Skip to main content
Top
Published in: Journal of Translational Medicine 1/2014

Open Access 01-12-2014 | Research

Disturbed angiogenic activity of adipose-derived stromal cells obtained from patients with coronary artery disease and diabetes mellitus type 2

Authors: Nina A Dzhoyashvili, Anastasia Yu Efimenko, Tatiana N Kochegura, Natalia I Kalinina, Natalia V Koptelova, Olga Yu Sukhareva, Marina V Shestakova, Renat S Akchurin, Vsevolod A Tkachuk, Yelena V Parfyonova

Published in: Journal of Translational Medicine | Issue 1/2014

Login to get access

Abstract

Background

Multipotent mesenchymal stem/stromal cells (MSC) including adipose-derived stromal cells (ADSC) have been successfully applied for cardiovascular diseases treatment. Their regenerative potential is considered due to the multipotency, paracrine activity and immunologic privilege. However, therapeutic efficacy of autologous MSC for myocardial ischemia therapy is modest. We analyzed if ADSC properties are attenuated in patients with chronic diseases such as coronary artery disease (CAD) and diabetes mellitus type 2 (T2DM).

Methods and results

ADSC were isolated from subcutaneous fat tissue of patients without established cardiovascular diseases and metabolic disorders (control group, n = 19), patients with CAD only (n = 32) and patients with CAD and T2DM (n = 28). ADSC phenotype (flow cytometry) was CD90+/CD73+/CD105+/CD45/CD31 and they were capable of adipogenic and osteogenic differentiation. ADSC morphology and immunophenotype were similar for all patients, but ADSC from patients with CAD and T2DM had higher proliferation activity and shorter telomeres compared to control patients.
ADSC conditioned media stimulated capillary-like tubes formation by endothelial cells (EA.hy926), but this effect significantly decreased for patients with CAD (p = 0.03) and with CAD + T2DM (p = 0.017) compared to the control group. Surprisingly we revealed significantly higher secretion of some pro-angiogenic factors (ELISA) by ADSC: vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) for patients with CAD and HGF and placental growth factor (PlGF) for patients with CAD + T2DM. Among angiogenesis inhibitors such as thrombospondin-1, endostatin and plasminogen activator inhibitor-1 (PAI-1) level of PAI-1 in ADSC conditioned media was significantly higher for patients with CAD and CAD + T2DM compared to the control group (p < 0.01). Inhibition of PAI-1 in ADSC conditioned media by neutralizing antibodies partially restored ADSC angiogenic activity (p = 0.017).

Conclusions

ADSC angiogenic activity is significantly declined in patients with CAD and T2DM, which could restrict the effectiveness of autologous ADSC cell therapy in these cohorts of patients. This impairment might be due to the disturbance in coordinated network of pro- and anti-angiogenic growth factors secreted by ADSC. Changes in ADSC secretome differ between patients with CAD and T2DM and further investigation are necessary to reveal the MSC-involved mechanisms of cardiovascular and metabolic diseases and develop novel approaches to their correction using the methods of regenerative medicine.
Appendix
Available only for authorised users
Literature
1.
go back to reference Thomas DG, Gary ES: Diabetes mellitus and heart failure: basic mechanisms, clinical features, and therapeutic considerations. Cardiol Clin. 2004, 22: 553-568. 10.1016/j.ccl.2004.07.002.CrossRef Thomas DG, Gary ES: Diabetes mellitus and heart failure: basic mechanisms, clinical features, and therapeutic considerations. Cardiol Clin. 2004, 22: 553-568. 10.1016/j.ccl.2004.07.002.CrossRef
2.
go back to reference Huxley R, Barzi F, Woodward M: Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ. 2006, 332 (7533): 73-78. 10.1136/bmj.38678.389583.7C.PubMedCentralCrossRefPubMed Huxley R, Barzi F, Woodward M: Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ. 2006, 332 (7533): 73-78. 10.1136/bmj.38678.389583.7C.PubMedCentralCrossRefPubMed
3.
go back to reference From AM, Leibson CL, Bursi F, Redfield MM, Weston SA, Jacobsen SJ, Rodeheffer RJ, Roger VL: Diabetes in heart failure: prevalence and impact on outcome in the population. Am J Med. 2006, 119 (7): 591-599. 10.1016/j.amjmed.2006.05.024.CrossRefPubMed From AM, Leibson CL, Bursi F, Redfield MM, Weston SA, Jacobsen SJ, Rodeheffer RJ, Roger VL: Diabetes in heart failure: prevalence and impact on outcome in the population. Am J Med. 2006, 119 (7): 591-599. 10.1016/j.amjmed.2006.05.024.CrossRefPubMed
4.
