Skip to main content
Top
Published in: Thrombosis Journal 1/2016

Open Access 01-10-2016 | Review

Current animal models of hemophilia: the state of the art

Authors: Ching-Tzu Yen, Meng-Ni Fan, Yung-Li Yang, Sheng-Chieh Chou, I-Shing Yu, Shu-Wha Lin

Published in: Thrombosis Journal | Special Issue 1/2016

Login to get access

Abstract

Hemophilia is the most well-known hereditary bleeding disorder, with an incidence of one in every 5000 to 30,000 males worldwide. The disease is treated by infusion of protein products on demand and as prophylaxis. Although these therapies have been very successful, some challenging and unresolved tasks remain, such as reducing bleeding rates, presence of target joints and/or established joint damage, eliminating the development of inhibitors, and increasing the success rate of immune-tolerance induction (ITI). Many preclinical trials are carried out on animal models for hemophilia generated by the hemophilia research community, which in turn enable prospective clinical trials aiming to tackle these challenges. Suitable animal models are needed for greater advances in treating hemophilia, such as the development of better models for evaluation of the efficacy and safety of long-acting products, more powerful gene therapy vectors than are currently available, and successful ITI strategies. Mice, dogs, and pigs are the most commonly used animal models for hemophilia. With the advent of the nuclease method for genome editing, namely the CRISPR/Cas9 system, it is now possible to create animal models for hemophilia other than mice in a short period of time. This review presents currently available animal models for hemophilia, and discusses the importance of animal models for the development of better treatment options for hemophilia.
Literature
1.
go back to reference Makris M, Hay CR, Gringeri A, D’Oiron R. How I treat inhibitors in haemophilia. Haemophilia. 2012;18 Suppl 4:48–53.PubMedCrossRef Makris M, Hay CR, Gringeri A, D’Oiron R. How I treat inhibitors in haemophilia. Haemophilia. 2012;18 Suppl 4:48–53.PubMedCrossRef
2.
go back to reference DiMichele DM. Immune tolerance in haemophilia: the long journey to the fork in the road. Br J Haematol. 2012;159:123–34.PubMedCrossRef DiMichele DM. Immune tolerance in haemophilia: the long journey to the fork in the road. Br J Haematol. 2012;159:123–34.PubMedCrossRef
3.
go back to reference Graham JB, Buckwalter JA, Hartley LJ, Brinkhous KM. Canine hemophilia; observations on the course, the clotting anomaly, and the effect of blood transfusions. J Exp Med. 1949;90:97–111.PubMedPubMedCentralCrossRef Graham JB, Buckwalter JA, Hartley LJ, Brinkhous KM. Canine hemophilia; observations on the course, the clotting anomaly, and the effect of blood transfusions. J Exp Med. 1949;90:97–111.PubMedPubMedCentralCrossRef
4.
go back to reference Giles AR, Tinlin S, Greenwood R. A canine model of hemophilic (factor VIII:C deficiency) bleeding. Blood. 1982;60:727–30.PubMed Giles AR, Tinlin S, Greenwood R. A canine model of hemophilic (factor VIII:C deficiency) bleeding. Blood. 1982;60:727–30.PubMed
5.
go back to reference Lozier JN, Dutra A, Pak E, Zhou N, Zheng Z, Nichols TC, et al. The Chapel Hill hemophilia A dog colony exhibits a factor VIII gene inversion. Proc Natl Acad Sci U S A. 2002;99:12991–6.PubMedPubMedCentralCrossRef Lozier JN, Dutra A, Pak E, Zhou N, Zheng Z, Nichols TC, et al. The Chapel Hill hemophilia A dog colony exhibits a factor VIII gene inversion. Proc Natl Acad Sci U S A. 2002;99:12991–6.PubMedPubMedCentralCrossRef
6.
go back to reference Hough C, Kamisue S, Cameron C, Notley C, Tinlin S, Giles A, et al. Aberrant splicing and premature termination of transcription of the FVIII gene as a cause of severe canine hemophilia A: similarities with the intron 22 inversion mutation in human hemophilia. Thromb Haemost. 2002;87:659–65.PubMed Hough C, Kamisue S, Cameron C, Notley C, Tinlin S, Giles A, et al. Aberrant splicing and premature termination of transcription of the FVIII gene as a cause of severe canine hemophilia A: similarities with the intron 22 inversion mutation in human hemophilia. Thromb Haemost. 2002;87:659–65.PubMed
7.
