Skip to main content
Top
Published in: Journal of Translational Medicine 1/2015

Open Access 01-12-2015 | Research

Systems biology analysis reveals NFAT5 as a novel biomarker and master regulator of inflammatory breast cancer

Authors: Andrea Remo, Ines Simeone, Massimo Pancione, Pietro Parcesepe, Pascal Finetti, Luigi Cerulo, Halima Bensmail, Daniel Birnbaum, Steven J Van Laere, Vittorio Colantuoni, Franco Bonetti, François Bertucci, Erminia Manfrin, Michele Ceccarelli

Published in: Journal of Translational Medicine | Issue 1/2015

Login to get access

Abstract

Background

Inflammatory breast cancer (IBC) is the most rare and aggressive variant of breast cancer (BC); however, only a limited number of specific gene signatures with low generalization abilities are available and few reliable biomarkers are helpful to improve IBC classification into a molecularly distinct phenotype. We applied a network-based strategy to gain insight into master regulators (MRs) linked to IBC pathogenesis.

Methods

In-silico modeling and Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) on IBC/non-IBC (nIBC) gene expression data (n = 197) was employed to identify novel master regulators connected to the IBC phenotype. Pathway enrichment analysis was used to characterize predicted targets of candidate genes. The expression pattern of the most significant MRs was then evaluated by immunohistochemistry (IHC) in two independent cohorts of IBCs (n = 39) and nIBCs (n = 82) and normal breast tissues (n = 15) spotted on tissue microarrays. The staining pattern of non-neoplastic mammary epithelial cells was used as a normal control.

Results

Using in-silico modeling of network-based strategy, we identified three top enriched MRs (NFAT5, CTNNB1 or β-catenin, and MGA) strongly linked to the IBC phenotype. By IHC assays, we found that IBC patients displayed a higher number of NFAT5-positive cases than nIBC (69.2% vs. 19.5%; p-value = 2.79 10-7). Accordingly, the majority of NFAT5-positive IBC samples revealed an aberrant nuclear expression in comparison with nIBC samples (70% vs. 12.5%; p-value = 0.000797). NFAT5 nuclear accumulation occurs regardless of WNT/β-catenin activated signaling in a substantial portion of IBCs, suggesting that NFAT5 pathway activation may have a relevant role in IBC pathogenesis. Accordingly, cytoplasmic NFAT5 and membranous β-catenin expression were preferentially linked to nIBC, accounting for the better prognosis of this phenotype.

