Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2021

Open Access 01-12-2021 | Estradiol | Research

Upregulated Talin1 synergistically boosts β-estradiol-induced proliferation and pro-angiogenesis of eutopic and ectopic endometrial stromal cells in adenomyosis

Authors: Yi-yi Wang, Hua Duan, Sha Wang, Yong-jun Quan, Jun-hua Huang, Zheng-chen Guo

Published in: Reproductive Biology and Endocrinology | Issue 1/2021

Login to get access

Abstract

Adenomyosis (ADS) is an estrogen-dependent gynecological disease with unspecified etiopathogenesis. Local hyperestrogenism may serve a key role in contributing to the origin of ADS. Talin1 is mostly identified to be overexpressed and involved in the progression of numerous human carcinomas through mediating cell proliferation, adhesion and motility. Whether Talin1 exerts an oncogenic role in the pathogenesis of ADS and puts an extra impact on the efficacy of estrogen, no relevant data are available yet. Here we demonstrated that the adenomyotic eutopic and ectopic endometrial stromal cells (ADS_Eu_ESC and ADS_Ec_ESC) treated with β-estradiol (β-E2) presented stronger proliferative and pro-angiogenetic capacities, accompanied by increased expression of PCNA, Ki67, VEGFB and ANGPTL4 proteins. Meanwhile, these promoting effects were partially abrogated by Fulvestrant (ICI 182780, an estrogen-receptor antagonist). Aberrantly upregulation of Talin1 mRNA and protein level was observed in ADS endometrial specimens and stromal cells. Through performing functional experiments in vitro, we further determined that merely overexpression of Talin1 (OV-Talin1) also enhanced ADS stromal cell proliferation and pro-angiogenesis, while the most pronounced facilitating effects were found in the co-intervention group of OV-Talin1 plus β-E2 treatment. Results from the xenograft nude mice model showed that the hypodermic endometrial lesions from co-intervention group had the highest mean weight and volume, compared with that of individual OV-Talin1 or β-E2 treatment. The expression levels of PCNA, Ki67, VEGFB and ANGPTL4 in the lesions were correspondingly elevated the most in the co-intervention group. Our findings unveiled that overexpressed Talin1 might cooperate withβ-E2 in stimulating ADS endometrial stromal cell proliferation and neovascularization, synergistically promoting the growth and survival of ectopic lesions. These results may be beneficial to provide a new insight for clarifying the pathogenesis of ADS.
Appendix
Available only for authorised users
Literature
5.
go back to reference Benagiano G, Brosens I, Habiba M, et al. Hum. Reprod. Update. 2014;20:386–402. Benagiano G, Brosens I, Habiba M, et al. Hum. Reprod. Update. 2014;20:386–402.
6.
go back to reference Shang W-Q, Yu J-J, Zhu L, et al. Blocking IL-22, a potential treatment strategy for adenomyosis by inhibiting crosstalk between vascular endothelial and endometrial stromal cells. [J]. Am J Transl Res. 2015;7(10):1782–97.PubMedPubMedCentral Shang W-Q, Yu J-J, Zhu L, et al. Blocking IL-22, a potential treatment strategy for adenomyosis by inhibiting crosstalk between vascular endothelial and endometrial stromal cells. [J]. Am J Transl Res. 2015;7(10):1782–97.PubMedPubMedCentral
8.
go back to reference Chen Y-J, Li H-Y, Huang C-H, et al. Oestrogen-induced epithelial-mesenchymal transition of endometrial epithelial cells contributes to the development of adenomyosis. J. Pathol. 2010;222:261–70.CrossRef Chen Y-J, Li H-Y, Huang C-H, et al. Oestrogen-induced epithelial-mesenchymal transition of endometrial epithelial cells contributes to the development of adenomyosis. J. Pathol. 2010;222:261–70.CrossRef
9.
go back to reference Gough RE, Goult BT. The tale of two talins - two isoforms to fine-tune integrin signalling. FEBS Lett. 2018;592:2108–25.CrossRef Gough RE, Goult BT. The tale of two talins - two isoforms to fine-tune integrin signalling. FEBS Lett. 2018;592:2108–25.CrossRef
10.