go back to reference Joseph SA, Brooks MB, Coccari PJ, Riback SC. Hemophilia A in a German shorthaired pointer: clinical presentations and diagnosis. J Am Anim Hosp Assoc. 1996;32:25–8.PubMedCrossRef Joseph SA, Brooks MB, Coccari PJ, Riback SC. Hemophilia A in a German shorthaired pointer: clinical presentations and diagnosis. J Am Anim Hosp Assoc. 1996;32:25–8.PubMedCrossRef
9.
go back to reference Nichols TC, Hough C, Agerso H, Ezban M, Lillicrap D. Canine models of inherited bleeding disorders in the development of coagulation assays, novel protein replacement and gene therapies. J Thromb Haemost. 2016;14:894–905.PubMedCrossRef Nichols TC, Hough C, Agerso H, Ezban M, Lillicrap D. Canine models of inherited bleeding disorders in the development of coagulation assays, novel protein replacement and gene therapies. J Thromb Haemost. 2016;14:894–905.PubMedCrossRef
10.
go back to reference Du LM, Nurden P, Nurden AT, Nichols TC, Bellinger DA, Jensen ES, et al. Platelet-targeted gene therapy with human factor VIII establishes haemostasis in dogs with haemophilia A. Nat Commun. 2013;4:2773.PubMedPubMedCentralCrossRef Du LM, Nurden P, Nurden AT, Nichols TC, Bellinger DA, Jensen ES, et al. Platelet-targeted gene therapy with human factor VIII establishes haemostasis in dogs with haemophilia A. Nat Commun. 2013;4:2773.PubMedPubMedCentralCrossRef
11.
go back to reference Margaritis P, Roy E, Aljamali MN, Downey HD, Giger U, Zhou S, et al. Successful treatment of canine hemophilia by continuous expression of canine FVIIa. Blood. 2009;113:3682–9.PubMedPubMedCentralCrossRef Margaritis P, Roy E, Aljamali MN, Downey HD, Giger U, Zhou S, et al. Successful treatment of canine hemophilia by continuous expression of canine FVIIa. Blood. 2009;113:3682–9.PubMedPubMedCentralCrossRef
12.
go back to reference Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, McIntosh J, Linch DC, et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med. 2011;365:2357–65.PubMedPubMedCentralCrossRef Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, McIntosh J, Linch DC, et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med. 2011;365:2357–65.PubMedPubMedCentralCrossRef
13.
go back to reference Giles AR, Tinlin S, Hoogendoorn H, Greenwood P, Greenwood R. Development of factor VIII:C antibodies in dogs with hemophilia A (factor VIII:C deficiency). Blood. 1984;63:451–6.PubMed Giles AR, Tinlin S, Hoogendoorn H, Greenwood P, Greenwood R. Development of factor VIII:C antibodies in dogs with hemophilia A (factor VIII:C deficiency). Blood. 1984;63:451–6.PubMed
14.
go back to reference Nichols TC, Dillow AM, Franck HW, Merricks EP, Raymer RA, Bellinger DA, et al. Protein replacement therapy and gene transfer in canine models of hemophilia A, hemophilia B, von willebrand disease, and factor VII deficiency. ILAR J. 2009;50:144–67.PubMedPubMedCentralCrossRef Nichols TC, Dillow AM, Franck HW, Merricks EP, Raymer RA, Bellinger DA, et al. Protein replacement therapy and gene transfer in canine models of hemophilia A, hemophilia B, von willebrand disease, and factor VII deficiency. ILAR J. 2009;50:144–67.PubMedPubMedCentralCrossRef
15.
go back to reference Finn JD, Ozelo MC, Sabatino DE, Franck HW, Merricks EP, Crudele JM, et al. Eradication of neutralizing antibodies to factor VIII in canine hemophilia A after liver gene therapy. Blood. 2010;116:5842–8.PubMedPubMedCentralCrossRef Finn JD, Ozelo MC, Sabatino DE, Franck HW, Merricks EP, Crudele JM, et al. Eradication of neutralizing antibodies to factor VIII in canine hemophilia A after liver gene therapy. Blood. 2010;116:5842–8.PubMedPubMedCentralCrossRef
16.
