Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2019

Open Access 01-12-2019 | Polycystic Ovary Syndrome | Research

Identification of potential metabolic biomarkers of polycystic ovary syndrome in follicular fluid by SWATH mass spectrometry

Authors: Zhengao Sun, Hsun-Ming Chang, Aijuan Wang, Jingyan Song, Xingxing Zhang, Jiayin Guo, Peter C. K. Leung, Fang Lian

Published in: Reproductive Biology and Endocrinology | Issue 1/2019

Login to get access

Abstract

Background

Polycystic ovary syndrome (PCOS) is a complex disorder associated with multiple metabolic disturbance, including defective glucose metabolism and insulin resistance. The altered metabolites caused by the related metabolic disturbance may affect ovarian follicles, which can be reflected in follicular fluid composition. The aim of this study is to investigate follicular fluid metabolic profiles in women with PCOS using an advanced sequential window acquisition of all theoretical fragment-ion spectra (SWATH) mass spectrometry.

Materials and methods

Nineteen women with PCOS and twenty-one healthy controls undergoing IVF/ET were recruited, and their follicular fluid samples were collected for metabolomic study. Follicular fluid metabolic profiles, including steroid hormones, free fatty acids, bioactive lipids, and amino acids were analyzed using the principal component analysis (PCA) and partial least squares to latent structure-discriminant analysis (PLS-DA) model.

Results

Levels of free fatty acids, 3-hydroxynonanoyl carnitine and eicosapentaenoic acid were significantly increased (P < 0.05), whereas those of bioactive lipids, lysophosphatidylcholines (LysoPC) (16:0), phytosphingosine, LysoPC (14:0) and LysoPC (18:0) were significantly decreased in women with PCOS (P < 0.05). Additionally, levels of steroid hormone deoxycorticosterone and two amino acids, phenylalanine and leucine were higher in the PCOS patients (P < 0.05).