go back to reference Malla RR, Vempati RK. Talin: A Potential Drug Target for Cancer Therapy. Curr Drug Metab. 2020;21(1):25–32.CrossRef Malla RR, Vempati RK. Talin: A Potential Drug Target for Cancer Therapy. Curr Drug Metab. 2020;21(1):25–32.CrossRef
11.
go back to reference Wang Y-Y, Duan H, Wang S, et al. Talin1 induces epithelial-mesenchymal transition to facilitate endometrial cell migration and invasion in adenomyosis under the regulation of microRNA-145-5p. Reprod Sci. 2021;28(5):1523–39. Wang Y-Y, Duan H, Wang S, et al. Talin1 induces epithelial-mesenchymal transition to facilitate endometrial cell migration and invasion in adenomyosis under the regulation of microRNA-145-5p. Reprod Sci. 2021;28(5):1523–39.
12.
go back to reference Shen X, Duan H, Wang S, Wang Y-Y, Lin S-L. Expression of Cannabinoid Receptors in Myometrium and its Correlation With Dysmenorrhea in Adenomyosis. Reprod Sci. 2019;26(12):1618–25.CrossRef Shen X, Duan H, Wang S, Wang Y-Y, Lin S-L. Expression of Cannabinoid Receptors in Myometrium and its Correlation With Dysmenorrhea in Adenomyosis. Reprod Sci. 2019;26(12):1618–25.CrossRef
13.
go back to reference Lv C-X, Duan H, Wang S, et al. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Promote Proliferation of Allogeneic Endometrial Stromal Cells. Reprod Sci. 2020;27(6):1372–81.CrossRef Lv C-X, Duan H, Wang S, et al. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Promote Proliferation of Allogeneic Endometrial Stromal Cells. Reprod Sci. 2020;27(6):1372–81.CrossRef
14.
go back to reference Shen X, Duan H, Wang S, et al. Decreased Expression of Cannabinoid Receptors in the Eutopic and Ectopic Endometrium of Patients with Adenomyosis. Biomed Res Int. 2019;2019:5468954.PubMedPubMedCentral Shen X, Duan H, Wang S, et al. Decreased Expression of Cannabinoid Receptors in the Eutopic and Ectopic Endometrium of Patients with Adenomyosis. Biomed Res Int. 2019;2019:5468954.PubMedPubMedCentral
15.
go back to reference Lin J, Liu Z, Liao S-S, et al. Elevated microRNA-7 inhibits proliferation and tumor angiogenesis and promotes apoptosis of gastric cancer cells via repression of Raf-1. Cell Cycle. 2020;19(19):2496–508.CrossRef Lin J, Liu Z, Liao S-S, et al. Elevated microRNA-7 inhibits proliferation and tumor angiogenesis and promotes apoptosis of gastric cancer cells via repression of Raf-1. Cell Cycle. 2020;19(19):2496–508.CrossRef
19.
go back to reference Yen Chih F, Huang J, Lee Chyi L, et al. Molecular characteristics of the endometrium in uterine Adenomyosis and its biochemical microenvironment.[J]. Reprod Sci. 2017;24(10):1346–61.CrossRef Yen Chih F, Huang J, Lee Chyi L, et al. Molecular characteristics of the endometrium in uterine Adenomyosis and its biochemical microenvironment.[J]. Reprod Sci. 2017;24(10):1346–61.CrossRef
20.
go back to reference Yalaza C, Canacankatan N, Gürses I, et al. Altered VEGF, Bcl-2 and IDH1 expression in patients with adenomyosis. Arch Gynecol Obstet. 2020;302(5):1221–7.CrossRef Yalaza C, Canacankatan N, Gürses I, et al. Altered VEGF, Bcl-2 and IDH1 expression in patients with adenomyosis. Arch Gynecol Obstet. 2020;302(5):1221–7.CrossRef
21.
go back to reference Wang J, Deng X-H, Yang Y, et al. Expression of GRIM-19 in adenomyosis and its possible role in pathogenesis. Fertil Steril. 2016;105(4):1093–101.CrossRef Wang J, Deng X-H, Yang Y, et al. Expression of GRIM-19 in adenomyosis and its possible role in pathogenesis. Fertil Steril. 2016;105(4):1093–101.CrossRef
22.
go back to reference Vannuccini S, Tosti C, Carmona F, et al. Pathogenesis of adenomyosis: an update on molecular mechanisms. Reprod Biomed Online. 2017;35(5):592–601.CrossRef Vannuccini S, Tosti C, Carmona F, et al. Pathogenesis of adenomyosis: an update on molecular mechanisms. Reprod Biomed Online. 2017;35(5):592–601.CrossRef
23.
