Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2020

01-12-2020 | Endometrial Cancer | Review

Histone acetylation and the role of histone deacetylases in normal cyclic endometrium

Authors: Palak Gujral, Vishakha Mahajan, Abbey C. Lissaman, Anna P. Ponnampalam

Published in: Reproductive Biology and Endocrinology | Issue 1/2020

Login to get access

Abstract

Histone acetylation is a critical epigenetic modification that changes chromatin architecture and regulates gene expression by opening or closing the chromatin structure. It plays an essential role in cell cycle progression and differentiation. The human endometrium goes through cycles of regeneration, proliferation, differentiation, and degradation each month; each phase requiring strict epigenetic regulation for the proper functioning of the endometrium. Aberrant histone acetylation and alterations in levels of two acetylation modulators - histone acetylases (HATs) and histone deacetylases (HDACs) - have been associated with endometrial pathologies such as endometrial cancer, implantation failures, and endometriosis. Thus, histone acetylation is likely to have an essential role in the regulation of endometrial remodelling throughout the menstrual cycle.
Literature
1.
go back to reference Fiac J, Jiménez-Ayala M, Jiménez-Ayala Portillo B. Cytopathology of the glandular lesions of the female genital tract. In: Orell SR, editor. Monographs in clinical cytology. Vol. 20. Basel (Suiza): Karger Eds; 2011. ISBN 978-3-8055-9464-6. Progresos de Obstetricia y Ginecología. 2011. Fiac J, Jiménez-Ayala M, Jiménez-Ayala Portillo B. Cytopathology of the glandular lesions of the female genital tract. In: Orell SR, editor. Monographs in clinical cytology. Vol. 20. Basel (Suiza): Karger Eds; 2011. ISBN 978-3-8055-9464-6. Progresos de Obstetricia y Ginecología. 2011.
2.
go back to reference Lessey BA, Young SL. Chapter 9 - structure, function, and evaluation of the female reproductive tract. In: Strauss JF, Barbieri RL, editors. Yen and Jaffe's reproductive endocrinology (8th edition). Philadelphia: Content Repository Only! 2019. p. 206–47.e13. Lessey BA, Young SL. Chapter 9 - structure, function, and evaluation of the female reproductive tract. In: Strauss JF, Barbieri RL, editors. Yen and Jaffe's reproductive endocrinology (8th edition). Philadelphia: Content Repository Only! 2019. p. 206–47.e13.
3.
go back to reference Jiménez-Ayala M, Jiménez-Ayala Portillo B. Cytology of the Normal endometrium – cycling and postmenopausal. In: Endometrial Adenocarcinoma: Prevention and Early Diagnosis. Basel, S. Karger AG. 2008. p. 32–9. Jiménez-Ayala M, Jiménez-Ayala Portillo B. Cytology of the Normal endometrium – cycling and postmenopausal. In: Endometrial Adenocarcinoma: Prevention and Early Diagnosis. Basel, S. Karger AG. 2008. p. 32–9.
4.
go back to reference Kimball FA. The endometrium. Dordrecht: Springer Netherlands 1980; 1980. Kimball FA. The endometrium. Dordrecht: Springer Netherlands 1980; 1980.
5.
go back to reference Yamagata Y, Asada H, Tamura I, Lee L, Maekawa R, Taniguchi K, et al. DNA methyltransferase expression in the human endometrium: down-regulation by progesterone and estrogen. Hum Reprod. 2009;24(5):1126–32.PubMed Yamagata Y, Asada H, Tamura I, Lee L, Maekawa R, Taniguchi K, et al. DNA methyltransferase expression in the human endometrium: down-regulation by progesterone and estrogen. Hum Reprod. 2009;24(5):1126–32.PubMed
6.
go back to reference Munro SK, Farquhar CM, Mitchell MD, Ponnampalam AP. Epigenetic regulation of endometrium during the menstrual cycle. Mol Hum Reprod. 2010;16(5):297–310.PubMed Munro SK, Farquhar CM, Mitchell MD, Ponnampalam AP. Epigenetic regulation of endometrium during the menstrual cycle. Mol Hum Reprod. 2010;16(5):297–310.PubMed
7.
go back to reference Kim TH, Yoo J-Y, Choi K-C, Shin J-H, Leach RE, Fazleabas AT, et al. Loss of HDAC3 results in nonreceptive endometrium and female infertility. Sci Transl Med. 2019;11(474):eaaf7533.PubMedPubMedCentral Kim TH, Yoo J-Y, Choi K-C, Shin J-H, Leach RE, Fazleabas AT, et al. Loss of HDAC3 results in nonreceptive endometrium and female infertility. Sci Transl Med. 2019;11(474):eaaf7533.PubMedPubMedCentral
8.
go back to reference Colón-Díaz M, Báez-Vega P, García M, Ruiz A, Monteiro JB, Fourquet J, et al. HDAC1 and HDAC2 are differentially expressed in endometriosis. Reprod Sci. 2012;19(5):483–92.PubMedPubMedCentral Colón-Díaz M, Báez-Vega P, García M, Ruiz A, Monteiro JB, Fourquet J, et al. HDAC1 and HDAC2 are differentially expressed in endometriosis. Reprod Sci. 2012;19(5):483–92.PubMedPubMedCentral
9.
go back to reference Samartzis EP, Noske A, Samartzis N, Fink D, Imesch P. The expression of histone deacetylase 1, but not other class I histone deacetylases, is significantly increased in endometriosis. Reprod Sci. 2013;20(12):1416–22.PubMedPubMedCentral Samartzis EP, Noske A, Samartzis N, Fink D, Imesch P. The expression of histone deacetylase 1, but not other class I histone deacetylases, is significantly increased in endometriosis. Reprod Sci. 2013;20(12):1416–22.PubMedPubMedCentral
10.