Conclusions

We provide evidence that NFAT-signaling pathway activation could help to identify aggressive forms of BC and potentially be a guide to assignment of phenotype-specific therapeutic agents. The NFAT5 transcription factor might be developed into routine clinical practice as a putative biomarker of IBC phenotype.
Appendix
Available only for authorised users
Literature
1.
go back to reference Levine PH, Steinhorn SC, Ries LG, Aron JL. Inflammatory breast cancer: the experience of the Surveillance, Epidemiology and End Results (SEER) Program. J Natl Cancer Inst. 1985;74:291–7.PubMed Levine PH, Steinhorn SC, Ries LG, Aron JL. Inflammatory breast cancer: the experience of the Surveillance, Epidemiology and End Results (SEER) Program. J Natl Cancer Inst. 1985;74:291–7.PubMed
2.
go back to reference Cristofanilli M, Valero V, Buzdar AU, Kau SW, Broglio KR, Gonzalez-Angulo AM, et al. Inflammatory breast cancer (IBC) and patterns of recurrence: understanding the biology of a unique disease. Cancer. 2007;110(7):1436–44.CrossRefPubMed Cristofanilli M, Valero V, Buzdar AU, Kau SW, Broglio KR, Gonzalez-Angulo AM, et al. Inflammatory breast cancer (IBC) and patterns of recurrence: understanding the biology of a unique disease. Cancer. 2007;110(7):1436–44.CrossRefPubMed
3.
go back to reference Charafe-Jauffret E, Tarpin C, Viens P, Bertucci F. Defining the molecular biology of inflammatory breast cancer. Semin Oncol. 2008;35(1):41–50.CrossRefPubMed Charafe-Jauffret E, Tarpin C, Viens P, Bertucci F. Defining the molecular biology of inflammatory breast cancer. Semin Oncol. 2008;35(1):41–50.CrossRefPubMed
4.
go back to reference Robertson FM, Bondy M, Yang W, Yamauchi H, Wiggins S, Kamrudin S, et al. Inflammatory breast cancer: the disease, the biology, the treatment. CA Cancer J Clin. 2010;60(6):351–75.CrossRefPubMed Robertson FM, Bondy M, Yang W, Yamauchi H, Wiggins S, Kamrudin S, et al. Inflammatory breast cancer: the disease, the biology, the treatment. CA Cancer J Clin. 2010;60(6):351–75.CrossRefPubMed
5.
go back to reference van Golen KL, Davies S, Wu ZF, Wang Y, Bucana CD, Root H, et al. A novel putative low-affinity insulin-like growth factor-binding protein, LIBC (lost in inflammatory breast cancer), and RhoCGTPase correlate with the inflammatory breast cancer phenotype. Clin Cancer Res. 1999;5(9):2511–9.PubMed van Golen KL, Davies S, Wu ZF, Wang Y, Bucana CD, Root H, et al. A novel putative low-affinity insulin-like growth factor-binding protein, LIBC (lost in inflammatory breast cancer), and RhoCGTPase correlate with the inflammatory breast cancer phenotype. Clin Cancer Res. 1999;5(9):2511–9.PubMed
6.
go back to reference Nguyen DM, Sam K, Tsimelzon A, Li X, Wong H, Mohsin S, et al. Molecular heterogeneity of inflammatory breast cancer: a hyperproliferative phenotype. Clin Cancer Res. 2006;12:5047–54.CrossRefPubMed Nguyen DM, Sam K, Tsimelzon A, Li X, Wong H, Mohsin S, et al. Molecular heterogeneity of inflammatory breast cancer: a hyperproliferative phenotype. Clin Cancer Res. 2006;12:5047–54.CrossRefPubMed
7.
go back to reference Bekhouche I, Finetti P, Adelaïde J, Ferrari A, Tarpin C, Charafe-Jauffret E, et al. JacquemierJ, Bidaut G, Birnbaum D, Viens P, Chaffanet M, Bertucci F. High-resolution comparative genomic hybridization of inflammatory breast cancer and identification of candidate genes. PLoS One. 2011;6(2):e16950.CrossRefPubMedCentralPubMed Bekhouche I, Finetti P, Adelaïde J, Ferrari A, Tarpin C, Charafe-Jauffret E, et al. JacquemierJ, Bidaut G, Birnbaum D, Viens P, Chaffanet M, Bertucci F. High-resolution comparative genomic hybridization of inflammatory breast cancer and identification of candidate genes. PLoS One. 2011;6(2):e16950.CrossRefPubMedCentralPubMed
8.
go back to reference Bertucci F, Finetti P, Vermeulen P, Van Dam P, Dirix L, Birnbaum D, et al. Genomic profiling of inflammatory breast cancer: A review. Breast. 2014;23(5):538–45.CrossRefPubMed Bertucci F, Finetti P, Vermeulen P, Van Dam P, Dirix L, Birnbaum D, et al. Genomic profiling of inflammatory breast cancer: A review. Breast. 2014;23(5):538–45.CrossRefPubMed
9.
go back to reference Van Laere SJ, Ueno NT, Finetti P, Vermeulen P, Lucci A, Robertson FM, et al. Uncovering the molecular secrets of inflammatory breast cancer biology: an integrated analysis of three distinct affymetrix gene expression datasets. Clin Cancer Res. 2013;19(17):4685–96.CrossRefPubMed Van Laere SJ, Ueno NT, Finetti P, Vermeulen P, Lucci A, Robertson FM, et al. Uncovering the molecular secrets of inflammatory breast cancer biology: an integrated analysis of three distinct affymetrix gene expression datasets. Clin Cancer Res. 2013;19(17):4685–96.CrossRefPubMed
