Skip to main content
Top
Published in: Cost Effectiveness and Resource Allocation 1/2018

Open Access 01-12-2018 | Research

Cost-effective interventions for breast cancer, cervical cancer, and colorectal cancer: new results from WHO-CHOICE

Authors: Ambinintsoa H. Ralaidovy, Chaitra Gopalappa, André Ilbawi, Carel Pretorius, Jeremy A. Lauer

Published in: Cost Effectiveness and Resource Allocation | Issue 1/2018

Login to get access

Abstract

Background

Following the adoption of the Global Action Plan for the Prevention and Control of NCDs 2013–2020, an update to the Appendix 3 of the action plan was requested by Member States in 2016, endorsed by the Seventieth World Health Assembly in May 2017 and provides a list of recommended NCD interventions. The main contribution of this paper is to present results of analyses identifying how decision makers can achieve maximum health gain using the cancer interventions listed in the Appendix 3. We also present methods used to calculate new WHO-CHOICE cost-effectiveness results for breast cancer, cervical cancer, and colorectal cancer in Southeast Asia and eastern sub-Saharan Africa.

Methods

We used “Generalized Cost-Effectiveness Analysis” for our analysis which uses a hypothetical null reference case, where the impacts of all current interventions are removed, in order to identify the optimal package of interventions. All health system costs, regardless of payer, were included. Health outcomes are reported as the gain in healthy life years due to a specific intervention scenario and were estimated using a deterministic state-transition cohort simulation (Markov model).

Results

Vaccination against human papillomavirus (two doses) for 9–13-year-old girls (in eastern sub-Saharan Africa) and HPV vaccination combined with prevention of cervical cancer by screening of women aged 30–49 years through visual inspection with acetic acid linked with timely treatment of pre-cancerous lesions (in Southeast Asia) were found to be the most cost effective interventions. For breast cancer, in both regions the treatment of breast cancer, stages I and II, with surgery ± systemic therapy, at 95% coverage, was found to be the most cost-effective intervention. For colorectal cancer, treatment of colorectal cancer, stages I and II, with surgery ± chemotherapy and radiotherapy, at 95% coverage, was found to be the most cost-effective intervention.