go back to reference Krusche CA, Vloet AJ, Classen-Linke I, von Rango U, Beier HM, Alfer J. Class I histone deacetylase expression in the human cyclic endometrium and endometrial adenocarcinomas. Hum Reprod. 2007;22(11):2956–66.PubMed Krusche CA, Vloet AJ, Classen-Linke I, von Rango U, Beier HM, Alfer J. Class I histone deacetylase expression in the human cyclic endometrium and endometrial adenocarcinomas. Hum Reprod. 2007;22(11):2956–66.PubMed
11.
go back to reference Krippner S, Barrett D. Transgenerational trauma: the role of epigenetics. J Mind Behavior. 2019;40(1):53–62. Krippner S, Barrett D. Transgenerational trauma: the role of epigenetics. J Mind Behavior. 2019;40(1):53–62.
12.
go back to reference Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(3):245–54.PubMed Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(3):245–54.PubMed
13.
go back to reference Wei JW, Huang K, Yang C, Kang CS. Non-coding RNAs as regulators in epigenetics (review). Oncol Rep. 2017;37(1):3–9.PubMed Wei JW, Huang K, Yang C, Kang CS. Non-coding RNAs as regulators in epigenetics (review). Oncol Rep. 2017;37(1):3–9.PubMed
14.
go back to reference Geiman TM, Robertson KD. Chromatin remodeling, histone modifications, and DNA methylation? How does it all fit together? Journal of cellular biochemistry. 2002;87(2):117–25. Geiman TM, Robertson KD. Chromatin remodeling, histone modifications, and DNA methylation? How does it all fit together? Journal of cellular biochemistry. 2002;87(2):117–25.
15.
go back to reference Teif VB, Rippe K. Predicting nucleosome positions on the DNA: combining intrinsic sequence preferences and remodeler activities. Nucleic Acids Res. 2009;37(17):5641–55.PubMedPubMedCentral Teif VB, Rippe K. Predicting nucleosome positions on the DNA: combining intrinsic sequence preferences and remodeler activities. Nucleic Acids Res. 2009;37(17):5641–55.PubMedPubMedCentral
16.
go back to reference Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature. 2019;571(7766):489–99.PubMed Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature. 2019;571(7766):489–99.PubMed
17.
go back to reference Nilsson E, Ben Maamar M, Skinner MK. Chapter 2 - definition of epigenetic transgenerational inheritance and biological impacts. In: Tollefsbol TO, editor. Transgenerational epigenetics (2nd edition). Vol. 13. Oxford: Academic; 2019. p. 11–16. Nilsson E, Ben Maamar M, Skinner MK. Chapter 2 - definition of epigenetic transgenerational inheritance and biological impacts. In: Tollefsbol TO, editor. Transgenerational epigenetics (2nd edition). Vol. 13. Oxford: Academic; 2019. p. 11–16.
18.
go back to reference Karagiannis P. Clinical Potential of Induced Pluripotent Stem Cells. In H. Inoue & Y. Nakamura, editors. Medical Applications of iPS Cells: Innovation in Medical Sciences. Singapore. Singapore: Springer; 2019. p. 3–12. . Karagiannis P. Clinical Potential of Induced Pluripotent Stem Cells. In H. Inoue & Y. Nakamura, editors. Medical Applications of iPS Cells: Innovation in Medical Sciences. Singapore. Singapore: Springer; 2019. p. 3–12. .
19.
go back to reference Ayers D, Boughanem H, Macías-González M. Epigenetic influences in the obesity/colorectal cancer Axis: a novel Theragnostic avenue. J Oncol. 2019;2019:7406078. Ayers D, Boughanem H, Macías-González M. Epigenetic influences in the obesity/colorectal cancer Axis: a novel Theragnostic avenue. J Oncol. 2019;2019:7406078.
20.
go back to reference Yeshurun S, Hannan AJ. Transgenerational epigenetic influences of paternal environmental exposures on brain function and predisposition to psychiatric disorders. Mol Psychiatry. 2019;24(4):536.PubMed Yeshurun S, Hannan AJ. Transgenerational epigenetic influences of paternal environmental exposures on brain function and predisposition to psychiatric disorders. Mol Psychiatry. 2019;24(4):536.PubMed
21.
go back to reference Monk D, Mackay DJG, Eggermann T, Maher ER, Riccio A. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet. 2019;20(4):235–48.PubMed Monk D, Mackay DJG, Eggermann T, Maher ER, Riccio A. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet. 2019;20(4):235–48.PubMed
22.
go back to reference Pathak R, Singh P, Ananthakrishnan S, Adamczyk S, Schimmel O, Govind CK. Acetylation-dependent recruitment of the FACT complex and its role in regulating pol II occupancy genome-wide in saccharomyces cerevisiae. Genetics. 2018;209(3):743–56.PubMedPubMedCentral Pathak R, Singh P, Ananthakrishnan S, Adamczyk S, Schimmel O, Govind CK. Acetylation-dependent recruitment of the FACT complex and its role in regulating pol II occupancy genome-wide in saccharomyces cerevisiae. Genetics. 2018;209(3):743–56.PubMedPubMedCentral
23.
go back to reference Annunziato A. DNA packaging: nucleosomes and chromatin. Nature Educ. 2008;1(1):26. Annunziato A. DNA packaging: nucleosomes and chromatin. Nature Educ. 2008;1(1):26.