go back to reference Oh S-J, Shin J-H, Kim T-H, et al. β-Catenin activation contributes to the pathogenesis of adenomyosis through epithelial-mesenchymal transition. Pathol. 2013;231(2):210–22.CrossRef Oh S-J, Shin J-H, Kim T-H, et al. β-Catenin activation contributes to the pathogenesis of adenomyosis through epithelial-mesenchymal transition. Pathol. 2013;231(2):210–22.CrossRef
24.
go back to reference Zhou W, Peng Z, Zhang C, et al. ILK-induced epithelial-mesenchymal transition promotes the invasive phenotype in adenomyosis. Biochem Biophys Res Commun. 2018;497(04):950–6.CrossRef Zhou W, Peng Z, Zhang C, et al. ILK-induced epithelial-mesenchymal transition promotes the invasive phenotype in adenomyosis. Biochem Biophys Res Commun. 2018;497(04):950–6.CrossRef
25.
go back to reference Hu R, Peng GQ, Ban DY, Zhang C, Zhang XQ, Li YP. High-expression of neuropilin 1 correlates to estrogen-induced epithelial-mesenchymal transition of endometrial cells in adenomyosis. Reprod Sci. 2020;27(01):395–403.CrossRef Hu R, Peng GQ, Ban DY, Zhang C, Zhang XQ, Li YP. High-expression of neuropilin 1 correlates to estrogen-induced epithelial-mesenchymal transition of endometrial cells in adenomyosis. Reprod Sci. 2020;27(01):395–403.CrossRef
26.
go back to reference Sun F-Q, Duan H, Wang S, et al. 17β-Estradiol Induces Overproliferation in Adenomyotic Human Uterine Smooth Muscle Cells of the Junctional Zone Through Hyperactivation of the Estrogen Receptor-Enhanced RhoA/ROCK Signaling Pathway. Reprod Sci. 2015;22(11):1436–44.CrossRef Sun F-Q, Duan H, Wang S, et al. 17β-Estradiol Induces Overproliferation in Adenomyotic Human Uterine Smooth Muscle Cells of the Junctional Zone Through Hyperactivation of the Estrogen Receptor-Enhanced RhoA/ROCK Signaling Pathway. Reprod Sci. 2015;22(11):1436–44.CrossRef
27.
go back to reference Wang S, Duan H, Li B-H. Rapid Effects of Oestrogen on Intracellular Ca in the Uterine Junctional Myometrium of Patients With and Without Adenomyosis in Different Phases of the Menstrual Cycle. Reprod Sci. 2020;27(11):1992–2001.CrossRef Wang S, Duan H, Li B-H. Rapid Effects of Oestrogen on Intracellular Ca in the Uterine Junctional Myometrium of Patients With and Without Adenomyosis in Different Phases of the Menstrual Cycle. Reprod Sci. 2020;27(11):1992–2001.CrossRef
28.
go back to reference Zhou S, Yi T, Liu R, et al. Proteomics identification of annexin A2 as a key mediator in the metastasis and proangiogenesis of endometrial cells in human adenomyosis. Mol Cell Proteomics. 2012;11(07):017988.PubMed Zhou S, Yi T, Liu R, et al. Proteomics identification of annexin A2 as a key mediator in the metastasis and proangiogenesis of endometrial cells in human adenomyosis. Mol Cell Proteomics. 2012;11(07):017988.PubMed
29.
go back to reference Herndon CN, Aghajanova L, Balayan S, et al. Global transcriptome abnormalities of the eutopic endometrium from women with adenomyosis. Reprod Sci. 2016;23(10):1289–303.CrossRef Herndon CN, Aghajanova L, Balayan S, et al. Global transcriptome abnormalities of the eutopic endometrium from women with adenomyosis. Reprod Sci. 2016;23(10):1289–303.CrossRef
30.
go back to reference Guo J, Chen L, Luo N, et al. LPS/TLR4-mediated stromal cells acquire an invasive phenotype and are implicated in the pathogenesis of adenomyosis. Sci Rep. 2016;6:21416.CrossRef Guo J, Chen L, Luo N, et al. LPS/TLR4-mediated stromal cells acquire an invasive phenotype and are implicated in the pathogenesis of adenomyosis. Sci Rep. 2016;6:21416.CrossRef
31.
go back to reference Huang T-S, Chen Y-J, Chou T-Y, et al. Oestrogen-induced angiogenesis promotes adenomyosis by activating the Slug-VEGF axis in endometrial epithelial cells. J Cell Mol Med. 2014;18(7):1358–71.CrossRef Huang T-S, Chen Y-J, Chou T-Y, et al. Oestrogen-induced angiogenesis promotes adenomyosis by activating the Slug-VEGF axis in endometrial epithelial cells. J Cell Mol Med. 2014;18(7):1358–71.CrossRef
32.
go back to reference Haydari Z, Shams H, Jahed Z, et al. Kindlin Assists Talin to Promote Integrin Activation. Biophys J. 2020;118(8):1977–91.CrossRef Haydari Z, Shams H, Jahed Z, et al. Kindlin Assists Talin to Promote Integrin Activation. Biophys J. 2020;118(8):1977–91.CrossRef