Conclusion

The results demonstrate that cancer prevention and control interventions are cost-effective and can be implemented through a step-wise approach to achieve maximum health benefits. As the global community moves toward universal health coverage, this analysis can support decision makers in identifying a core package of cancer services, ensuring treatment and palliative care for all.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: IARC CancerBase No. 11. France. 2013. http://globocan.iarc.fr. Accessed 5 May 2017. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: IARC CancerBase No. 11. France. 2013. http://​globocan.​iarc.​fr. Accessed 5 May 2017.
3.
go back to reference Stewart BW, Wild CP. World cancer report 2014. Lyon: International Agency for Research on Cancer; 2014. Stewart BW, Wild CP. World cancer report 2014. Lyon: International Agency for Research on Cancer; 2014.
6.
go back to reference World Health Organization. Global action plan for the prevention and control of non communicable diseases 2013–2020. Geneva: World Health Organization; 2013. World Health Organization. Global action plan for the prevention and control of non communicable diseases 2013–2020. Geneva: World Health Organization; 2013.
7.
go back to reference World Health Organization. Assessing national capacity for the prevention and control of noncommunicable diseases: report of the 2015 global survey. Geneva: World Health Organization; 2016. World Health Organization. Assessing national capacity for the prevention and control of noncommunicable diseases: report of the 2015 global survey. Geneva: World Health Organization; 2016.
8.
go back to reference Tan-Torres Edejer T, Baltussen R, Adam T, Hutubessy R, Acharya A, Evans D, Murray C. Making choices in health: WHO guide to cost-effectiveness analysis. Geneva: World Health Organization; 2003. Tan-Torres Edejer T, Baltussen R, Adam T, Hutubessy R, Acharya A, Evans D, Murray C. Making choices in health: WHO guide to cost-effectiveness analysis. Geneva: World Health Organization; 2003.
9.
go back to reference Hutubessy RC, Baltussen RM, Torres-Edejer TT, Evans DB. Generalized cost-effectiveness analysis: an aid to decision making in health. Appl Health Econ Health Policy. 2002;1(2):89–95.PubMed Hutubessy RC, Baltussen RM, Torres-Edejer TT, Evans DB. Generalized cost-effectiveness analysis: an aid to decision making in health. Appl Health Econ Health Policy. 2002;1(2):89–95.PubMed
10.
go back to reference Evans DB, Tan-Torres Edejer T, Adam T, Lim SS. Methods to assess the costs and health effects of interventions for improving health in developing countries. BMJ. 2005;331(7525):1137–40.CrossRef Evans DB, Tan-Torres Edejer T, Adam T, Lim SS. Methods to assess the costs and health effects of interventions for improving health in developing countries. BMJ. 2005;331(7525):1137–40.CrossRef
11.
go back to reference Ginsberg GM, Lauer JA, Zelle S, Baeten S, Baltussen R. Cost effectiveness of strategies to combat breast, cervical, and colorectal cancer in sub-Saharan Africa and South East Asia: mathematical modelling study. BMJ. 2012;344:e614.CrossRef Ginsberg GM, Lauer JA, Zelle S, Baeten S, Baltussen R. Cost effectiveness of strategies to combat breast, cervical, and colorectal cancer in sub-Saharan Africa and South East Asia: mathematical modelling study. BMJ. 2012;344:e614.CrossRef
13.
go back to reference Gelband H, Sankaranarayanan R, Gauvreau CL, Horton S, Anderson BO, Bray F, Cleary J, Dare AJ, Denny L, Gospodarowicz MK, Gupta S, Howard S, Jaffray D, Knaul F, Levin C, Rabeneck L, Rajaraman P, Sullivan T, Trimble E, Jha P. Costs, affordability, and feasibility of an essential package of cancer control interventions in low-income and middle-income countries: key messages from disease control priorities. Lancet. 2016;387(10033):2133–44.CrossRef Gelband H, Sankaranarayanan R, Gauvreau CL, Horton S, Anderson BO, Bray F, Cleary J, Dare AJ, Denny L, Gospodarowicz MK, Gupta S, Howard S, Jaffray D, Knaul F, Levin C, Rabeneck L, Rajaraman P, Sullivan T, Trimble E, Jha P. Costs, affordability, and feasibility of an essential package of cancer control interventions in low-income and middle-income countries: key messages from disease control priorities. Lancet. 2016;387(10033):2133–44.CrossRef