24.
go back to reference Turner BM. Histone acetylation and an epigenetic code. Bioessays. 2000;22(9):836–45.PubMed Turner BM. Histone acetylation and an epigenetic code. Bioessays. 2000;22(9):836–45.PubMed
26.
go back to reference Keck KM, Pemberton LF. Histone chaperones link histone nuclear import and chromatin assembly. Biochim Biophys Acta. 2012;1819(3–4):277–89.PubMed Keck KM, Pemberton LF. Histone chaperones link histone nuclear import and chromatin assembly. Biochim Biophys Acta. 2012;1819(3–4):277–89.PubMed
27.
go back to reference Allfrey V, Faulkner R, Mirsky A. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci. 1964;51(5):786–94.PubMed Allfrey V, Faulkner R, Mirsky A. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci. 1964;51(5):786–94.PubMed
28.
go back to reference Ellenbroek B, Youn J. Chapter 5 - environment challenges and the brain. In: Ellenbroek B, Youn J, editors. Gene-environment interactions in psychiatry. San Diego: Academic; 2016. p. 107–39. Ellenbroek B, Youn J. Chapter 5 - environment challenges and the brain. In: Ellenbroek B, Youn J, editors. Gene-environment interactions in psychiatry. San Diego: Academic; 2016. p. 107–39.
29.
go back to reference Richman R, Chicoine LG, Collini MP, Cook RG, Allis CD. Micronuclei and the cytoplasm of growing Tetrahymena contain a histone acetylase activity which is highly specific for free histone H4. J Cell Biol. 1988;106(4):1017–26.PubMed Richman R, Chicoine LG, Collini MP, Cook RG, Allis CD. Micronuclei and the cytoplasm of growing Tetrahymena contain a histone acetylase activity which is highly specific for free histone H4. J Cell Biol. 1988;106(4):1017–26.PubMed
30.
go back to reference Roth SY, Denu JM, Allis CD. Histone Acetyltransferases. 2001;70(1):81–120. Roth SY, Denu JM, Allis CD. Histone Acetyltransferases. 2001;70(1):81–120.
31.
go back to reference Lee KK, Workman JL. Histone acetyltransferase complexes: one size doesn't fit all. Nat Rev Mol Cell Biol. 2007;8(4):284–95.PubMed Lee KK, Workman JL. Histone acetyltransferase complexes: one size doesn't fit all. Nat Rev Mol Cell Biol. 2007;8(4):284–95.PubMed
32.
go back to reference Sun XJ, Man N, Tan Y, Nimer SD, Wang L. The role of histone acetyltransferases in Normal and malignant hematopoiesis. Front Oncol. 2015;5:108. Sun XJ, Man N, Tan Y, Nimer SD, Wang L. The role of histone acetyltransferases in Normal and malignant hematopoiesis. Front Oncol. 2015;5:108.
33.
go back to reference Voss AK, Thomas T. MYST family histone acetyltransferases take center stage in stem cells and development. Bioessays. 2009;31(10):1050–61.PubMed Voss AK, Thomas T. MYST family histone acetyltransferases take center stage in stem cells and development. Bioessays. 2009;31(10):1050–61.PubMed
34.
go back to reference Bowers EM, Yan G, Mukherjee C, Orry A, Wang L, Holbert MA, et al. Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem Biol. 2010;17(5):471–82.PubMedPubMedCentral Bowers EM, Yan G, Mukherjee C, Orry A, Wang L, Holbert MA, et al. Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem Biol. 2010;17(5):471–82.PubMedPubMedCentral
35.
go back to reference Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, et al. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature. 1997;389(6647):194.PubMed Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, et al. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature. 1997;389(6647):194.PubMed
36.
go back to reference Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L, et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell. 1997;90(3):569–80.PubMed Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L, et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell. 1997;90(3):569–80.PubMed
37.
go back to reference Gajer JM, Furdas SD, Gründer A, Gothwal M, Heinicke U, Keller K, et al. Histone acetyltransferase inhibitors block neuroblastoma cell growth in vivo. Oncogenesis. 2015;4(2):e137–e. Gajer JM, Furdas SD, Gründer A, Gothwal M, Heinicke U, Keller K, et al. Histone acetyltransferase inhibitors block neuroblastoma cell growth in vivo. Oncogenesis. 2015;4(2):e137–e.
38.
go back to reference Dekker FJ, Haisma HJ. Histone acetyl transferases as emerging drug targets. Drug Discov Today. 2009;14(19):942–8.PubMed Dekker FJ, Haisma HJ. Histone acetyl transferases as emerging drug targets. Drug Discov Today. 2009;14(19):942–8.PubMed
39.
go back to reference Ait-Si-Ali S, Polesskaya A, Filleur S, Ferreira R, Duquet A, Robin P, et al. CBP/p300 histone acetyl-transferase activity is important for the G1/S transition. Oncogenesis. 2000;19(20):2430. Ait-Si-Ali S, Polesskaya A, Filleur S, Ferreira R, Duquet A, Robin P, et al. CBP/p300 histone acetyl-transferase activity is important for the G1/S transition. Oncogenesis. 2000;19(20):2430.
40.
go back to reference Yan G, Eller MS, Elm C, Larocca CA, Ryu B, Panova IP, et al. Selective inhibition of p300 HAT blocks cell cycle progression, induces cellular senescence, and inhibits the DNA damage response in melanoma cells. J Investig Dermatol. 2013;133(10):2444–52.PubMed Yan G, Eller MS, Elm C, Larocca CA, Ryu B, Panova IP, et al. Selective inhibition of p300 HAT blocks cell cycle progression, induces cellular senescence, and inhibits the DNA damage response in melanoma cells. J Investig Dermatol. 2013;133(10):2444–52.PubMed
41.
go back to reference Hammett R, Shoemake C. In silico design and optimisation of Phytoalexin resveratrol polyphenolic analogs as inhibitors of histone acetyltransferase for the Management of Tumor Growth. Med Chem. 2018;8:242–9. Hammett R, Shoemake C. In silico design and optimisation of Phytoalexin resveratrol polyphenolic analogs as inhibitors of histone acetyltransferase for the Management of Tumor Growth. Med Chem. 2018;8:242–9.