go back to reference Neuenschwander S, Kissling-Albrecht L, Heiniger J, Backfisch W, Stranzinger G, Pliska V. Inherited defect of blood clotting factor VIII (haemophilia A) in sheep. Thromb Haemost. 1992;68:618–20.PubMed Neuenschwander S, Kissling-Albrecht L, Heiniger J, Backfisch W, Stranzinger G, Pliska V. Inherited defect of blood clotting factor VIII (haemophilia A) in sheep. Thromb Haemost. 1992;68:618–20.PubMed
17.
go back to reference Neuenschwander S, Pliska V. Factor VIII in blood plasma of haemophilic sheep: analysis of clotting time-plasma dilution curves. Haemostasis. 1994;24:27–35.PubMed Neuenschwander S, Pliska V. Factor VIII in blood plasma of haemophilic sheep: analysis of clotting time-plasma dilution curves. Haemostasis. 1994;24:27–35.PubMed
18.
go back to reference Porada CD, Sanada C, Long CR, Wood JA, Desai J, Frederick N, et al. Clinical and molecular characterization of a re-established line of sheep exhibiting hemophilia A. J Thromb Haemost. 2010;8:276–85.PubMedCrossRef Porada CD, Sanada C, Long CR, Wood JA, Desai J, Frederick N, et al. Clinical and molecular characterization of a re-established line of sheep exhibiting hemophilia A. J Thromb Haemost. 2010;8:276–85.PubMedCrossRef
19.
go back to reference Tellez J, Van Vliet K, Tseng YS, Finn JD, Tschernia N, Almeida-Porada G, et al. Characterization of naturally-occurring humoral immunity to AAV in sheep. PLoS One. 2013;8:e75142.PubMedPubMedCentralCrossRef Tellez J, Van Vliet K, Tseng YS, Finn JD, Tschernia N, Almeida-Porada G, et al. Characterization of naturally-occurring humoral immunity to AAV in sheep. PLoS One. 2013;8:e75142.PubMedPubMedCentralCrossRef
20.
go back to reference Porada CD, Sanada C, Kuo CJ, Colletti E, Mandeville W, Hasenau J, et al. Phenotypic correction of hemophilia A in sheep by postnatal intraperitoneal transplantation of FVIII-expressing MSC. Exp Hematol. 2011;39:1124–35. e4.PubMedPubMedCentralCrossRef Porada CD, Sanada C, Kuo CJ, Colletti E, Mandeville W, Hasenau J, et al. Phenotypic correction of hemophilia A in sheep by postnatal intraperitoneal transplantation of FVIII-expressing MSC. Exp Hematol. 2011;39:1124–35. e4.PubMedPubMedCentralCrossRef
21.
22.
go back to reference Booth CJ, Brooks MB, Rockwell S, Murphy JW, Rinder HM, Zelterman D, et al. WAG-F8(m1Ycb) rats harboring a factor VIII gene mutation provide a new animal model for hemophilia A. J Thromb Haemost. 2010;8:2472–7.PubMedCrossRef Booth CJ, Brooks MB, Rockwell S, Murphy JW, Rinder HM, Zelterman D, et al. WAG-F8(m1Ycb) rats harboring a factor VIII gene mutation provide a new animal model for hemophilia A. J Thromb Haemost. 2010;8:2472–7.PubMedCrossRef
23.
go back to reference Mustard JF, Rowsell HC, Robinson GA, Hoeksema TD, Downie HG. Canine haemophilia B (Christmas disease). Br J Haematol. 1960;6:259–66.PubMedCrossRef Mustard JF, Rowsell HC, Robinson GA, Hoeksema TD, Downie HG. Canine haemophilia B (Christmas disease). Br J Haematol. 1960;6:259–66.PubMedCrossRef
24.
go back to reference Evans JP, Brinkhous KM, Brayer GD, Reisner HM, High KA. Canine hemophilia B resulting from a point mutation with unusual consequences. Proc Natl Acad Sci U S A. 1989;86:10095–9.PubMedPubMedCentralCrossRef Evans JP, Brinkhous KM, Brayer GD, Reisner HM, High KA. Canine hemophilia B resulting from a point mutation with unusual consequences. Proc Natl Acad Sci U S A. 1989;86:10095–9.PubMedPubMedCentralCrossRef
25.
go back to reference Mauser AE, Whitlark J, Whitney KM, Lothrop Jr CD. A deletion mutation causes hemophilia B in Lhasa Apso dogs. Blood. 1996;88:3451–5.PubMed Mauser AE, Whitlark J, Whitney KM, Lothrop Jr CD. A deletion mutation causes hemophilia B in Lhasa Apso dogs. Blood. 1996;88:3451–5.PubMed
26.