go back to reference Stratmann B, Tschöpe D: Atrial fibrillation and diabetes mellitus. correlation, co-existence, and coagulation therapy. Herz. 2012, 37 (3): 258-263. 10.1007/s00059-012-3600-6.CrossRefPubMed Stratmann B, Tschöpe D: Atrial fibrillation and diabetes mellitus. correlation, co-existence, and coagulation therapy. Herz. 2012, 37 (3): 258-263. 10.1007/s00059-012-3600-6.CrossRefPubMed
5.
go back to reference Williams AR, Hare JM: Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res. 2011, 109 (8): 923-940. 10.1161/CIRCRESAHA.111.243147.PubMedCentralCrossRefPubMed Williams AR, Hare JM: Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res. 2011, 109 (8): 923-940. 10.1161/CIRCRESAHA.111.243147.PubMedCentralCrossRefPubMed
6.
go back to reference Friis T, Haack-Sørensen M, Mathiasen AB, Ripa RS, Kristoffersen US, Jørgensen E, Hansen L, Bindslev L, Kjær A, Hesse B, Dickmeiss E, Kastrup J: Mesenchymal stromal cell derived endothelial progenitor treatment in patients with refractory angina. Scand Cardiovasc J. 2011, 45 (3): 161-168. 10.3109/14017431.2011.569571.CrossRefPubMed Friis T, Haack-Sørensen M, Mathiasen AB, Ripa RS, Kristoffersen US, Jørgensen E, Hansen L, Bindslev L, Kjær A, Hesse B, Dickmeiss E, Kastrup J: Mesenchymal stromal cell derived endothelial progenitor treatment in patients with refractory angina. Scand Cardiovasc J. 2011, 45 (3): 161-168. 10.3109/14017431.2011.569571.CrossRefPubMed
7.
go back to reference Mathiasen AB, Haack-Sørensen M, Jørgensen E, Kastrup J: Autotransplantation of mesenchymal stromal cells from bone-marrow to heart in patients with severe stable coronary artery disease and refractory angina–final 3-year follow-up. Int J Cardiol. 2013, 170 (2): 246-251. 10.1016/j.ijcard.2013.10.079.CrossRefPubMed Mathiasen AB, Haack-Sørensen M, Jørgensen E, Kastrup J: Autotransplantation of mesenchymal stromal cells from bone-marrow to heart in patients with severe stable coronary artery disease and refractory angina–final 3-year follow-up. Int J Cardiol. 2013, 170 (2): 246-251. 10.1016/j.ijcard.2013.10.079.CrossRefPubMed
8.
go back to reference Bura A, Planat-Benard V, Bourin P, Silvestre JS, Gross F, Grolleau JL, Saint-Lebese B, Peyrafitte JA, Fleury S, Gadelorge M, Taurand M, Dupuis-Coronas S, Leobon B, Casteilla L: Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy. 2014, 16 (2): 245-257. 10.1016/j.jcyt.2013.11.011.CrossRefPubMed Bura A, Planat-Benard V, Bourin P, Silvestre JS, Gross F, Grolleau JL, Saint-Lebese B, Peyrafitte JA, Fleury S, Gadelorge M, Taurand M, Dupuis-Coronas S, Leobon B, Casteilla L: Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy. 2014, 16 (2): 245-257. 10.1016/j.jcyt.2013.11.011.CrossRefPubMed
9.
go back to reference Zimmerlin L, Donnenberg VS, Rubin JP, Donnenberg AD: Mesenchymal markers on human adipose stem/progenitor cells. Cytometry A. 2013, 83 (1): 134-140. 10.1002/cyto.a.22227.PubMedCentralCrossRefPubMed Zimmerlin L, Donnenberg VS, Rubin JP, Donnenberg AD: Mesenchymal markers on human adipose stem/progenitor cells. Cytometry A. 2013, 83 (1): 134-140. 10.1002/cyto.a.22227.PubMedCentralCrossRefPubMed
10.
go back to reference Lin CS, Xin ZC, Deng CH, Ning H, Lin G, Lue TF: Defining adipose tissue-derived stem cells in tissue and in culture. Histol Histopathol. 2010, 25 (6): 807-815.PubMed Lin CS, Xin ZC, Deng CH, Ning H, Lin G, Lue TF: Defining adipose tissue-derived stem cells in tissue and in culture. Histol Histopathol. 2010, 25 (6): 807-815.PubMed
11.
go back to reference Braun J, Kurtz A, Barutcu N, Bodo J, Thiel A, Dong J: Concerted regulation of CD34 and CD105 accompanies mesenchymal stromal cell derivation from human adventitial stromal cell. Stem Cells Dev. 2013, 22 (5): 815-827. 10.1089/scd.2012.0263.CrossRefPubMed Braun J, Kurtz A, Barutcu N, Bodo J, Thiel A, Dong J: Concerted regulation of CD34 and CD105 accompanies mesenchymal stromal cell derivation from human adventitial stromal cell. Stem Cells Dev. 2013, 22 (5): 815-827. 10.1089/scd.2012.0263.CrossRefPubMed
12.
