145–55.CrossRefPubMed Costantini A, Mancini S, Giuliodoro S, Butini L, Regnery CM, Silvestri G, et al. Effects of cryopreservation on lymphocyte immunophenotype and function. J Immunol Methods. 2003;278:145–55.CrossRefPubMed
24.
go back to reference Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW. Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother. 2011;60:1419–30.CrossRefPubMedCentralPubMed Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW. Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother. 2011;60:1419–30.CrossRefPubMedCentralPubMed
25.
go back to reference McKenna KC, Beatty KM, Vicetti Miguel R, Bilonick RA. Delayed processing of blood increases the frequency of activated CD11b + CD15 + granulocytes which inhibit T cell function. J Immunol Methods. 2009;341:68–75.CrossRefPubMed McKenna KC, Beatty KM, Vicetti Miguel R, Bilonick RA. Delayed processing of blood increases the frequency of activated CD11b + CD15 + granulocytes which inhibit T cell function. J Immunol Methods. 2009;341:68–75.CrossRefPubMed
26.
go back to reference Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7:678–89.CrossRefPubMed Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7:678–89.CrossRefPubMed
27.
go back to reference Imhof BA, Aurrand-Lions M. Adhesion mechanisms regulating the migration of monocytes. Nat Rev Immunol. 2004;4:432–44.CrossRefPubMed Imhof BA, Aurrand-Lions M. Adhesion mechanisms regulating the migration of monocytes. Nat Rev Immunol. 2004;4:432–44.CrossRefPubMed
29.
go back to reference Bennett S, Breit SN. Variables in the isolation and culture of human monocytes that are of particular relevance to studies of HIV. J Leukoc Biol. 1994;56:236–40.PubMed Bennett S, Breit SN. Variables in the isolation and culture of human monocytes that are of particular relevance to studies of HIV. J Leukoc Biol. 1994;56:236–40.PubMed
30.
go back to reference Koller CA, King GW, Hurtubise PE, Sagone AL, LoBuglio AF. Characterization of glass adherent human mononuclear cells. J Immunol. 1973;111:1610–2.PubMed Koller CA, King GW, Hurtubise PE, Sagone AL, LoBuglio AF. Characterization of glass adherent human mononuclear cells. J Immunol. 1973;111:1610–2.PubMed
31.
go back to reference Kumaratilake LM, Ferrante A. Purification of human monocytes/macrophages by adherence to cytodex microcarriers. J Immunol Methods. 1988;112:183–90.CrossRefPubMed Kumaratilake LM, Ferrante A. Purification of human monocytes/macrophages by adherence to cytodex microcarriers. J Immunol Methods. 1988;112:183–90.CrossRefPubMed
32.
go back to reference Chien P, Rose LJ, Schreiber AD. Isolation of cultured human monocytes/macrophages in suspension utilizing liquid and solid phase gelatin. Immunol Commun. 1983;12:407–17.PubMed Chien P, Rose LJ, Schreiber AD. Isolation of cultured human monocytes/macrophages in suspension utilizing liquid and solid phase gelatin. Immunol Commun. 1983;12:407–17.PubMed
33.
go back to reference Fietz T, Reufi B, Mucke C, Thiel E, Knauf WU. Flow cytometric CD34 + determination in stem cell transplantation: before or after cryopreservation of grafts? J Hematother Stem Cell Res. 2002;11:429–35.CrossRefPubMed Fietz T, Reufi B, Mucke C, Thiel E, Knauf WU. Flow cytometric CD34 + determination in stem cell transplantation: before or after cryopreservation of grafts? J Hematother Stem Cell Res. 2002;11:429–35.CrossRefPubMed
34.
go back to reference Reich-Slotky R, Colovai AI, Semidei-Pomales M, Patel N, Cairo M, Jhang J, et al. Determining post-thaw CD34 + cell dose of cryopreserved haematopoietic progenitor cells demonstrates high recovery and confirms their integrity. Vox Sang. 2008;94:351–7.CrossRefPubMed Reich-Slotky R, Colovai AI, Semidei-Pomales M, Patel N, Cairo M, Jhang J, et al. Determining post-thaw CD34 + cell dose of cryopreserved haematopoietic progenitor cells demonstrates high recovery and confirms their integrity. Vox Sang. 2008;94:351–7.CrossRefPubMed
35.
go back to reference Majado MJ, Salgado-Cecilia G, Blanquer M, Funes C, Gonzalez-Garcia C, Insausti CL, et al. Cryopreservation impact on blood progenitor cells: influence of diagnoses, mobilization treatments, and cell concentration. Transfusion. 2011;51:799–807.CrossRefPubMed Majado MJ, Salgado-Cecilia G, Blanquer M, Funes C, Gonzalez-Garcia C, Insausti CL, et al. Cryopreservation impact on blood progenitor cells: influence of diagnoses, mobilization treatments, and cell concentration. Transfusion. 2011;51:799–807.CrossRefPubMed
Metadata
Title
Kinetics of human myeloid-derived suppressor cells after blood draw
Authors
Eva Grützner
Renate Stirner
Lukas Arenz
Anastasia P. Athanasoulia
Kathrin Schrödl
Carola Berking
Johannes R. Bogner
Rika Draenert
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2016
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-015-0755-y

Other articles of this Issue 1/2016

Journal of Translational Medicine 1/2016 Go to the issue