go back to reference Brooks MB, Gu W, Ray K. Complete deletion of factor IX gene and inhibition of factor IX activity in a labrador retriever with hemophilia B. J Am Vet Med Assoc. 1997;211:1418–21.PubMed Brooks MB, Gu W, Ray K. Complete deletion of factor IX gene and inhibition of factor IX activity in a labrador retriever with hemophilia B. J Am Vet Med Assoc. 1997;211:1418–21.PubMed
27.
go back to reference Herzog RW, Mount JD, Arruda VR, High KA, Lothrop Jr CD. Muscle-directed gene transfer and transient immune suppression result in sustained partial correction of canine hemophilia B caused by a null mutation. Mol Ther. 2001;4:192–200.PubMedCrossRef Herzog RW, Mount JD, Arruda VR, High KA, Lothrop Jr CD. Muscle-directed gene transfer and transient immune suppression result in sustained partial correction of canine hemophilia B caused by a null mutation. Mol Ther. 2001;4:192–200.PubMedCrossRef
28.
go back to reference Brinkhous KM, Sigman JL, Read MS, Stewart PF, McCarthy KP, Timony GA, et al. Recombinant human factor IX: replacement therapy, prophylaxis, and pharmacokinetics in canine hemophilia B. Blood. 1996;88:2603–10.PubMed Brinkhous KM, Sigman JL, Read MS, Stewart PF, McCarthy KP, Timony GA, et al. Recombinant human factor IX: replacement therapy, prophylaxis, and pharmacokinetics in canine hemophilia B. Blood. 1996;88:2603–10.PubMed
29.
go back to reference Taupin P. Chimeric proteins comprising the constant region of immunoglobulins for treating hemophilia B (WO2005001025). Expert Opin Ther Pat. 2011;21:967–70.PubMedCrossRef Taupin P. Chimeric proteins comprising the constant region of immunoglobulins for treating hemophilia B (WO2005001025). Expert Opin Ther Pat. 2011;21:967–70.PubMedCrossRef
30.
go back to reference Ostergaard H, Bjelke JR, Hansen L, Petersen LC, Pedersen AA, Elm T, et al. Prolonged half-life and preserved enzymatic properties of factor IX selectively PEGylated on native N-glycans in the activation peptide. Blood. 2011;118:2333–41.PubMedPubMedCentralCrossRef Ostergaard H, Bjelke JR, Hansen L, Petersen LC, Pedersen AA, Elm T, et al. Prolonged half-life and preserved enzymatic properties of factor IX selectively PEGylated on native N-glycans in the activation peptide. Blood. 2011;118:2333–41.PubMedPubMedCentralCrossRef
31.
go back to reference Manno CS, Chew AJ, Hutchison S, Larson PJ, Herzog RW, Arruda VR, et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood. 2003;101:2963–72.PubMedCrossRef Manno CS, Chew AJ, Hutchison S, Larson PJ, Herzog RW, Arruda VR, et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood. 2003;101:2963–72.PubMedCrossRef
32.
go back to reference Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med. 2006;12:342–7.PubMedCrossRef Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med. 2006;12:342–7.PubMedCrossRef
33.
go back to reference Finn JD, Nichols TC, Svoronos N, Merricks EP, Bellenger DA, Zhou S, et al. The efficacy and the risk of immunogenicity of FIX Padua (R338L) in hemophilia B dogs treated by AAV muscle gene therapy. Blood. 2012;120:4521–3.PubMedPubMedCentralCrossRef Finn JD, Nichols TC, Svoronos N, Merricks EP, Bellenger DA, Zhou S, et al. The efficacy and the risk of immunogenicity of FIX Padua (R338L) in hemophilia B dogs treated by AAV muscle gene therapy. Blood. 2012;120:4521–3.PubMedPubMedCentralCrossRef
34.
go back to reference Crudele JM, Finn JD, Siner JI, Martin NB, Niemeyer GP, Zhou S, et al. AAV liver expression of FIX-Padua prevents and eradicates FIX inhibitor without increasing thrombogenicity in hemophilia B dogs and mice. Blood. 2015;125:1553–61.PubMedPubMedCentralCrossRef Crudele JM, Finn JD, Siner JI, Martin NB, Niemeyer GP, Zhou S, et al. AAV liver expression of FIX-Padua prevents and eradicates FIX inhibitor without increasing thrombogenicity in hemophilia B dogs and mice. Blood. 2015;125:1553–61.PubMedPubMedCentralCrossRef
35.