42.
go back to reference Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014;6(4):a018713–a.PubMedPubMedCentral Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014;6(4):a018713–a.PubMedPubMedCentral
43.
go back to reference Hadley M, Noonepalle S, Banik D, Villagra A. Functional analysis of HDACs in tumorigenesis. In: Brosh JRM, editor. Protein acetylation: methods and protocols. New York: Springer New York; 2019. p. 279–307. Hadley M, Noonepalle S, Banik D, Villagra A. Functional analysis of HDACs in tumorigenesis. In: Brosh JRM, editor. Protein acetylation: methods and protocols. New York: Springer New York; 2019. p. 279–307.
44.
go back to reference Lee J, Ra SH. Cancer epigenetics: mechanisms and crosstalk of a HDAC inhibitor, Vorinostat. Chemotherapy. 2013;2(111):14934.PubMedPubMedCentral Lee J, Ra SH. Cancer epigenetics: mechanisms and crosstalk of a HDAC inhibitor, Vorinostat. Chemotherapy. 2013;2(111):14934.PubMedPubMedCentral
45.
go back to reference Reichert N, Choukrallah M-A, Matthias P. Multiple roles of class I HDACs in proliferation, differentiation, and development. Cell Mol Life Sci. 2012;69(13):2173–87.PubMed Reichert N, Choukrallah M-A, Matthias P. Multiple roles of class I HDACs in proliferation, differentiation, and development. Cell Mol Life Sci. 2012;69(13):2173–87.PubMed
47.
go back to reference Villagra A, Cheng F, Wang H-W, Suarez I, Glozak M, Maurin M, et al. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol. 2009;10(1):92.PubMed Villagra A, Cheng F, Wang H-W, Suarez I, Glozak M, Maurin M, et al. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol. 2009;10(1):92.PubMed
48.
go back to reference Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci. 2017;18(7):1414.PubMedCentral Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci. 2017;18(7):1414.PubMedCentral
49.
go back to reference Makieva S, Giacomini E, Ottolina J, Sanchez A, Papaleo E, Viganò P. Inside the endometrial cell signaling subway: mind the gap (s). Int J Mol Sci. 2018;19(9):2477.PubMedCentral Makieva S, Giacomini E, Ottolina J, Sanchez A, Papaleo E, Viganò P. Inside the endometrial cell signaling subway: mind the gap (s). Int J Mol Sci. 2018;19(9):2477.PubMedCentral
50.
go back to reference Mutter GL, Prat J. Pathology of the female reproductive tract. In: Mutter GL, Prat J, editors. . 3rd ed. Edinburgh: Churchill Livingstone Elsevier; 2014. Mutter GL, Prat J. Pathology of the female reproductive tract. In: Mutter GL, Prat J, editors. . 3rd ed. Edinburgh: Churchill Livingstone Elsevier; 2014.
52.
go back to reference Wilson EW. In: Rennie PIC, editor. The menstrual cycle. London: Lloyd-Luke; 1976. Wilson EW. In: Rennie PIC, editor. The menstrual cycle. London: Lloyd-Luke; 1976.
53.
go back to reference Murdock TA, Veras EFT, Kurman RJ, Mazur MT. The Normal endometrium. In: Murdock TA, Veras EFT, Kurman RJ, Mazur MT, editors. Diagnosis of endometrial biopsies and Curettings: a practical approach. Cham: Springer International Publishing; 2019. p. 9–37. Murdock TA, Veras EFT, Kurman RJ, Mazur MT. The Normal endometrium. In: Murdock TA, Veras EFT, Kurman RJ, Mazur MT, editors. Diagnosis of endometrial biopsies and Curettings: a practical approach. Cham: Springer International Publishing; 2019. p. 9–37.
54.
55.
go back to reference von Grothusen C, Lalitkumar S, Boggavarapu NR, Gemzell-Danielsson K, Lalitkumar PG. Recent advances in understanding endometrial receptivity: molecular basis and clinical applications. Am J Reprod immunol (New York, NY : 1989). 2014;72(2):148–57. von Grothusen C, Lalitkumar S, Boggavarapu NR, Gemzell-Danielsson K, Lalitkumar PG. Recent advances in understanding endometrial receptivity: molecular basis and clinical applications. Am J Reprod immunol (New York, NY : 1989). 2014;72(2):148–57.
56.
go back to reference Gargett CE, Nguyen HPT, Ye L. Endometrial regeneration and endometrial stem/progenitor cells. Rev Endocr Metab Disord. 2012;13(4):235–51.PubMed Gargett CE, Nguyen HPT, Ye L. Endometrial regeneration and endometrial stem/progenitor cells. Rev Endocr Metab Disord. 2012;13(4):235–51.PubMed
57.
go back to reference Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update. 2015;22(2):137–63.PubMedPubMedCentral Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update. 2015;22(2):137–63.PubMedPubMedCentral
58.
go back to reference Salamonsen LA. WOMEN IN REPRODUCTIVE SCIENCE: My WOMBan’s life: understanding human endometrial function. Reproduction. 2019;158(6):F55–67. Salamonsen LA. WOMEN IN REPRODUCTIVE SCIENCE: My WOMBan’s life: understanding human endometrial function. Reproduction. 2019;158(6):F55–67.