Conclusion

Women with PCOS display unique metabolic profiles in their follicular fluid, and this data may provide us with important biochemical information and metabolic signatures that enable a better understanding of the pathogenesis of PCOS.
Literature
1.
go back to reference Chen X, Yang D, Mo Y, Li L, Chen Y, Huang Y. Prevalence of polycystic ovary syndrome in unselected women from southern China. Eur J Obstet Gynecol Reprod Biol. 2008;139:59–64.CrossRef Chen X, Yang D, Mo Y, Li L, Chen Y, Huang Y. Prevalence of polycystic ovary syndrome in unselected women from southern China. Eur J Obstet Gynecol Reprod Biol. 2008;139:59–64.CrossRef
2.
go back to reference Urbanek M, Sam S, Legro RS, Dunaif A. Identification of a polycystic ovary syndrome susceptibility variant in fibrillin-3 and association with a metabolic phenotype. J Clin Endocrinol Metab. 2007;92:4191–8.CrossRef Urbanek M, Sam S, Legro RS, Dunaif A. Identification of a polycystic ovary syndrome susceptibility variant in fibrillin-3 and association with a metabolic phenotype. J Clin Endocrinol Metab. 2007;92:4191–8.CrossRef
3.
go back to reference Schildkraut JM, Schwingl PJ, Bastos E, Evanoff A, Hughes C. Epithelial ovarian cancer risk among women with polycystic ovary syndrome. Obstet Gynecol. 1996;88:554–9.CrossRef Schildkraut JM, Schwingl PJ, Bastos E, Evanoff A, Hughes C. Epithelial ovarian cancer risk among women with polycystic ovary syndrome. Obstet Gynecol. 1996;88:554–9.CrossRef
4.
go back to reference Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29:1181–9.CrossRef Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29:1181–9.CrossRef
5.
go back to reference Yuan M, Breitkopf SB, Yang X, Asara JM. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc. 2012;7:872–81.CrossRef Yuan M, Breitkopf SB, Yang X, Asara JM. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc. 2012;7:872–81.CrossRef
6.
go back to reference Zhao X, Xu F, Qi B, Hao S, Li Y, Zou L, Lu C, Xu G, Hou L. Serum metabolomics study of polycystic ovary syndrome based on liquid chromatography-mass spectrometry. J Proteome Res. 2014;13:1101–11.CrossRef Zhao X, Xu F, Qi B, Hao S, Li Y, Zou L, Lu C, Xu G, Hou L. Serum metabolomics study of polycystic ovary syndrome based on liquid chromatography-mass spectrometry. J Proteome Res. 2014;13:1101–11.CrossRef
7.
go back to reference Dong F, Deng D, Chen H, Cheng W, Li Q, Luo R, Ding S. Serum metabolomics study of polycystic ovary syndrome based on UPLC-QTOF-MS coupled with a pattern recognition approach. Anal Bioanal Chem. 2015;407:4683–95.CrossRef Dong F, Deng D, Chen H, Cheng W, Li Q, Luo R, Ding S. Serum metabolomics study of polycystic ovary syndrome based on UPLC-QTOF-MS coupled with a pattern recognition approach. Anal Bioanal Chem. 2015;407:4683–95.CrossRef
8.
go back to reference Wang W, Wang S, Tan S, Wen M, Qian Y, Zeng X, Guo Y, Yu C. Detection of urine metabolites in polycystic ovary syndrome by UPLC triple-TOF-MS. Clin Chim Acta. 2015;448:39–47.CrossRef Wang W, Wang S, Tan S, Wen M, Qian Y, Zeng X, Guo Y, Yu C. Detection of urine metabolites in polycystic ovary syndrome by UPLC triple-TOF-MS. Clin Chim Acta. 2015;448:39–47.CrossRef
9.
go back to reference Polak G, Wertel I, Barczyński B, Kwaśniewski W, Bednarek W, Kotarski J. Increased levels of oxidative stress markers in the peritoneal fluid of women with endometriosis. Eur J Obstet Gynecol Reprod Biol. 2013;168:187–90.CrossRef Polak G, Wertel I, Barczyński B, Kwaśniewski W, Bednarek W, Kotarski J. Increased levels of oxidative stress markers in the peritoneal fluid of women with endometriosis. Eur J Obstet Gynecol Reprod Biol. 2013;168:187–90.CrossRef
10.
go back to reference Dai G, Lu G. Different protein expression patterns associated with polycystic ovary syndrome in human follicular fluid during controlled ovarian hyperstimulation. Reprod Fertil Dev. 2012;24:893–904.CrossRef Dai G, Lu G. Different protein expression patterns associated with polycystic ovary syndrome in human follicular fluid during controlled ovarian hyperstimulation. Reprod Fertil Dev. 2012;24:893–904.CrossRef
11.
go back to reference Carbone MC, Tatone C, Delle Monache S, Marci R, Caserta D, Colonna R, Amicarelli F. Antioxidant enzymatic defences in human follicular fluid: characterization and age-dependent changes. Mol Hum Reprod. 2003;9:639–43.CrossRef Carbone MC, Tatone C, Delle Monache S, Marci R, Caserta D, Colonna R, Amicarelli F. Antioxidant enzymatic defences in human follicular fluid: characterization and age-dependent changes. Mol Hum Reprod. 2003;9:639–43.CrossRef
12.
go back to reference Diez-Fraile A, Lammens T, Tilleman K, Witkowski W, Verhasselt B, De Sutter P, Benoit Y, Espeel M, D'Herde K. Age-associated differential microRNA levels in human follicular fluid reveal pathways potentially determining fertility and success of in vitro fertilization. Hum Fertil (Camb). 2014;17:90–8.CrossRef Diez-Fraile A, Lammens T, Tilleman K, Witkowski W, Verhasselt B, De Sutter P, Benoit Y, Espeel M, D'Herde K. Age-associated differential microRNA levels in human follicular fluid reveal pathways potentially determining fertility and success of in vitro fertilization. Hum Fertil (Camb). 2014;17:90–8.CrossRef
13.