go back to reference Valina C, Pinkernell K, Song YH, Bai X, Sadat S, Campeau RJ, Le Jemtel TH, Alt E: Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur Heart J. 2007, 28 (21): 2667-2677. 10.1093/eurheartj/ehm426.CrossRefPubMed Valina C, Pinkernell K, Song YH, Bai X, Sadat S, Campeau RJ, Le Jemtel TH, Alt E: Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur Heart J. 2007, 28 (21): 2667-2677. 10.1093/eurheartj/ehm426.CrossRefPubMed
13.
go back to reference Wang L, Deng J, Tian W, Xiang B, Yang T, Li G, Wang J, Gruwel M, Kashour T, Rendell J, Glogowski M, Tomanek B, Freed D, Deslauriers R, Arora RC, Tian G: Adipose-derived stem cells are an effective cell candidate for treatment of heart failure: an MR imaging study of rat hearts. Am J Physiol Heart Circ Physiol. 2009, 297 (3): H1020-H1031. 10.1152/ajpheart.01082.2008.CrossRefPubMed Wang L, Deng J, Tian W, Xiang B, Yang T, Li G, Wang J, Gruwel M, Kashour T, Rendell J, Glogowski M, Tomanek B, Freed D, Deslauriers R, Arora RC, Tian G: Adipose-derived stem cells are an effective cell candidate for treatment of heart failure: an MR imaging study of rat hearts. Am J Physiol Heart Circ Physiol. 2009, 297 (3): H1020-H1031. 10.1152/ajpheart.01082.2008.CrossRefPubMed
14.
go back to reference Madonna R, Geng YJ, De Caterina R: Adipose tissue-derived stem cells: characterization and potential for cardiovascular repair. Arterioscler Thromb Vasc Biol. 2009, 29 (11): 1723-1729. 10.1161/ATVBAHA.109.187179.CrossRefPubMed Madonna R, Geng YJ, De Caterina R: Adipose tissue-derived stem cells: characterization and potential for cardiovascular repair. Arterioscler Thromb Vasc Biol. 2009, 29 (11): 1723-1729. 10.1161/ATVBAHA.109.187179.CrossRefPubMed
15.
go back to reference Hong SJ, Traktuev DO, March KL: Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Curr Opin Organ Transplant. 2010, 15 (1): 86-91. 10.1097/MOT.0b013e328334f074.CrossRefPubMed Hong SJ, Traktuev DO, March KL: Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Curr Opin Organ Transplant. 2010, 15 (1): 86-91. 10.1097/MOT.0b013e328334f074.CrossRefPubMed
16.
go back to reference Beeson W, Woods E, Agha R: Tissue engineering, regenerative medicine and rejuvenation in 2010: the role of adipose-derived stem cells. Facial Plast Surg. 2011, 27 (4): 378-387. 10.1055/s-0031-1283056.CrossRefPubMed Beeson W, Woods E, Agha R: Tissue engineering, regenerative medicine and rejuvenation in 2010: the role of adipose-derived stem cells. Facial Plast Surg. 2011, 27 (4): 378-387. 10.1055/s-0031-1283056.CrossRefPubMed
17.
go back to reference Gimble JM, Bunnell BA, Frazier T, Rowan B, Shah F, Thomas-Porch C, Wu X: Adipose-derived stromal/stem cells: a primer. Organogenesis. 2013, 9 (1): 3-10. 10.4161/org.24279.PubMedCentralCrossRefPubMed Gimble JM, Bunnell BA, Frazier T, Rowan B, Shah F, Thomas-Porch C, Wu X: Adipose-derived stromal/stem cells: a primer. Organogenesis. 2013, 9 (1): 3-10. 10.4161/org.24279.PubMedCentralCrossRefPubMed
18.
go back to reference Pikuła M, Marek-Trzonkowska N, Wardowska A, Renkielska A, Trzonkowski P: Adipose tissue-derived stem cells in clinical applications. Expert Opin Biol Ther. 2013, 13 (10): 1357-1370. 10.1517/14712598.2013.823153.CrossRefPubMed Pikuła M, Marek-Trzonkowska N, Wardowska A, Renkielska A, Trzonkowski P: Adipose tissue-derived stem cells in clinical applications. Expert Opin Biol Ther. 2013, 13 (10): 1357-1370. 10.1517/14712598.2013.823153.CrossRefPubMed
19.
go back to reference Nakagami H, Maeda K, Morishita R, Iguchi S, Nishikawa T, Takami Y, Kikuchi Y, Saito Y, Tamai K, Ogihara T, Kaneda Y: Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler Thromb Vasc Biol. 2005, 25 (12): 2542-2547. 10.1161/01.ATV.0000190701.92007.6d.CrossRefPubMed Nakagami H, Maeda K, Morishita R, Iguchi S, Nishikawa T, Takami Y, Kikuchi Y, Saito Y, Tamai K, Ogihara T, Kaneda Y: Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler Thromb Vasc Biol. 2005, 25 (12): 2542-2547. 10.1161/01.ATV.0000190701.92007.6d.CrossRefPubMed
20.