59.
go back to reference Yakushiji N, Yokoyama H, Tamura K. Repatterning in amphibian limb regeneration: a model for study of genetic and epigenetic control of organ regeneration. Semin Cell Dev Biol. 2009;20(5):565–74.PubMed Yakushiji N, Yokoyama H, Tamura K. Repatterning in amphibian limb regeneration: a model for study of genetic and epigenetic control of organ regeneration. Semin Cell Dev Biol. 2009;20(5):565–74.PubMed
60.
go back to reference Chung Y-L. Histone hyperacetylating agents for promoting wound healing and preventing scar formationGoogle Patents; 2015. Chung Y-L. Histone hyperacetylating agents for promoting wound healing and preventing scar formationGoogle Patents; 2015.
61.
go back to reference Figueira PGM, Abrão MS, Krikun G, Taylor HS. Stem cells in endometrium and their role in the pathogenesis of endometriosis. Ann N Y Acad Sci. 2011;1221(1):10–7.PubMedPubMedCentral Figueira PGM, Abrão MS, Krikun G, Taylor HS. Stem cells in endometrium and their role in the pathogenesis of endometriosis. Ann N Y Acad Sci. 2011;1221(1):10–7.PubMedPubMedCentral
62.
go back to reference Reyes M, Verfaillie C. Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann N Y Acad Sci. 2001;938:231–5.PubMed Reyes M, Verfaillie C. Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann N Y Acad Sci. 2001;938:231–5.PubMed
63.
go back to reference Wolf M, Kiesel L, Götte M. Stammzellen im endometrium. Gynäkologische Endokrinologie. 2009;7(3):185–9. Wolf M, Kiesel L, Götte M. Stammzellen im endometrium. Gynäkologische Endokrinologie. 2009;7(3):185–9.
64.
go back to reference Gargett CE, Ye L. Endometrial reconstruction from stem cells. Fertil Steril. 2012;98(1):11–20.PubMed Gargett CE, Ye L. Endometrial reconstruction from stem cells. Fertil Steril. 2012;98(1):11–20.PubMed
66.
go back to reference Huang B, Li G, Jiang XH. Fate determination in mesenchymal stem cells: a perspective from histone-modifying enzymes. Stem Cell Res Ther. 2015;6(1):35.PubMedPubMedCentral Huang B, Li G, Jiang XH. Fate determination in mesenchymal stem cells: a perspective from histone-modifying enzymes. Stem Cell Res Ther. 2015;6(1):35.PubMedPubMedCentral
67.
go back to reference Xu L, Xing Q, Huang T, Zhou J, Liu T, Cui Y, et al. HDAC1 silence promotes neuroprotective effects of human umbilical cord-derived mesenchymal stem cells in a mouse model of traumatic brain injury via PI3K/AKT pathway. Front Cell Neurosci. 2019;12:498.PubMedPubMedCentral Xu L, Xing Q, Huang T, Zhou J, Liu T, Cui Y, et al. HDAC1 silence promotes neuroprotective effects of human umbilical cord-derived mesenchymal stem cells in a mouse model of traumatic brain injury via PI3K/AKT pathway. Front Cell Neurosci. 2019;12:498.PubMedPubMedCentral
68.
go back to reference Park S-Y, Phorl S, Jung S, Sovannarith K, Lee S-I, Noh S, et al. HDAC6 deficiency induces apoptosis in mesenchymal stem cells through p53 K120 acetylation. Biochem Biophys Res Commun. 2017;494(1):51–6.PubMed Park S-Y, Phorl S, Jung S, Sovannarith K, Lee S-I, Noh S, et al. HDAC6 deficiency induces apoptosis in mesenchymal stem cells through p53 K120 acetylation. Biochem Biophys Res Commun. 2017;494(1):51–6.PubMed
69.
go back to reference Tan J, Lu J, Huang W, Dong Z, Kong C, Li L, et al. Genome-wide analysis of histone H3 Lysine9 modifications in human mesenchymal stem cell osteogenic differentiation. PLoS One. 2009;4(8):e6792.PubMedPubMedCentral Tan J, Lu J, Huang W, Dong Z, Kong C, Li L, et al. Genome-wide analysis of histone H3 Lysine9 modifications in human mesenchymal stem cell osteogenic differentiation. PLoS One. 2009;4(8):e6792.PubMedPubMedCentral
70.
go back to reference Verdi J, Tan A, Shoae-Hassani A, Seifalian AM. Endometrial stem cells in regenerative medicine. J Biol Eng. 2014;8(1):20.PubMedPubMedCentral Verdi J, Tan A, Shoae-Hassani A, Seifalian AM. Endometrial stem cells in regenerative medicine. J Biol Eng. 2014;8(1):20.PubMedPubMedCentral
71.
go back to reference Ding D-C, Shyu W-C, Lin S-Z. Mesenchymal stem cells. Cell Transplant. 2011;20(1):5–14.PubMed Ding D-C, Shyu W-C, Lin S-Z. Mesenchymal stem cells. Cell Transplant. 2011;20(1):5–14.PubMed
72.
go back to reference Lu J, Kong X, Luo C, Li KK. Application of epigenome-modifying small molecules in induced pluripotent stem cells. Med Res Rev. 2013;33(4):790–822.PubMed Lu J, Kong X, Luo C, Li KK. Application of epigenome-modifying small molecules in induced pluripotent stem cells. Med Res Rev. 2013;33(4):790–822.PubMed
73.
go back to reference Mashayekhi P, Noruzinia M, Zeinali S, Khodaverdi S. Endometriotic mesenchymal stem cells epigenetic pathogenesis: deregulation of miR-200b, miR-145, and let7b in a functional imbalanced epigenetic disease. Cell. 2019;21(2):179–85. Mashayekhi P, Noruzinia M, Zeinali S, Khodaverdi S. Endometriotic mesenchymal stem cells epigenetic pathogenesis: deregulation of miR-200b, miR-145, and let7b in a functional imbalanced epigenetic disease. Cell. 2019;21(2):179–85.