10.
go back to reference Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature. 2010;463(7279):318–25.CrossRefPubMedCentralPubMed Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature. 2010;463(7279):318–25.CrossRefPubMedCentralPubMed
11.
go back to reference Fletcher MN, Castro MA, Wang X, de Santiago I, O’Reilly M, Chin SF, et al. Master regulators of FGFR2 signalling and breast cancer risk. Nat Commun. 2013;4:2464.PubMedCentralPubMed Fletcher MN, Castro MA, Wang X, de Santiago I, O’Reilly M, Chin SF, et al. Master regulators of FGFR2 signalling and breast cancer risk. Nat Commun. 2013;4:2464.PubMedCentralPubMed
12.
go back to reference Müller FJ, Laurent LC, Kostka D, Ulitsky I, Williams R, Lu C, et al. Regulatory networks define phenotypic classes of human stem cell lines. Nature. 2008;455(7211):401–5.CrossRefPubMedCentralPubMed Müller FJ, Laurent LC, Kostka D, Ulitsky I, Williams R, Lu C, et al. Regulatory networks define phenotypic classes of human stem cell lines. Nature. 2008;455(7211):401–5.CrossRefPubMedCentralPubMed
13.
go back to reference Cerulo L, Tagliaferri D, Marotta P, Zoppoli P, Russo F, Mazio C, et al. Identification of a novel gene signature of ES cells self-renewal fluctuation through system-wide analysis. PLoS One. 2014;9(1):e83235.CrossRefPubMedCentralPubMed Cerulo L, Tagliaferri D, Marotta P, Zoppoli P, Russo F, Mazio C, et al. Identification of a novel gene signature of ES cells self-renewal fluctuation through system-wide analysis. PLoS One. 2014;9(1):e83235.CrossRefPubMedCentralPubMed
14.
go back to reference Margolin AA, Wang K, Lim WK, Kustagi M, Nemenman I, Califano A. Reverse engineering cellular networks. Nat Protoc. 2006;1(2):662–71.CrossRefPubMed Margolin AA, Wang K, Lim WK, Kustagi M, Nemenman I, Califano A. Reverse engineering cellular networks. Nat Protoc. 2006;1(2):662–71.CrossRefPubMed
15.
go back to reference Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, DallaFavera R, et al. RACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics. 2006;7 Suppl 1:S7.CrossRefPubMedCentralPubMed Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, DallaFavera R, et al. RACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics. 2006;7 Suppl 1:S7.CrossRefPubMedCentralPubMed
16.
go back to reference Zoppoli P, Morganella S, Ceccarelli M. TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinformatics. 2010;11:154.CrossRefPubMedCentralPubMed Zoppoli P, Morganella S, Ceccarelli M. TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinformatics. 2010;11:154.CrossRefPubMedCentralPubMed
19.
go back to reference Ceccarelli M, Cerulo L, Santone A. De novo reconstruction of gene regulatory networks from time series data, an approach based on formal methods. Methods. 2014;69(3):298–305.CrossRefPubMed Ceccarelli M, Cerulo L, Santone A. De novo reconstruction of gene regulatory networks from time series data, an approach based on formal methods. Methods. 2014;69(3):298–305.CrossRefPubMed
20.
go back to reference Sales G, Romualdi C. Parmigene-a parallel R package for mutual information estimation and gene network reconstruction. Bioinformatics. 2011;27(13):1876–7.CrossRefPubMed Sales G, Romualdi C. Parmigene-a parallel R package for mutual information estimation and gene network reconstruction. Bioinformatics. 2011;27(13):1876–7.CrossRefPubMed
21.
go back to reference Manfrin E, Remo A, Pancione M, Cannizzaro C, Falsirollo F, Pollini GP, et al. Comparison between invasive breast cancer with extensive peritumoral vascular invasion and inflammatory breast carcinoma. A clinical pathological study of 161 cases. Am J Clin Pathol. 2014;142(3):299–306.CrossRefPubMed Manfrin E, Remo A, Pancione M, Cannizzaro C, Falsirollo F, Pollini GP, et al. Comparison between invasive breast cancer with extensive peritumoral vascular invasion and inflammatory breast carcinoma. A clinical pathological study of 161 cases. Am J Clin Pathol. 2014;142(3):299–306.CrossRefPubMed
24.
go back to reference Jauliac S, López-Rodriguez C, Shaw LM, Brown LF, Rao A, Toker A. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat Cell Biol. 2002;4(7):540–4.CrossRefPubMed Jauliac S, López-Rodriguez C, Shaw LM, Brown LF, Rao A, Toker A. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat Cell Biol. 2002;4(7):540–4.CrossRefPubMed