go back to reference Rubina K, Kalinina N, Efimenko A, Lopatina T, Melikhova V, Tsokolaeva Z, Sysoeva V, Tkachuk V, Parfyonova Y: Adipose stromal cells stimulate angiogenesis via promoting progenitor cell differentiation, secretion of angiogenic factors, and enhancing vessel maturation. Tissue Eng Part A. 2009, 15 (8): 2039-2050. 10.1089/ten.tea.2008.0359.CrossRefPubMed Rubina K, Kalinina N, Efimenko A, Lopatina T, Melikhova V, Tsokolaeva Z, Sysoeva V, Tkachuk V, Parfyonova Y: Adipose stromal cells stimulate angiogenesis via promoting progenitor cell differentiation, secretion of angiogenic factors, and enhancing vessel maturation. Tissue Eng Part A. 2009, 15 (8): 2039-2050. 10.1089/ten.tea.2008.0359.CrossRefPubMed
21.
go back to reference Kachgal S, Putnam AJ: Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms. Angiogenesis. 2011, 14 (1): 47-59. 10.1007/s10456-010-9194-9.PubMedCentralCrossRefPubMed Kachgal S, Putnam AJ: Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms. Angiogenesis. 2011, 14 (1): 47-59. 10.1007/s10456-010-9194-9.PubMedCentralCrossRefPubMed
22.
go back to reference Sheng L, Yang M, Li H, Du Z, Yang Y, Li Q: Transplantation of adipose stromal cells promotes neovascularization of random skin flaps. Tohoku J Exp Med. 2011, 24 (3): 229-234. 10.1620/tjem.224.229.CrossRef Sheng L, Yang M, Li H, Du Z, Yang Y, Li Q: Transplantation of adipose stromal cells promotes neovascularization of random skin flaps. Tohoku J Exp Med. 2011, 24 (3): 229-234. 10.1620/tjem.224.229.CrossRef
23.
go back to reference Qayyum AA, Haack-Sørensen M, Mathiasen AB, Jørgensen E, Ekblond A, Kastrup J: Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell Trial): study design. Regen Med. 2012, 7 (3): 421-428. 10.2217/rme.12.17.CrossRefPubMed Qayyum AA, Haack-Sørensen M, Mathiasen AB, Jørgensen E, Ekblond A, Kastrup J: Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell Trial): study design. Regen Med. 2012, 7 (3): 421-428. 10.2217/rme.12.17.CrossRefPubMed
24.
go back to reference Perin EC, Sanz-Ruiz R, Sánchez PL, Lasso J, Pérez-Cano R, Alonso-Farto JC, Pérez-David E, Fernández-Santos ME, Serruys PW, Duckers HJ, Kastrup J, Chamuleau S, Zheng Y, Silva GV, Willerson JT, Fernández-Avilés F: Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: the precise trial. Am Heart J. 2014, 168 (1): 88-95. 10.1016/j.ahj.2014.03.022. e2CrossRefPubMed Perin EC, Sanz-Ruiz R, Sánchez PL, Lasso J, Pérez-Cano R, Alonso-Farto JC, Pérez-David E, Fernández-Santos ME, Serruys PW, Duckers HJ, Kastrup J, Chamuleau S, Zheng Y, Silva GV, Willerson JT, Fernández-Avilés F: Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: the precise trial. Am Heart J. 2014, 168 (1): 88-95. 10.1016/j.ahj.2014.03.022. e2CrossRefPubMed
26.
go back to reference Aranda E, Owen GI: A semi-quantitative assay to screen for angiogenic compounds and compounds with angiogenic potential using the EA.hy926 endothelial cell line. Biol Res. 2009, 42 (3): 377-389. 10.4067/S0716-97602009000300012.CrossRefPubMed Aranda E, Owen GI: A semi-quantitative assay to screen for angiogenic compounds and compounds with angiogenic potential using the EA.hy926 endothelial cell line. Biol Res. 2009, 42 (3): 377-389. 10.4067/S0716-97602009000300012.CrossRefPubMed
27.
go back to reference Dominici M, Le Blanc K, Mueller I, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cells. the International Society for Cellular Therapy position statement. Cytotherapy. 2006, 8 (4): 315-317. 10.1080/14653240600855905.CrossRefPubMed Dominici M, Le Blanc K, Mueller I, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cells. the International Society for Cellular Therapy position statement. Cytotherapy. 2006, 8 (4): 315-317. 10.1080/14653240600855905.CrossRefPubMed
28.