74.
go back to reference Taghizadeh M, Noruzinia M. Lovastatin reduces Stemness via epigenetic reprograming of BMP2 and GATA2 in human endometrium and endometriosis. Cell. 2017;19(1):50–64. Taghizadeh M, Noruzinia M. Lovastatin reduces Stemness via epigenetic reprograming of BMP2 and GATA2 in human endometrium and endometriosis. Cell. 2017;19(1):50–64.
75.
go back to reference Shukla V, Vaissière T, Herceg Z. Histone acetylation and chromatin signature in stem cell identity and cancer. Mutation Res/Fundamental Mol Mechanisms Mutagen. 2008;637(1):1–15. Shukla V, Vaissière T, Herceg Z. Histone acetylation and chromatin signature in stem cell identity and cancer. Mutation Res/Fundamental Mol Mechanisms Mutagen. 2008;637(1):1–15.
77.
go back to reference Gargett CE, Rogers PA. Human endometrial angiogenesis. Reproduction-Cambridge-. 2001;121(2):181–6. Gargett CE, Rogers PA. Human endometrial angiogenesis. Reproduction-Cambridge-. 2001;121(2):181–6.
78.
go back to reference Hayashi A, Horiuchi A, Kikuchi N, Hayashi T, Fuseya C, Suzuki A, et al. Type-specific roles of histone deacetylase (HDAC) overexpression in ovarian carcinoma: HDAC1 enhances cell proliferation and HDAC3 stimulates cell migration with downregulation of E-cadherin. Int J Cancer. 2010;127(6):1332–46. Hayashi A, Horiuchi A, Kikuchi N, Hayashi T, Fuseya C, Suzuki A, et al. Type-specific roles of histone deacetylase (HDAC) overexpression in ovarian carcinoma: HDAC1 enhances cell proliferation and HDAC3 stimulates cell migration with downregulation of E-cadherin. Int J Cancer. 2010;127(6):1332–46.
79.
go back to reference Ren J, Zhang J, Cai H, Li Y, Zhang Y, Zhang X, et al. HDAC as a therapeutic target for treatment of endometrial cancers. Curr Pharm Des. 2014;20(11):1847–56.PubMed Ren J, Zhang J, Cai H, Li Y, Zhang Y, Zhang X, et al. HDAC as a therapeutic target for treatment of endometrial cancers. Curr Pharm Des. 2014;20(11):1847–56.PubMed
80.
go back to reference Hrzenjak A, Moinfar F, Kremser M-L, Strohmeier B, Staber PB, Zatloukal K, et al. Valproate inhibition of histone deacetylase 2 affects differentiation and decreases proliferation of endometrial stromal sarcoma cells. Mol Cancer Ther. 2006;5(9):2203–10.PubMed Hrzenjak A, Moinfar F, Kremser M-L, Strohmeier B, Staber PB, Zatloukal K, et al. Valproate inhibition of histone deacetylase 2 affects differentiation and decreases proliferation of endometrial stromal sarcoma cells. Mol Cancer Ther. 2006;5(9):2203–10.PubMed
81.
go back to reference Fakhry H, Miyamoto T, Kashima H, Suzuki A, Ke H, Konishi I, et al. Immunohistochemical detection of histone deacetylases in endometrial carcinoma: involvement of histone deacetylase 2 in the proliferation of endometrial carcinoma cells. Hum Pathol. 2010;41(6):848–58.PubMed Fakhry H, Miyamoto T, Kashima H, Suzuki A, Ke H, Konishi I, et al. Immunohistochemical detection of histone deacetylases in endometrial carcinoma: involvement of histone deacetylase 2 in the proliferation of endometrial carcinoma cells. Hum Pathol. 2010;41(6):848–58.PubMed
82.
go back to reference Imesch P, Fink D, Fedier A. Romidepsin reduces histone deacetylase activity, induces acetylation of histones, inhibits proliferation, and activates apoptosis in immortalized epithelial endometriotic cells. Fertil Steril. 2010;94(7):2838–42.PubMed Imesch P, Fink D, Fedier A. Romidepsin reduces histone deacetylase activity, induces acetylation of histones, inhibits proliferation, and activates apoptosis in immortalized epithelial endometriotic cells. Fertil Steril. 2010;94(7):2838–42.PubMed
83.
go back to reference Yi TZ, Li J, Han X, Guo J, Qu Q, Guo L, et al. DNMT inhibitors and HDAC inhibitors regulate E-cadherin and Bcl-2 expression in endometrial carcinoma in vitro and in vivo. Chemotherapy. 2012;58(1):19–29.PubMed Yi TZ, Li J, Han X, Guo J, Qu Q, Guo L, et al. DNMT inhibitors and HDAC inhibitors regulate E-cadherin and Bcl-2 expression in endometrial carcinoma in vitro and in vivo. Chemotherapy. 2012;58(1):19–29.PubMed
84.