25.
go back to reference Wang Q, Zhou Y, Rychahou P, Liu C, Weiss HL, Evers BM. NFAT5 represses canonical Wnt signaling via inhibition of β-catenin acetylation and participates in regulating intestinal cell differentiation. Cell Death and Dis. 2013;4:e671.CrossRef Wang Q, Zhou Y, Rychahou P, Liu C, Weiss HL, Evers BM. NFAT5 represses canonical Wnt signaling via inhibition of β-catenin acetylation and participates in regulating intestinal cell differentiation. Cell Death and Dis. 2013;4:e671.CrossRef
26.
go back to reference Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Bio. 2012;13:767–79.CrossRef Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Bio. 2012;13:767–79.CrossRef
27.
go back to reference Yang L, Perez AA, Fujie S, Warden C, Li J, Wang Y, et al. Wnt modulates MCL1 to control cell survival in triple negative breast cancer. BMC Cancer. 2014;14:124.CrossRefPubMedCentralPubMed Yang L, Perez AA, Fujie S, Warden C, Li J, Wang Y, et al. Wnt modulates MCL1 to control cell survival in triple negative breast cancer. BMC Cancer. 2014;14:124.CrossRefPubMedCentralPubMed
28.
go back to reference Lamb R, Ablett MP, Spence K, Landberg G, Sims AH, Clarke RB. Wnt pathway activity in breast cancer sub-types and stem-like cells. PLoS One. 2013;8(7):e67811.CrossRefPubMedCentralPubMed Lamb R, Ablett MP, Spence K, Landberg G, Sims AH, Clarke RB. Wnt pathway activity in breast cancer sub-types and stem-like cells. PLoS One. 2013;8(7):e67811.CrossRefPubMedCentralPubMed
30.
go back to reference Edelmann J, Holzmann K, Miller F, Winkler D, Bühler A, Zenz T, et al. High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations. Blood. 2012;120(24):4783–94.CrossRefPubMed Edelmann J, Holzmann K, Miller F, Winkler D, Bühler A, Zenz T, et al. High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations. Blood. 2012;120(24):4783–94.CrossRefPubMed
31.
go back to reference Romero OA, Torres-Diz M, Pros E, Savola S, Gomez A, Moran S, et al. MAX inactivation in small cell lung cancer disrupts MYC-SWI/SNF programs and is synthetic lethal with BRG1. Cancer Discov. 2014;4(3):292–303.CrossRefPubMed Romero OA, Torres-Diz M, Pros E, Savola S, Gomez A, Moran S, et al. MAX inactivation in small cell lung cancer disrupts MYC-SWI/SNF programs and is synthetic lethal with BRG1. Cancer Discov. 2014;4(3):292–303.CrossRefPubMed
32.
go back to reference Favale N, Casali C, Lepera L, Pescio L, Fernández-Tome M. Hypertonic induction of COX2 expression requires TonEBP/NFAT5 in renal epithelial cells. Biochem Biophys Res Commun. 2009;381(3):301–5.CrossRefPubMed Favale N, Casali C, Lepera L, Pescio L, Fernández-Tome M. Hypertonic induction of COX2 expression requires TonEBP/NFAT5 in renal epithelial cells. Biochem Biophys Res Commun. 2009;381(3):301–5.CrossRefPubMed
33.
go back to reference Chen M, Sinha M, Luxon BA, Bresnick AR, O’Connor KL. Integrin alpha6beta4 controls the expression of genes associated with cell motility, invasion, and metastasis, including S100A4/metastasin. J Biol Chem. 2009;284(3):1484–94.CrossRefPubMedCentralPubMed Chen M, Sinha M, Luxon BA, Bresnick AR, O’Connor KL. Integrin alpha6beta4 controls the expression of genes associated with cell motility, invasion, and metastasis, including S100A4/metastasin. J Biol Chem. 2009;284(3):1484–94.CrossRefPubMedCentralPubMed
34.
go back to reference Bilir B, Kucuk O, Moreno CS. Wnt signaling blockage inhibits cell proliferation and migration, and induces apoptosis in triple-negative breast cancer cells. J Transl Med. 2013;11:280.CrossRefPubMedCentralPubMed Bilir B, Kucuk O, Moreno CS. Wnt signaling blockage inhibits cell proliferation and migration, and induces apoptosis in triple-negative breast cancer cells. J Transl Med. 2013;11:280.CrossRefPubMedCentralPubMed
Metadata
Title
Systems biology analysis reveals NFAT5 as a novel biomarker and master regulator of inflammatory breast cancer
Authors
Andrea Remo
Ines Simeone
Massimo Pancione
Pietro Parcesepe
Pascal Finetti
Luigi Cerulo
Halima Bensmail
Daniel Birnbaum
Steven J Van Laere
Vittorio Colantuoni
Franco Bonetti
François Bertucci
Erminia Manfrin
Michele Ceccarelli
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2015
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-015-0492-2

Other articles of this Issue 1/2015

Journal of Translational Medicine 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.