go back to reference Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE, Fraser JK, Hedrick MH: Multipotential differentiation of adipose tissue-derived stem cells. Keio J. Med. 2005, 54: 132-141. 10.2302/kjm.54.132.CrossRefPubMed Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE, Fraser JK, Hedrick MH: Multipotential differentiation of adipose tissue-derived stem cells. Keio J. Med. 2005, 54: 132-141. 10.2302/kjm.54.132.CrossRefPubMed
29.
go back to reference Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J: Same or not the same? comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 2012, 21 (14): 2724-2752. 10.1089/scd.2011.0722.CrossRefPubMed Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J: Same or not the same? comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 2012, 21 (14): 2724-2752. 10.1089/scd.2011.0722.CrossRefPubMed
30.
go back to reference Madonna R, De Caterina R: In vitro neovasculogenic potential of resident adipose tissue precursors. Am J Physiol Cell Physiol. 2008, 295 (5): 1271-1280. 10.1152/ajpcell.00186.2008.CrossRef Madonna R, De Caterina R: In vitro neovasculogenic potential of resident adipose tissue precursors. Am J Physiol Cell Physiol. 2008, 295 (5): 1271-1280. 10.1152/ajpcell.00186.2008.CrossRef
31.
go back to reference Melief SM, Zwaginga JJ, Fibbe WE, Roelofs H: Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem Cells Transl Med. 2013, 2 (6): 455-463. 10.5966/sctm.2012-0184.PubMedCentralCrossRefPubMed Melief SM, Zwaginga JJ, Fibbe WE, Roelofs H: Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem Cells Transl Med. 2013, 2 (6): 455-463. 10.5966/sctm.2012-0184.PubMedCentralCrossRefPubMed
32.
go back to reference Efimenko AY, Starostina EE, Rubina KA, Kalinina NI, Parfenova EV: Viability and angiogenic activity of mesenchymal stromal cells from adipose tissue and bone marrow in hypoxia and inflammation in vitro. Tsitologiia. 2010, 52 (2): 144-154.PubMed Efimenko AY, Starostina EE, Rubina KA, Kalinina NI, Parfenova EV: Viability and angiogenic activity of mesenchymal stromal cells from adipose tissue and bone marrow in hypoxia and inflammation in vitro. Tsitologiia. 2010, 52 (2): 144-154.PubMed
33.
go back to reference Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S: Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001, 89: E1-E7. 10.1161/hh1301.093953.CrossRefPubMed Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S: Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001, 89: E1-E7. 10.1161/hh1301.093953.CrossRefPubMed
34.
go back to reference Hill J, Zalos G, Halcox JP: Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003, 348: 593-600. 10.1056/NEJMoa022287.CrossRefPubMed Hill J, Zalos G, Halcox JP: Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003, 348: 593-600. 10.1056/NEJMoa022287.CrossRefPubMed
35.
go back to reference Choi JH, Hur J, Yoon CH: Augmentation of therapeutic angiogenesis using genetically modified human endothelial progenitor cells with altered glycogen synthase kinase-3beta activity. J Biol Chem. 2004, 279 (47): 4943-4948. Choi JH, Hur J, Yoon CH: Augmentation of therapeutic angiogenesis using genetically modified human endothelial progenitor cells with altered glycogen synthase kinase-3beta activity. J Biol Chem. 2004, 279 (47): 4943-4948.
36.
go back to reference Madonna R, Renna FV, Cellini C, Cotellese R, Picardi N, Francomano F, Innocenti P, De Caterina R: Age-dependent impairment of number and angiogenic potential of adipose tissue-derived progenitor cells. Eur J Clin Invest. 2011, 41 (2): 126-133. 10.1111/j.1365-2362.2010.02384.x.CrossRefPubMed Madonna R, Renna FV, Cellini C, Cotellese R, Picardi N, Francomano F, Innocenti P, De Caterina R: Age-dependent impairment of number and angiogenic potential of adipose tissue-derived progenitor cells. Eur J Clin Invest. 2011, 41 (2): 126-133. 10.1111/j.1365-2362.2010.02384.x.CrossRefPubMed
37.
go back to reference Efimenko A, Dzhoyashvili N, Kalinina N, Kochegura T, Akchurin R, Tkachuk V, Parfyonova Y: Adipose-derived stromal cells (ADSC) from aged patients with coronary artery disease keep MSC properties but exhibit age markers and have an impaired angiogenic potential. Stem Cells Translational Medicine. 2014, 3 (1): 32-41. 10.5966/sctm.2013-0014.PubMedCentralCrossRefPubMed Efimenko A, Dzhoyashvili N, Kalinina N, Kochegura T, Akchurin R, Tkachuk V, Parfyonova Y: Adipose-derived stromal cells (ADSC) from aged patients with coronary artery disease keep MSC properties but exhibit age markers and have an impaired angiogenic potential. Stem Cells Translational Medicine. 2014, 3 (1): 32-41. 10.5966/sctm.2013-0014.PubMedCentralCrossRefPubMed
38.