go back to reference Batorova A, Morongova A, Tagariello G, Jankovicova D, Prigancova T, Horakova J. Challenges in the management of hemophilia B with inhibitor. Semin Thromb Hemost. 2013;39:767–71.PubMedCrossRef Batorova A, Morongova A, Tagariello G, Jankovicova D, Prigancova T, Horakova J. Challenges in the management of hemophilia B with inhibitor. Semin Thromb Hemost. 2013;39:767–71.PubMedCrossRef
36.
go back to reference Bi L, Lawler AM, Antonarakis SE, High KA, Gearhart JD, Kazazian Jr HH. Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. Nat Genet. 1995;10:119–21.PubMedCrossRef Bi L, Lawler AM, Antonarakis SE, High KA, Gearhart JD, Kazazian Jr HH. Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. Nat Genet. 1995;10:119–21.PubMedCrossRef
37.
go back to reference Di Minno G, Cerbone AM, Coppola A, Cimino E, Di Capua M, Pamparana F, et al. Longer-acting factor VIII to overcome limitations in haemophilia management: the PEGylated liposomes formulation issue. Haemophilia. 2010;16 Suppl 1:2–6.PubMedCrossRef Di Minno G, Cerbone AM, Coppola A, Cimino E, Di Capua M, Pamparana F, et al. Longer-acting factor VIII to overcome limitations in haemophilia management: the PEGylated liposomes formulation issue. Haemophilia. 2010;16 Suppl 1:2–6.PubMedCrossRef
38.
go back to reference Siner JI, Iacobelli NP, Sabatino DE, Ivanciu L, Zhou S, Poncz M, et al. Minimal modification in the factor VIII B-domain sequence ameliorates the murine hemophilia A phenotype. Blood. 2013;121:4396–403.PubMedPubMedCentralCrossRef Siner JI, Iacobelli NP, Sabatino DE, Ivanciu L, Zhou S, Poncz M, et al. Minimal modification in the factor VIII B-domain sequence ameliorates the murine hemophilia A phenotype. Blood. 2013;121:4396–403.PubMedPubMedCentralCrossRef
40.
go back to reference Chao BN, Baldwin WH, Healey JF, Parker ET, Shafer-Weaver K, Cox C, et al. Characterization of a genetically engineered mouse model of hemophilia A with complete deletion of the F8 gene. J Thromb Haemost. 2016;14:346–55.PubMedCrossRef Chao BN, Baldwin WH, Healey JF, Parker ET, Shafer-Weaver K, Cox C, et al. Characterization of a genetically engineered mouse model of hemophilia A with complete deletion of the F8 gene. J Thromb Haemost. 2016;14:346–55.PubMedCrossRef
42.
go back to reference Ohmori T, Mizukami H, Ozawa K, Sakata Y, Nishimura S. New approaches to gene and cell therapy for hemophilia. J Thrombo Haemost. 2015;13 Suppl 1:S133–42.CrossRef Ohmori T, Mizukami H, Ozawa K, Sakata Y, Nishimura S. New approaches to gene and cell therapy for hemophilia. J Thrombo Haemost. 2015;13 Suppl 1:S133–42.CrossRef
43.
go back to reference Lin HF, Maeda N, Smithies O, Straight DL, Stafford DW. A coagulation factor IX-deficient mouse model for human hemophilia B. Blood. 1997;90:3962–6.PubMed Lin HF, Maeda N, Smithies O, Straight DL, Stafford DW. A coagulation factor IX-deficient mouse model for human hemophilia B. Blood. 1997;90:3962–6.PubMed
44.
go back to reference Wang L, Zoppe M, Hackeng TM, Griffin JH, Lee KF, Verma IM. A factor IX-deficient mouse model for hemophilia B gene therapy. Proc Natl Acad Sci U S A. 1997;94:11563–6.PubMedPubMedCentralCrossRef Wang L, Zoppe M, Hackeng TM, Griffin JH, Lee KF, Verma IM. A factor IX-deficient mouse model for hemophilia B gene therapy. Proc Natl Acad Sci U S A. 1997;94:11563–6.PubMedPubMedCentralCrossRef
45.