85.
go back to reference Weichert W, Denkert C, Noske A, Darb-Esfahani S, Dietel M, Kalloger SE, et al. Expression of class I histone deacetylases indicates poor prognosis in endometrioid subtypes of ovarian and endometrial carcinomas. Neoplasia. 2008;10(9):1021–7.PubMedPubMedCentral Weichert W, Denkert C, Noske A, Darb-Esfahani S, Dietel M, Kalloger SE, et al. Expression of class I histone deacetylases indicates poor prognosis in endometrioid subtypes of ovarian and endometrial carcinomas. Neoplasia. 2008;10(9):1021–7.PubMedPubMedCentral
86.
go back to reference Jin G, Bausch D, Knightly T, Liu Z, Li Y, Liu B, et al. Histone deacetylase inhibitors enhance endothelial cell sprouting angiogenesis in vitro. Surgery. 2011;150(3):429–35.PubMedPubMedCentral Jin G, Bausch D, Knightly T, Liu Z, Li Y, Liu B, et al. Histone deacetylase inhibitors enhance endothelial cell sprouting angiogenesis in vitro. Surgery. 2011;150(3):429–35.PubMedPubMedCentral
87.
go back to reference Chen Y, Chang Y, Yao S. Role of angiogenesis in endometrial repair of patients with severe intrauterine adhesion. Int J Clin Exp Pathol. 2013;6(7):1343–50.PubMedPubMedCentral Chen Y, Chang Y, Yao S. Role of angiogenesis in endometrial repair of patients with severe intrauterine adhesion. Int J Clin Exp Pathol. 2013;6(7):1343–50.PubMedPubMedCentral
88.
go back to reference Tamura I, Ohkawa Y, Sato T, Suyama M, Jozaki K, Okada M, et al. Genome-wide analysis of histone modifications in human endometrial stromal cells. Mol Endocrinol. 2014;28(10):1656–69.PubMedPubMedCentral Tamura I, Ohkawa Y, Sato T, Suyama M, Jozaki K, Okada M, et al. Genome-wide analysis of histone modifications in human endometrial stromal cells. Mol Endocrinol. 2014;28(10):1656–69.PubMedPubMedCentral
89.
go back to reference Gellersen B, Brosens IA, Brosens JJ. Decidualization of the human endometrium: mechanisms, functions, and clinical perspectives. Semin Reprod Med. 2007;25(6):445–53.PubMed Gellersen B, Brosens IA, Brosens JJ. Decidualization of the human endometrium: mechanisms, functions, and clinical perspectives. Semin Reprod Med. 2007;25(6):445–53.PubMed
90.
go back to reference Van Den Brûle F, Berndt S, Simon N, Coulon C, Le Goarant J, Munaut C, et al. Trophoblast invasion and placentation: molecular mechanisms and regulation. In: Immunology of gametes and embryo implantation. Basel, Karger. 2005;88:163–80. Van Den Brûle F, Berndt S, Simon N, Coulon C, Le Goarant J, Munaut C, et al. Trophoblast invasion and placentation: molecular mechanisms and regulation. In: Immunology of gametes and embryo implantation. Basel, Karger. 2005;88:163–80.
91.
go back to reference Estella C, Herrer I, Atkinson SP, Quinonero A, Martinez S, Pellicer A, et al. Inhibition of histone deacetylase activity in human endometrial stromal cells promotes extracellular matrix remodelling and limits embryo invasion. PLoS One. 2012;7(1):e30508.PubMedPubMedCentral Estella C, Herrer I, Atkinson SP, Quinonero A, Martinez S, Pellicer A, et al. Inhibition of histone deacetylase activity in human endometrial stromal cells promotes extracellular matrix remodelling and limits embryo invasion. PLoS One. 2012;7(1):e30508.PubMedPubMedCentral
92.
go back to reference Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15(12):786–801.PubMedPubMedCentral Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15(12):786–801.PubMedPubMedCentral
93.
go back to reference Lala P, Chakraborty C. Factors regulating trophoblast migration and invasiveness: possible derangements contributing to pre-eclampsia and fetal injury. Placenta. 2003;24(6):575–87.PubMed Lala P, Chakraborty C. Factors regulating trophoblast migration and invasiveness: possible derangements contributing to pre-eclampsia and fetal injury. Placenta. 2003;24(6):575–87.PubMed
94.
go back to reference Knöfler M. Critical growth factors and signalling pathways controlling human trophoblast invasion. Int J Dev Biol. 2010;54(2–3):269.PubMedPubMedCentral Knöfler M. Critical growth factors and signalling pathways controlling human trophoblast invasion. Int J Dev Biol. 2010;54(2–3):269.PubMedPubMedCentral
95.
go back to reference Sakai N, Maruyama T, Sakurai R, Masuda H, Yamamoto Y, Shimizu A, et al. Involvement of histone acetylation in ovarian steroid-induced Decidualization of human endometrial stromal cells. J Biol Chem. 2003;278(19):16675–82.PubMed Sakai N, Maruyama T, Sakurai R, Masuda H, Yamamoto Y, Shimizu A, et al. Involvement of histone acetylation in ovarian steroid-induced Decidualization of human endometrial stromal cells. J Biol Chem. 2003;278(19):16675–82.PubMed
96.
go back to reference Kim H-J, Bae S-C. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res. 2011;3(2):166–79.PubMed Kim H-J, Bae S-C. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res. 2011;3(2):166–79.PubMed
97.
go back to reference Weichert W. HDAC expression and clinical prognosis in human malignancies. Cancer Lett. 2009;280(2):168–76.PubMed Weichert W. HDAC expression and clinical prognosis in human malignancies. Cancer Lett. 2009;280(2):168–76.PubMed
98.
go back to reference Ahn MY, Lee J, Na YJ, Choi WS, Lee BM, Kang KW, et al. Mechanism of apicidin-induced cell cycle arrest and apoptosis in Ishikawa human endometrial cancer cells. Chem Biol Interact. 2009;179(2–3):169–77.PubMed Ahn MY, Lee J, Na YJ, Choi WS, Lee BM, Kang KW, et al. Mechanism of apicidin-induced cell cycle arrest and apoptosis in Ishikawa human endometrial cancer cells. Chem Biol Interact. 2009;179(2–3):169–77.PubMed
99.