14.
go back to reference World Health Organization. National cancer control programmes: policies and managerial guidelines. 2nd ed. Geneva: World Health Organization; 2002. World Health Organization. National cancer control programmes: policies and managerial guidelines. 2nd ed. Geneva: World Health Organization; 2002.
16.
go back to reference Murray C, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197–223.CrossRef Murray C, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197–223.CrossRef
17.
go back to reference Bertram MY, Stenberg K, Brindley C, Li J, Serje J, Watts R, TT Edejer. Disease control programme support costs: an update of WHO-CHOICE methodology, price databases and quantity assumptions. Cost Eff Resour Alloc. 2017;15:21.CrossRef Bertram MY, Stenberg K, Brindley C, Li J, Serje J, Watts R, TT Edejer. Disease control programme support costs: an update of WHO-CHOICE methodology, price databases and quantity assumptions. Cost Eff Resour Alloc. 2017;15:21.CrossRef
18.
go back to reference World Health Organization. Comprehensive cervical cancer control: a guide to essential practice. Geneva: World Health Organization; 2014. World Health Organization. Comprehensive cervical cancer control: a guide to essential practice. Geneva: World Health Organization; 2014.
19.
go back to reference World Health Organization. Cancer control: knowledge into action: WHO guide for effective programmes. Diagnosis and treatment. Module 4. Geneva: World Health Organization; 2008. World Health Organization. Cancer control: knowledge into action: WHO guide for effective programmes. Diagnosis and treatment. Module 4. Geneva: World Health Organization; 2008.
20.
go back to reference World Health Organization. Guide to cancer early diagnosis. Geneva: World Health Organization; 2017. World Health Organization. Guide to cancer early diagnosis. Geneva: World Health Organization; 2017.
21.
go back to reference International Agency for Research on Cancer. GLOBOCAN 2012: estimated cancer incidence, mortality and prevalence worldwide in 2012. International Agency for Research on Cancer. GLOBOCAN 2012: estimated cancer incidence, mortality and prevalence worldwide in 2012.
23.
go back to reference Gopalappa C, Guo J, Meckoni P, Munkhbat B, Pretorius C, Lauer J, Ilbawi A, Bertram M. A two-step Markov processes approach for parameterization of cancer state-transition models for low- and middle-income countries. Med Decis Making. 2018;38(4):520–30.CrossRef Gopalappa C, Guo J, Meckoni P, Munkhbat B, Pretorius C, Lauer J, Ilbawi A, Bertram M. A two-step Markov processes approach for parameterization of cancer state-transition models for low- and middle-income countries. Med Decis Making. 2018;38(4):520–30.CrossRef
24.
go back to reference Record WE. WHO position paper on human papillomavirus vaccines. Wkly Epidemiol Rec. 2014;89(43):465–92. Record WE. WHO position paper on human papillomavirus vaccines. Wkly Epidemiol Rec. 2014;89(43):465–92.
25.
go back to reference Chen CD, Yen MF, Wang WM, Wong JM, Chen TH. A case-cohort study for the disease natural history of adenoma-carcinoma and de novo carcinoma and surveillance of colon and rectum after polypectomy: implication for efficacy of colonoscopy. Br J Cancer. 2003;88(12):1866–73.CrossRef Chen CD, Yen MF, Wang WM, Wong JM, Chen TH. A case-cohort study for the disease natural history of adenoma-carcinoma and de novo carcinoma and surveillance of colon and rectum after polypectomy: implication for efficacy of colonoscopy. Br J Cancer. 2003;88(12):1866–73.CrossRef
26.
go back to reference Goto H, Oda Y, Murakami Y, Tanaka T. Proportion of de novo cancers among colorectal cancers in Japan. Gastroenterology. 2006;131(1):40–6.CrossRef Goto H, Oda Y, Murakami Y, Tanaka T. Proportion of de novo cancers among colorectal cancers in Japan. Gastroenterology. 2006;131(1):40–6.CrossRef