go back to reference Kundu RK, Sangiorgi F, Wu LY, Kurachi K, Anderson WF, Maxson R, et al. Targeted inactivation of the coagulation factor IX gene causes hemophilia B in mice. Blood. 1998;92:168–74.PubMed Kundu RK, Sangiorgi F, Wu LY, Kurachi K, Anderson WF, Maxson R, et al. Targeted inactivation of the coagulation factor IX gene causes hemophilia B in mice. Blood. 1998;92:168–74.PubMed
46.
go back to reference Jin DY, Zhang TP, Gui T, Stafford DW, Monahan PE. Creation of a mouse expressing defective human factor IX. Blood. 2004;104:1733–9.PubMedCrossRef Jin DY, Zhang TP, Gui T, Stafford DW, Monahan PE. Creation of a mouse expressing defective human factor IX. Blood. 2004;104:1733–9.PubMedCrossRef
47.
go back to reference Kao CY, Lin CN, Yu IS, Tao MH, Wu HL, Shi GY, et al. FIX-Triple, a gain-of-function factor IX variant, improves haemostasis in mouse models without increased risk of thrombosis. Thromb Haemost. 2010;104:355–65.PubMedCrossRef Kao CY, Lin CN, Yu IS, Tao MH, Wu HL, Shi GY, et al. FIX-Triple, a gain-of-function factor IX variant, improves haemostasis in mouse models without increased risk of thrombosis. Thromb Haemost. 2010;104:355–65.PubMedCrossRef
48.
go back to reference Lin CN, Lin CN, Kao CY, Miao CH, Hamaguchi N, Wu HL, et al. Generation of a novel factor IX with augmented clotting activities in vitro and in vivo. J Thromb Haemost. 2010;8:1773–8.PubMedCrossRef Lin CN, Lin CN, Kao CY, Miao CH, Hamaguchi N, Wu HL, et al. Generation of a novel factor IX with augmented clotting activities in vitro and in vivo. J Thromb Haemost. 2010;8:1773–8.PubMedCrossRef
49.
go back to reference Wu YM, Kao CY, Huang YJ, Yu IS, Lee HS, Lai HS, et al. Genetic modification of donor hepatocyte improves therapeutic efficacy for hemophilia B in mice. Cell Transplant. 2010;19:1169–80.PubMedCrossRef Wu YM, Kao CY, Huang YJ, Yu IS, Lee HS, Lai HS, et al. Genetic modification of donor hepatocyte improves therapeutic efficacy for hemophilia B in mice. Cell Transplant. 2010;19:1169–80.PubMedCrossRef
50.
go back to reference Kao CY, Yang SJ, Tao MH, Jeng YM, Yu IS, Lin SW. Incorporation of the factor IX Padua mutation into FIX-Triple improves clotting activity in vitro and in vivo. Thromb Haemost. 2013;110:244–56.PubMedCrossRef Kao CY, Yang SJ, Tao MH, Jeng YM, Yu IS, Lin SW. Incorporation of the factor IX Padua mutation into FIX-Triple improves clotting activity in vitro and in vivo. Thromb Haemost. 2013;110:244–56.PubMedCrossRef
51.
go back to reference Dietrich B, Schiviz A, Hoellriegl W, Horling F, Benamara K, Rottensteiner H, et al. Preclinical safety and efficacy of a new recombinant FIX drug product for treatment of hemophilia B. Int J Hematol. 2013;98:525–32.PubMedCrossRef Dietrich B, Schiviz A, Hoellriegl W, Horling F, Benamara K, Rottensteiner H, et al. Preclinical safety and efficacy of a new recombinant FIX drug product for treatment of hemophilia B. Int J Hematol. 2013;98:525–32.PubMedCrossRef
52.
go back to reference Cooley B, Funkhouser W, Monroe D, Ezzell A, Mann DM, Lin FC, et al. Prophylactic efficacy of BeneFIX vs Alprolix in hemophilia B mice. Blood. 2016;128:286–92.PubMedCrossRef Cooley B, Funkhouser W, Monroe D, Ezzell A, Mann DM, Lin FC, et al. Prophylactic efficacy of BeneFIX vs Alprolix in hemophilia B mice. Blood. 2016;128:286–92.PubMedCrossRef
53.
go back to reference Davidoff AM, Nathwani AC. Genetic targeting of the albumin locus to treat hemophilia. N Engl J Med. 2016;374:1288–90.PubMedCrossRef Davidoff AM, Nathwani AC. Genetic targeting of the albumin locus to treat hemophilia. N Engl J Med. 2016;374:1288–90.PubMedCrossRef
54.