go back to reference Takahashi M, Izawa A, Ishigatsubo Y, Fujimoto K, Miyamoto M, Horie T, Aizawa Y, Amano J, Minota S, Murohara T, Matsubara H, Ikeda U: Therapeutic neovascularization by implantation of autologous mononuclear cells for patients with connective tissue diseases. Curr Pharm Des. 2009, 15 (24): 2778-2783. 10.2174/138161209788923813.CrossRefPubMed Takahashi M, Izawa A, Ishigatsubo Y, Fujimoto K, Miyamoto M, Horie T, Aizawa Y, Amano J, Minota S, Murohara T, Matsubara H, Ikeda U: Therapeutic neovascularization by implantation of autologous mononuclear cells for patients with connective tissue diseases. Curr Pharm Des. 2009, 15 (24): 2778-2783. 10.2174/138161209788923813.CrossRefPubMed
39.
go back to reference Harris LJ, Zhang P, Abdollahi H, Tarola NA, DiMatteo C, McIlhenny SE, Tulenko TN, DiMuzio PJ: Availability of adipose-derived stem cells in patients undergoing vascular surgical procedures. J Surg Res. 2010, 163 (2): e105-e112. 10.1016/j.jss.2010.04.025.PubMedCentralCrossRefPubMed Harris LJ, Zhang P, Abdollahi H, Tarola NA, DiMatteo C, McIlhenny SE, Tulenko TN, DiMuzio PJ: Availability of adipose-derived stem cells in patients undergoing vascular surgical procedures. J Surg Res. 2010, 163 (2): e105-e112. 10.1016/j.jss.2010.04.025.PubMedCentralCrossRefPubMed
40.
go back to reference Gu JH, Lee JS, Kim DW, Yoon ES, Dhong ES: Neovascular potential of adipose-derived stromal cells (ASCs) from diabetic patients. Wound Repair Regen. 2012, 20: 243-252. 10.1111/j.1524-475X.2012.00765.x.CrossRefPubMed Gu JH, Lee JS, Kim DW, Yoon ES, Dhong ES: Neovascular potential of adipose-derived stromal cells (ASCs) from diabetic patients. Wound Repair Regen. 2012, 20: 243-252. 10.1111/j.1524-475X.2012.00765.x.CrossRefPubMed
41.
go back to reference Oñate B, Vilahur G, Ferrer-Lorente R, Ybarra J, Díez-Caballero A, Ballesta-López C, Moscatiello F, Herrero J, Badimon L: The subcutaneous adipose tissue reservoir of functionally active stem cells is reduced in obese patients. FASEB J. 2012, 26: 4327-4336. 10.1096/fj.12-207217.CrossRefPubMed Oñate B, Vilahur G, Ferrer-Lorente R, Ybarra J, Díez-Caballero A, Ballesta-López C, Moscatiello F, Herrero J, Badimon L: The subcutaneous adipose tissue reservoir of functionally active stem cells is reduced in obese patients. FASEB J. 2012, 26: 4327-4336. 10.1096/fj.12-207217.CrossRefPubMed
42.
go back to reference Vecellio M, Spallotta F, Nanni S, Colussi C, Cencioni C, Derlet A, Bassetti B, Tilenni M, Carena MC, Farsetti A, Sbardella G, Castellano S, Mai A, Martelli F, Pompilio G, Capogrossi MC, Rossini A, Dimmeler S, Zeiher A, Gaetano C: The histone acetylase activator Pentadecylidenemalonate 1b rescues proliferation and differentiation in human cardiac Mesenchymal cells of type 2 diabetic patients. Diabetes. 2014, 63 (6): 2132-2147. 10.2337/db13-0731.CrossRefPubMed Vecellio M, Spallotta F, Nanni S, Colussi C, Cencioni C, Derlet A, Bassetti B, Tilenni M, Carena MC, Farsetti A, Sbardella G, Castellano S, Mai A, Martelli F, Pompilio G, Capogrossi MC, Rossini A, Dimmeler S, Zeiher A, Gaetano C: The histone acetylase activator Pentadecylidenemalonate 1b rescues proliferation and differentiation in human cardiac Mesenchymal cells of type 2 diabetic patients. Diabetes. 2014, 63 (6): 2132-2147. 10.2337/db13-0731.CrossRefPubMed
43.
go back to reference Lawler PR, Lawler J: Molecular basis for the regulation of angiogenesis by thrombospondin-1 and −2. Cold Spring Harb Perspect Med. 2012, 2 (5): a006627-10.1101/cshperspect.a006627.PubMedCentralCrossRefPubMed Lawler PR, Lawler J: Molecular basis for the regulation of angiogenesis by thrombospondin-1 and −2. Cold Spring Harb Perspect Med. 2012, 2 (5): a006627-10.1101/cshperspect.a006627.PubMedCentralCrossRefPubMed
44.