go back to reference Li L-H, Zhang P-R, Cai P-Y, Li Z-C. Histone deacetylase inhibitor, Romidepsin (FK228) inhibits endometrial cancer cell growth through augmentation of p53-p21 pathway. Biomed Pharmacother. 2016;82:161–6.PubMed Li L-H, Zhang P-R, Cai P-Y, Li Z-C. Histone deacetylase inhibitor, Romidepsin (FK228) inhibits endometrial cancer cell growth through augmentation of p53-p21 pathway. Biomed Pharmacother. 2016;82:161–6.PubMed
100.
go back to reference Bergadà L, Sorolla A, Yeramian A, Eritja N, Mirantes C, Matias-Guiu X, et al. Combination of Vorinostat and caspase-8 inhibition exhibits high anti-tumoral activity on endometrial cancer cells. Mol Oncol. 2013;7(4):763–75.PubMedPubMedCentral Bergadà L, Sorolla A, Yeramian A, Eritja N, Mirantes C, Matias-Guiu X, et al. Combination of Vorinostat and caspase-8 inhibition exhibits high anti-tumoral activity on endometrial cancer cells. Mol Oncol. 2013;7(4):763–75.PubMedPubMedCentral
101.
go back to reference Yang S, Jia Y, Liu X, Winters C, Wang X, Zhang Y, et al. Systematic dissection of the mechanisms underlying progesterone receptor downregulation in endometrial cancer. Oncotarget. 2014;5(20):9783.PubMedPubMedCentral Yang S, Jia Y, Liu X, Winters C, Wang X, Zhang Y, et al. Systematic dissection of the mechanisms underlying progesterone receptor downregulation in endometrial cancer. Oncotarget. 2014;5(20):9783.PubMedPubMedCentral
102.
go back to reference Yang S, Xiao X, Jia Y, Liu X, Zhang Y, Wang X, et al. Epigenetic modification restores functional PR expression in endometrial cancer cells. Curr Pharm Des. 2014;20(11):1874–80.PubMedPubMedCentral Yang S, Xiao X, Jia Y, Liu X, Zhang Y, Wang X, et al. Epigenetic modification restores functional PR expression in endometrial cancer cells. Curr Pharm Des. 2014;20(11):1874–80.PubMedPubMedCentral
103.
go back to reference Fukuda T, Wada-Hiraike O, Oda K, Tanikawa M, Makii C, Inaba K, et al. Putative tumor suppression function of SIRT6 in endometrial cancer. FEBS Lett. 2015;589(17):2274–81.PubMed Fukuda T, Wada-Hiraike O, Oda K, Tanikawa M, Makii C, Inaba K, et al. Putative tumor suppression function of SIRT6 in endometrial cancer. FEBS Lett. 2015;589(17):2274–81.PubMed
104.
go back to reference Bartosch C, Monteiro-Reis S, Almeida-Rios D, Vieira R, Castro A, Moutinho M, et al. Assessing sirtuin expression in endometrial carcinoma and non-neoplastic endometrium. Oncotarget. 2016;7(2):1144–54.PubMed Bartosch C, Monteiro-Reis S, Almeida-Rios D, Vieira R, Castro A, Moutinho M, et al. Assessing sirtuin expression in endometrial carcinoma and non-neoplastic endometrium. Oncotarget. 2016;7(2):1144–54.PubMed
105.
go back to reference Taguchi A, Wada-Hiraike O, Kawana K, Koga K, Yamashita A, Shirane A, et al. Resveratrol suppresses inflammatory responses in endometrial stromal cells derived from endometriosis: a possible role of the sirtuin 1 pathway. J Obstet Gynaecol Res. 2014;40(3):770–8.PubMed Taguchi A, Wada-Hiraike O, Kawana K, Koga K, Yamashita A, Shirane A, et al. Resveratrol suppresses inflammatory responses in endometrial stromal cells derived from endometriosis: a possible role of the sirtuin 1 pathway. J Obstet Gynaecol Res. 2014;40(3):770–8.PubMed
106.
go back to reference Kawano Y, Nasu K, Li H, Tsuno A, Abe W, Takai N, et al. Application of the histone deacetylase inhibitors for the treatment of endometriosis: histone modifications as pathogenesis and novel therapeutic target. Hum Reprod. 2011;26(9):2486–98.PubMed Kawano Y, Nasu K, Li H, Tsuno A, Abe W, Takai N, et al. Application of the histone deacetylase inhibitors for the treatment of endometriosis: histone modifications as pathogenesis and novel therapeutic target. Hum Reprod. 2011;26(9):2486–98.PubMed
107.
go back to reference Xiaomeng X, Ming Z, Jiezhi M, Xiaoling F. Aberrant histone acetylation and methylation levels in woman with endometriosis. Arch Gynecol Obstet. 2013;287(3):487–94.PubMed Xiaomeng X, Ming Z, Jiezhi M, Xiaoling F. Aberrant histone acetylation and methylation levels in woman with endometriosis. Arch Gynecol Obstet. 2013;287(3):487–94.PubMed
Metadata
Title
Histone acetylation and the role of histone deacetylases in normal cyclic endometrium
Authors
Palak Gujral
Vishakha Mahajan
Abbey C. Lissaman
Anna P. Ponnampalam
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2020
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-020-00637-5

Other articles of this Issue 1/2020

Reproductive Biology and Endocrinology 1/2020 Go to the issue