33.
go back to reference Fadi EP, Grimsley-Myers CM, Kansal S, et al. Talin-Dependent Integrin Activation Regulates VE-Cadherin Localization and Endothelial Cell Barrier Function. Circ Res. 2019;124(6):891–903.CrossRef Fadi EP, Grimsley-Myers CM, Kansal S, et al. Talin-Dependent Integrin Activation Regulates VE-Cadherin Localization and Endothelial Cell Barrier Function. Circ Res. 2019;124(6):891–903.CrossRef
35.
go back to reference Lai MT, Hua CH, Tsai MH, et al. Talin-1 overexpression defines high risk for aggressive oral squamous cell carcinoma and promotes cancer metastasis. J Pathol. 2011;224(3):367–76.CrossRef Lai MT, Hua CH, Tsai MH, et al. Talin-1 overexpression defines high risk for aggressive oral squamous cell carcinoma and promotes cancer metastasis. J Pathol. 2011;224(3):367–76.CrossRef
36.
go back to reference Somayeh V, Zanjani Leili S, Shams Zohreh H, et al. Low expression of Talin1 is associated with advanced pathological features in colorectal cancer patients. Sci Rep. 2020;10(1):17786.CrossRef Somayeh V, Zanjani Leili S, Shams Zohreh H, et al. Low expression of Talin1 is associated with advanced pathological features in colorectal cancer patients. Sci Rep. 2020;10(1):17786.CrossRef
37.
go back to reference Shen Y, Qin A-P. Regulation of Embryonic Signal on Talin1 in Mouse Endometrium. Reprod Sci. 2019;26(9):1277–86.CrossRef Shen Y, Qin A-P. Regulation of Embryonic Signal on Talin1 in Mouse Endometrium. Reprod Sci. 2019;26(9):1277–86.CrossRef
38.
go back to reference Li J-J, Lin J-J, Yang Y-H, et al. Talin1 regulates the endometrial epithelial cell adhesive capacity by interacting with LASP1 and Vitronectin. Reprod Biol. 2020;20(2):229–36.CrossRef Li J-J, Lin J-J, Yang Y-H, et al. Talin1 regulates the endometrial epithelial cell adhesive capacity by interacting with LASP1 and Vitronectin. Reprod Biol. 2020;20(2):229–36.CrossRef
39.
go back to reference Jiang J-F, Sun A-J, Wang Y-F, Deng Y. Increased expression of Talin1 in the eutopic and ectopic endometria of women with adenomyosis. Gynecol Endocrinol. 2016;32(6):469–72.CrossRef Jiang J-F, Sun A-J, Wang Y-F, Deng Y. Increased expression of Talin1 in the eutopic and ectopic endometria of women with adenomyosis. Gynecol Endocrinol. 2016;32(6):469–72.CrossRef
41.
go back to reference Tang H, Yao L, Tao X, et al. miR-9 functions as a tumor suppressor in ovarian serous carcinoma by targeting TLN1. Int J Mol Med. 2013;32(2):381–8.CrossRef Tang H, Yao L, Tao X, et al. miR-9 functions as a tumor suppressor in ovarian serous carcinoma by targeting TLN1. Int J Mol Med. 2013;32(2):381–8.CrossRef
42.
go back to reference Chen P-J, Lei L, Wang J, et al. Downregulation of Talin1 promotes hepatocellular carcinoma progression through activation of the ERK1/2 pathway.[J]. Cancer Sci. 2017;108(6):1157–68.CrossRef Chen P-J, Lei L, Wang J, et al. Downregulation of Talin1 promotes hepatocellular carcinoma progression through activation of the ERK1/2 pathway.[J]. Cancer Sci. 2017;108(6):1157–68.CrossRef
43.
go back to reference Zheng D-X, Duan H, Wang S, et al. FAK regulates epithelial-mesenchymal transition in adenomyosis.[J]. Mol Med Rep. 2018;18(6):5461–72.PubMedPubMedCentral Zheng D-X, Duan H, Wang S, et al. FAK regulates epithelial-mesenchymal transition in adenomyosis.[J]. Mol Med Rep. 2018;18(6):5461–72.PubMedPubMedCentral
Metadata
Title
Upregulated Talin1 synergistically boosts β-estradiol-induced proliferation and pro-angiogenesis of eutopic and ectopic endometrial stromal cells in adenomyosis
Authors
Yi-yi Wang
Hua Duan
Sha Wang
Yong-jun Quan
Jun-hua Huang
Zheng-chen Guo
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2021
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-021-00756-7

Other articles of this Issue 1/2021

Reproductive Biology and Endocrinology 1/2021 Go to the issue