go back to reference Dua MM, Miyama N, Azuma J, Schultz GM, Sho M, Morser J, Dalman RL: Hyperglycemia modulates plasminogen activator inhibitor-1 expression and aortic diameter in experimental aortic aneurysm disease. Surgery. 2010, 148: 429-435. 10.1016/j.surg.2010.05.014.PubMedCentralCrossRefPubMed Dua MM, Miyama N, Azuma J, Schultz GM, Sho M, Morser J, Dalman RL: Hyperglycemia modulates plasminogen activator inhibitor-1 expression and aortic diameter in experimental aortic aneurysm disease. Surgery. 2010, 148: 429-435. 10.1016/j.surg.2010.05.014.PubMedCentralCrossRefPubMed
45.
go back to reference Gabriely I, Yang XM, Cases JA, Ma XH, Rossetti L, Barzilai N: Hyperglycemia induces PAI-1 gene expression in adipose tissue by activation of the hexosamine biosynthetic pathway. Atherosclerosis. 2002, 160: 115-122. 10.1016/S0021-9150(01)00574-3.CrossRefPubMed Gabriely I, Yang XM, Cases JA, Ma XH, Rossetti L, Barzilai N: Hyperglycemia induces PAI-1 gene expression in adipose tissue by activation of the hexosamine biosynthetic pathway. Atherosclerosis. 2002, 160: 115-122. 10.1016/S0021-9150(01)00574-3.CrossRefPubMed
46.
go back to reference Weiss TW, Seljeflot I, Hjerkinn EM, Arnesen H: Adipose tissue pro-inflammatory gene expression is associated with cardiovascular disease. Int J Clin Pract. 2011, 65: 939-944. 10.1111/j.1742-1241.2011.02717.x.CrossRefPubMed Weiss TW, Seljeflot I, Hjerkinn EM, Arnesen H: Adipose tissue pro-inflammatory gene expression is associated with cardiovascular disease. Int J Clin Pract. 2011, 65: 939-944. 10.1111/j.1742-1241.2011.02717.x.CrossRefPubMed
47.
go back to reference Acosta L, Hmadcha A, Escacena N: Adipose mesenchymal stromal cells isolated from type 2 diabetic patients display reduced fibrinolytic activity. Diabetes. 2013, 62 (12): 4266-4269. 10.2337/db13-0896.PubMedCentralCrossRefPubMed Acosta L, Hmadcha A, Escacena N: Adipose mesenchymal stromal cells isolated from type 2 diabetic patients display reduced fibrinolytic activity. Diabetes. 2013, 62 (12): 4266-4269. 10.2337/db13-0896.PubMedCentralCrossRefPubMed
48.
go back to reference Parfyonova YV, Plekhanova OS, Tkachuk VA: Plasminogen activators in vascular remodeling and angiogenesis. Biochemistry (Mosc). 2002, 67: 119-134. 10.1023/A:1013964517211.CrossRef Parfyonova YV, Plekhanova OS, Tkachuk VA: Plasminogen activators in vascular remodeling and angiogenesis. Biochemistry (Mosc). 2002, 67: 119-134. 10.1023/A:1013964517211.CrossRef
49.
go back to reference Tashiro Y, Nishida C, Sato-Kusubata K, Ohki-Koizumi M, Ishihara M, Sato A, Gritli I, Komiyama H, Sato Y, Dan T, Miyata T, Okumura K, Tomiki Y, Sakamoto K, Nakauchi H, Heissig B, Hattori K: Inhibition of PAI-1 induces neutrophil-driven neoangiogenesis and promotes tissue regeneration via production of angiocrine factors in mice. Blood. 2012, 119: 6382-6393. 10.1182/blood-2011-12-399659.CrossRefPubMed Tashiro Y, Nishida C, Sato-Kusubata K, Ohki-Koizumi M, Ishihara M, Sato A, Gritli I, Komiyama H, Sato Y, Dan T, Miyata T, Okumura K, Tomiki Y, Sakamoto K, Nakauchi H, Heissig B, Hattori K: Inhibition of PAI-1 induces neutrophil-driven neoangiogenesis and promotes tissue regeneration via production of angiocrine factors in mice. Blood. 2012, 119: 6382-6393. 10.1182/blood-2011-12-399659.CrossRefPubMed
50.
go back to reference El-Ftesi S, Chang EI, Longaker MT, Gurtner GC: Aging and diabetes impair the neovascular potential of adipose-derived stromal cells. Plast Reconstr Surg. 2009, 123 (2): 475-485. 10.1097/PRS.0b013e3181954d08.PubMedCentralCrossRefPubMed El-Ftesi S, Chang EI, Longaker MT, Gurtner GC: Aging and diabetes impair the neovascular potential of adipose-derived stromal cells. Plast Reconstr Surg. 2009, 123 (2): 475-485. 10.1097/PRS.0b013e3181954d08.PubMedCentralCrossRefPubMed
51.