27.
go back to reference Zauber AG, Lansdorp-Vogelaar I, Knudsen AB, Wilschut J. Evaluating test strategies for colorectal cancer screening: a decision analysis for the U.S. Preventive services task force. Ann Intern Med. 2008;149(9):659–69.CrossRef Zauber AG, Lansdorp-Vogelaar I, Knudsen AB, Wilschut J. Evaluating test strategies for colorectal cancer screening: a decision analysis for the U.S. Preventive services task force. Ann Intern Med. 2008;149(9):659–69.CrossRef
28.
go back to reference Clifford G, Gallus S, Herrero R, Muñoz N, Snijders PJ, Vaccarella S, et al. Worldwide distribution of human papillomavirus types in cytologically normal women in the International Agency for Research on Cancer HPV prevalence surveys: a pooled analysis. Lancet. 2005;366(9490):991–8.CrossRef Clifford G, Gallus S, Herrero R, Muñoz N, Snijders PJ, Vaccarella S, et al. Worldwide distribution of human papillomavirus types in cytologically normal women in the International Agency for Research on Cancer HPV prevalence surveys: a pooled analysis. Lancet. 2005;366(9490):991–8.CrossRef
29.
go back to reference Bruni L, Diaz M, Castellsagué M, Ferrer E, Bosch FX, de Sanjosé S. Cervical human papillomavirus prevalence in 5 continents: meta-analysis of 1 million women with normal cytological findings. J Infect Dis. 2010;202(12):1789–99.CrossRef Bruni L, Diaz M, Castellsagué M, Ferrer E, Bosch FX, de Sanjosé S. Cervical human papillomavirus prevalence in 5 continents: meta-analysis of 1 million women with normal cytological findings. J Infect Dis. 2010;202(12):1789–99.CrossRef
30.
go back to reference Smith J, Lindsay L, Hoots B, Keys J, Franceschi S, Winer R, Clifford GM. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. Int J Cancer. 2007;121(3):621–32.CrossRef Smith J, Lindsay L, Hoots B, Keys J, Franceschi S, Winer R, Clifford GM. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. Int J Cancer. 2007;121(3):621–32.CrossRef
31.
go back to reference Goldie SJ, Grima D, Kohli M, Wright TC, Weinstein M, Franco E. A comprehensive natural history model of HPV infection and cervical cancer to estimate the clinical impact of prophylactic HPV-16/18 vaccine. Int J Cancer. 2003;106(6):896–904.CrossRef Goldie SJ, Grima D, Kohli M, Wright TC, Weinstein M, Franco E. A comprehensive natural history model of HPV infection and cervical cancer to estimate the clinical impact of prophylactic HPV-16/18 vaccine. Int J Cancer. 2003;106(6):896–904.CrossRef
32.
go back to reference Perry N, Broeders M, De Wolf C, Törnberg S, Holland R, Von Karsa L. European guidelines for quality assurance in breast cancer screening and diagnosis. Fourth Edition-Supplements. Luxembourg: Office for Official Publications of the European Union; 2013. Perry N, Broeders M, De Wolf C, Törnberg S, Holland R, Von Karsa L. European guidelines for quality assurance in breast cancer screening and diagnosis. Fourth Edition-Supplements. Luxembourg: Office for Official Publications of the European Union; 2013.
33.
go back to reference World Health Organization. WHO list of priority medical devices for cancer management. Geneva: World Health Organization; 2017. World Health Organization. WHO list of priority medical devices for cancer management. Geneva: World Health Organization; 2017.
34.
go back to reference World Health Organization. WHO model list of essential medicines, 19th list (April 2015, amended November 2015). World Health Organization. WHO model list of essential medicines, 19th list (April 2015, amended November 2015).
40.
go back to reference Farmer P, Frenk J, Knaul FM, Shulman LN, Alleyne G, et al. Expansion of cancer care and control in countries of low and middle income: a call to action. Lancet. 2010;376(9747):1186–93.CrossRef Farmer P, Frenk J, Knaul FM, Shulman LN, Alleyne G, et al. Expansion of cancer care and control in countries of low and middle income: a call to action. Lancet. 2010;376(9747):1186–93.CrossRef
41.