go back to reference Zhang R, Wang Q, Zhang L, Chen S. Optimized human factor IX expression cassettes for hepatic-directed gene therapy of hemophilia B. Front Med. 2015;9:90–9.PubMedCrossRef Zhang R, Wang Q, Zhang L, Chen S. Optimized human factor IX expression cassettes for hepatic-directed gene therapy of hemophilia B. Front Med. 2015;9:90–9.PubMedCrossRef
55.
go back to reference Monahan PE, Sun J, Gui T, Hu G, Hannah WB, Wichlan DG, et al. Employing a gain-of-function factor IX variant R338L to advance the efficacy and safety of hemophilia B human gene therapy: preclinical evaluation supporting an ongoing adeno-associated virus clinical trial. Hum Gene Ther. 2015;26:69–81.PubMedCrossRef Monahan PE, Sun J, Gui T, Hu G, Hannah WB, Wichlan DG, et al. Employing a gain-of-function factor IX variant R338L to advance the efficacy and safety of hemophilia B human gene therapy: preclinical evaluation supporting an ongoing adeno-associated virus clinical trial. Hum Gene Ther. 2015;26:69–81.PubMedCrossRef
56.
go back to reference Gui T, Reheman A, Ni H, Gross PL, Yin F, Monroe D, et al. Abnormal hemostasis in a knock-in mouse carrying a variant of factor IX with impaired binding to collagen type IV. J Thromb Haemost. 2009;7:1843–51.PubMedCrossRef Gui T, Reheman A, Ni H, Gross PL, Yin F, Monroe D, et al. Abnormal hemostasis in a knock-in mouse carrying a variant of factor IX with impaired binding to collagen type IV. J Thromb Haemost. 2009;7:1843–51.PubMedCrossRef
57.
go back to reference Reipert BM, Steinitz KN, van Helden PM, Unterthurner S, Schuster M, Ahmad RU, et al. Opportunities and limitations of mouse models humanized for HLA class II antigens. J Thromb Haemost. 2009;7 Suppl 1:92–7.PubMedCrossRef Reipert BM, Steinitz KN, van Helden PM, Unterthurner S, Schuster M, Ahmad RU, et al. Opportunities and limitations of mouse models humanized for HLA class II antigens. J Thromb Haemost. 2009;7 Suppl 1:92–7.PubMedCrossRef
58.
go back to reference Steinitz KN, van Helden PM, Binder B, Wraith DC, Unterthurner S, Hermann C, et al. CD4+ T-cell epitopes associated with antibody responses after intravenously and subcutaneously applied human FVIII in humanized hemophilic E17 HLA-DRB1*1501 mice. Blood. 2012;119:4073–82.PubMedPubMedCentralCrossRef Steinitz KN, van Helden PM, Binder B, Wraith DC, Unterthurner S, Hermann C, et al. CD4+ T-cell epitopes associated with antibody responses after intravenously and subcutaneously applied human FVIII in humanized hemophilic E17 HLA-DRB1*1501 mice. Blood. 2012;119:4073–82.PubMedPubMedCentralCrossRef
60.
go back to reference Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.PubMedCrossRef Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.PubMedCrossRef
61.
go back to reference Calvez T, Chambost H, Claeyssens-Donadel S, d’Oiron R, Goulet V, Guillet B, et al. Recombinant factor VIII products and inhibitor development in previously untreated boys with severe hemophilia A. Blood. 2014;124:3398–408.PubMedCrossRef Calvez T, Chambost H, Claeyssens-Donadel S, d’Oiron R, Goulet V, Guillet B, et al. Recombinant factor VIII products and inhibitor development in previously untreated boys with severe hemophilia A. Blood. 2014;124:3398–408.PubMedCrossRef
Metadata
Title
Current animal models of hemophilia: the state of the art
Authors
Ching-Tzu Yen
Meng-Ni Fan
Yung-Li Yang
Sheng-Chieh Chou
I-Shing Yu
Shu-Wha Lin
Publication date
01-10-2016
Publisher
BioMed Central
Published in
Thrombosis Journal / Issue Special Issue 1/2016
Electronic ISSN: 1477-9560
DOI
https://doi.org/10.1186/s12959-016-0106-0

Other articles of this Special Issue 1/2016

Thrombosis Journal 1/2016 Go to the issue