go back to reference Cianfarani F, Toietta G, Di Rocco G, Cesareo E, Zambruno G, Odorisio T: Diabetes impairs adipose tissue-derived stem cell function and efficiency in promoting wound healing. Wound Repair Regen. 2013, 21 (4): 545-553. 10.1111/wrr.12051.CrossRefPubMed Cianfarani F, Toietta G, Di Rocco G, Cesareo E, Zambruno G, Odorisio T: Diabetes impairs adipose tissue-derived stem cell function and efficiency in promoting wound healing. Wound Repair Regen. 2013, 21 (4): 545-553. 10.1111/wrr.12051.CrossRefPubMed
52.
go back to reference Yan J, Tie G, Xu TY, Cecchini K, Messina LM: Mesenchymal stem cells as a treatment for peripheral arterial disease: current status and potential impact of type II diabetes on their therapeutic efficacy. Stem Cell Rev. 2013, 9 (3): 360-372. 10.1007/s12015-013-9433-8.PubMedCentralCrossRefPubMed Yan J, Tie G, Xu TY, Cecchini K, Messina LM: Mesenchymal stem cells as a treatment for peripheral arterial disease: current status and potential impact of type II diabetes on their therapeutic efficacy. Stem Cell Rev. 2013, 9 (3): 360-372. 10.1007/s12015-013-9433-8.PubMedCentralCrossRefPubMed
53.
go back to reference Akopyan ZA, Sharonov GV, Kochegura TN, Kalinina NI, Parfyonova YV: The influence of high glucose concentration on the ability of mesenchymal stromal cells to stimulate blood vessel growth. Diabetes Mellitus. 2011, 2: 32-36. 10.14341/2072-0351-5631.CrossRef Akopyan ZA, Sharonov GV, Kochegura TN, Kalinina NI, Parfyonova YV: The influence of high glucose concentration on the ability of mesenchymal stromal cells to stimulate blood vessel growth. Diabetes Mellitus. 2011, 2: 32-36. 10.14341/2072-0351-5631.CrossRef
54.
go back to reference Davey GC, Patil SB, O’Loughlin A, O'Brien T: Mesenchymal stem cell-based treatment for microvascular and secondary complications of diabetes mellitus. Front Endocrinol (Lausanne). 2014, 5: 86- Davey GC, Patil SB, O’Loughlin A, O'Brien T: Mesenchymal stem cell-based treatment for microvascular and secondary complications of diabetes mellitus. Front Endocrinol (Lausanne). 2014, 5: 86-
55.
go back to reference Ratcliffe E, Glen KE, Naing MW, Williams DJ: Current status and perspectives on stem cell-based therapies undergoing clinical trials for regenerative medicine: case studies. British Medical Bulletin. 2013, 108: 1-21. 10.1093/bmb/ldt034.CrossRef Ratcliffe E, Glen KE, Naing MW, Williams DJ: Current status and perspectives on stem cell-based therapies undergoing clinical trials for regenerative medicine: case studies. British Medical Bulletin. 2013, 108: 1-21. 10.1093/bmb/ldt034.CrossRef
56.
go back to reference Shevchenko EK, Makarevich PI, Tsokolaeva ZI, Boldyreva MA, Sysoeva VY, Tkachuk VA, Parfyonova YV: Transplantation of modified human adipose derived stromal cells expressing VEGF165 results in more efficient angiogenic response in ischemic skeletal muscle. J Transl Med. 2013, 11: 138-10.1186/1479-5876-11-138.PubMedCentralCrossRefPubMed Shevchenko EK, Makarevich PI, Tsokolaeva ZI, Boldyreva MA, Sysoeva VY, Tkachuk VA, Parfyonova YV: Transplantation of modified human adipose derived stromal cells expressing VEGF165 results in more efficient angiogenic response in ischemic skeletal muscle. J Transl Med. 2013, 11: 138-10.1186/1479-5876-11-138.PubMedCentralCrossRefPubMed
57.
go back to reference Efimenko A, Starostina E, Kalinina N, Stolzing A: Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning. J Transl Med. 2011, 9 (1): 10-22. 10.1186/1479-5876-9-10.PubMedCentralCrossRefPubMed Efimenko A, Starostina E, Kalinina N, Stolzing A: Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning. J Transl Med. 2011, 9 (1): 10-22. 10.1186/1479-5876-9-10.PubMedCentralCrossRefPubMed
Metadata
Title
Disturbed angiogenic activity of adipose-derived stromal cells obtained from patients with coronary artery disease and diabetes mellitus type 2
Authors
Nina A Dzhoyashvili
Anastasia Yu Efimenko
Tatiana N Kochegura
Natalia I Kalinina
Natalia V Koptelova
Olga Yu Sukhareva
Marina V Shestakova
Renat S Akchurin
Vsevolod A Tkachuk
Yelena V Parfyonova
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2014
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-014-0337-4

Other articles of this Issue 1/2014

Journal of Translational Medicine 1/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.