go back to reference Ciaranello AL, Doherty K, Penazzato M, Lindsey JC, Harrison L, Kelly K, Walensky RP, Essajee S, Losina E, Muhe L, Wools-Kaloustian K, Ayaya S, Weinstein MC, Palumbo P, Freedberg KA. Cost-effectiveness of first-line antiretroviral therapy for HIV-infected African children less than 3 years of age. AIDS. 2015;29(10):1247–59.CrossRef Ciaranello AL, Doherty K, Penazzato M, Lindsey JC, Harrison L, Kelly K, Walensky RP, Essajee S, Losina E, Muhe L, Wools-Kaloustian K, Ayaya S, Weinstein MC, Palumbo P, Freedberg KA. Cost-effectiveness of first-line antiretroviral therapy for HIV-infected African children less than 3 years of age. AIDS. 2015;29(10):1247–59.CrossRef
43.
go back to reference Seya MJ, Gelders SF, Achara OU, Milani B, Scholten WK. A first comparison between the consumption of and the need for opioid analgesics at country, regional, and global levels. J Pain Palliat Care Pharmacother. 2011;25(1):6–18.CrossRef Seya MJ, Gelders SF, Achara OU, Milani B, Scholten WK. A first comparison between the consumption of and the need for opioid analgesics at country, regional, and global levels. J Pain Palliat Care Pharmacother. 2011;25(1):6–18.CrossRef
44.
go back to reference Ong MS, Mandl KD. National expenditure for false-positive mammograms and breast cancer overdiagnoses estimated at $4 billion a year. Health Aff. 2015;34(4):576–83.CrossRef Ong MS, Mandl KD. National expenditure for false-positive mammograms and breast cancer overdiagnoses estimated at $4 billion a year. Health Aff. 2015;34(4):576–83.CrossRef
45.
go back to reference Zogg CK, Najjar P, Diaz AJ, Zogg DL, Tsai TC, Rose JA Jr, Scott JW, Gani F, Alshaikh H, Canner JK, Schneider EB, Goldberg JE, Haider AH. Rethinking priorities: cost of complications after elective colectomy. Ann Surg. 2016;264(2):312–22.CrossRef Zogg CK, Najjar P, Diaz AJ, Zogg DL, Tsai TC, Rose JA Jr, Scott JW, Gani F, Alshaikh H, Canner JK, Schneider EB, Goldberg JE, Haider AH. Rethinking priorities: cost of complications after elective colectomy. Ann Surg. 2016;264(2):312–22.CrossRef
46.
go back to reference Gelband H, Jha P, Sankaranarayanan R, Horton S. Cancer: Disease Control Priorities. 3rd ed (Volume 3). Washington (DC): The International Bank for Reconstruction and Development / The World Bank; 2015. Gelband H, Jha P, Sankaranarayanan R, Horton S. Cancer: Disease Control Priorities. 3rd ed (Volume 3). Washington (DC): The International Bank for Reconstruction and Development / The World Bank; 2015.
47.
go back to reference Jönsson B, Hofmarcher T, Lindgren P, Wilking N. The cost and burden of cancer in the European Union 1995–2014. Eur J Cancer. 2016;66:162–70.CrossRef Jönsson B, Hofmarcher T, Lindgren P, Wilking N. The cost and burden of cancer in the European Union 1995–2014. Eur J Cancer. 2016;66:162–70.CrossRef
48.
go back to reference Luengo-Fernandez R, Leal J, Gray A, Sullivan R. Economic burden of cancer across the European Union: a population-based cost analysis. Lancet Oncol. 2013;14(12):1165–74.CrossRef Luengo-Fernandez R, Leal J, Gray A, Sullivan R. Economic burden of cancer across the European Union: a population-based cost analysis. Lancet Oncol. 2013;14(12):1165–74.CrossRef
50.
go back to reference Hutubessy R, Chisholm D, Edejer TT. Generalized cost-effectiveness analysis for national-level priority-setting in the health sector. Cost Eff Resour Alloc. 2003;1(1):8.CrossRef Hutubessy R, Chisholm D, Edejer TT. Generalized cost-effectiveness analysis for national-level priority-setting in the health sector. Cost Eff Resour Alloc. 2003;1(1):8.CrossRef
Metadata
Title
Cost-effective interventions for breast cancer, cervical cancer, and colorectal cancer: new results from WHO-CHOICE
Authors
Ambinintsoa H. Ralaidovy
Chaitra Gopalappa
André Ilbawi
Carel Pretorius
Jeremy A. Lauer
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Cost Effectiveness and Resource Allocation / Issue 1/2018
Electronic ISSN: 1478-7547
DOI
https://doi.org/10.1186/s12962-018-0157-0

Other articles of this Issue 1/2018

Cost Effectiveness and Resource Allocation 1/2018 Go to the issue