go back to reference Ren Q, Wang YL, Wang ML, Wang HY. Screening and identification of the metabolites in rat urine and feces after oral administration of Lycopus lucidus Turcz extract by UHPLC-Q-TOF-MS mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1027:64–73.CrossRef Ren Q, Wang YL, Wang ML, Wang HY. Screening and identification of the metabolites in rat urine and feces after oral administration of Lycopus lucidus Turcz extract by UHPLC-Q-TOF-MS mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1027:64–73.CrossRef
14.
go back to reference Yao D, Li Z, Huo C, Wang Y, Wu Y, Zhang M, Li L, Shi Q, Kiyota H, Shi X. Identification of in vitro and in vivo metabolites of alantolactone by UPLC-TOF-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1033-1034:250–60.CrossRef Yao D, Li Z, Huo C, Wang Y, Wu Y, Zhang M, Li L, Shi Q, Kiyota H, Shi X. Identification of in vitro and in vivo metabolites of alantolactone by UPLC-TOF-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1033-1034:250–60.CrossRef
15.
go back to reference Bilbao A, Varesio E, Luban J, Strambio-De-Castillia C, Hopfgartner G, Müller M, Lisacek F. Processing strategies and software solutions for data-independent acquisition in mass spectrometry. Proteomics. 2015;15:964–80.CrossRef Bilbao A, Varesio E, Luban J, Strambio-De-Castillia C, Hopfgartner G, Müller M, Lisacek F. Processing strategies and software solutions for data-independent acquisition in mass spectrometry. Proteomics. 2015;15:964–80.CrossRef
16.
go back to reference Sun Y, Jia P, Yuan L, Liu Y, Zhang Z, Du Y, Zhang L. Investigating the in vitro stereoselective metabolism of m-nisoldipine enantiomers: characterization of metabolites and cytochrome P450 isoforms involved. Biomed Chromatogr. 2015;29:1893–900.CrossRef Sun Y, Jia P, Yuan L, Liu Y, Zhang Z, Du Y, Zhang L. Investigating the in vitro stereoselective metabolism of m-nisoldipine enantiomers: characterization of metabolites and cytochrome P450 isoforms involved. Biomed Chromatogr. 2015;29:1893–900.CrossRef
17.
go back to reference Xie W, Jin Y, Hou L, Ma Y, Xu H, Zhang K, Zhang L, Du Y. A practical strategy for the characterization of ponicidin metabolites in vivo and in vitro by UHPLC-Q-TOF-MS based on nontargeted SWATH data acquisition. J Pharm Biomed Anal. 2017;145:865–78.CrossRef Xie W, Jin Y, Hou L, Ma Y, Xu H, Zhang K, Zhang L, Du Y. A practical strategy for the characterization of ponicidin metabolites in vivo and in vitro by UHPLC-Q-TOF-MS based on nontargeted SWATH data acquisition. J Pharm Biomed Anal. 2017;145:865–78.CrossRef
18.
go back to reference Ortea I, Rodríguez-Ariza A, Chicano-Gálvez E, Arenas Vacas MS, Jurado Gámez B. Discovery of potential protein biomarkers of lung adenocarcinoma in bronchoalveolar lavage fluid by SWATH MS data-independent acquisition and targeted data extraction. J Proteome. 2016;138:106–14.CrossRef Ortea I, Rodríguez-Ariza A, Chicano-Gálvez E, Arenas Vacas MS, Jurado Gámez B. Discovery of potential protein biomarkers of lung adenocarcinoma in bronchoalveolar lavage fluid by SWATH MS data-independent acquisition and targeted data extraction. J Proteome. 2016;138:106–14.CrossRef
19.
go back to reference Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 2012;11:O111.016717.CrossRef Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 2012;11:O111.016717.CrossRef
20.
go back to reference Group REA-SPCW. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81:19–25. Group REA-SPCW. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81:19–25.
21.
go back to reference Collins BC, Hunter CL, Liu Y, Schilling B, Rosenberger G, Bader SL, Chan DW, Gibson BW, Gingras AC, Held JM, et al. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat Commun. 2017;8:291.CrossRef Collins BC, Hunter CL, Liu Y, Schilling B, Rosenberger G, Bader SL, Chan DW, Gibson BW, Gingras AC, Held JM, et al. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat Commun. 2017;8:291.CrossRef
22.
go back to reference Godzien J, Ciborowski M, Angulo S, Barbas C. From numbers to a biological sense: how the strategy chosen for metabolomics data treatment may affect final results. A practical example based on urine fingerprints obtained by LC-MS. Electrophoresis. 2013;34:2812–26.PubMed Godzien J, Ciborowski M, Angulo S, Barbas C. From numbers to a biological sense: how the strategy chosen for metabolomics data treatment may affect final results. A practical example based on urine fingerprints obtained by LC-MS. Electrophoresis. 2013;34:2812–26.PubMed
23.
go back to reference Duplus E, Forest C. Is there a single mechanism for fatty acid regulation of gene transcription? Biochem Pharmacol. 2002;64:893–901.CrossRef Duplus E, Forest C. Is there a single mechanism for fatty acid regulation of gene transcription? Biochem Pharmacol. 2002;64:893–901.CrossRef
24.
go back to reference Li D. Omega-3 fatty acids and non-communicable diseases. Chin Med J. 2003;116:453–8.PubMed Li D. Omega-3 fatty acids and non-communicable diseases. Chin Med J. 2003;116:453–8.PubMed
25.
go back to reference Baka S, Malamitsi-Puchner A. Novel follicular fluid factors influencing oocyte developmental potential in IVF: a review. Reprod BioMed Online. 2006;12:500–6.CrossRef Baka S, Malamitsi-Puchner A. Novel follicular fluid factors influencing oocyte developmental potential in IVF: a review. Reprod BioMed Online. 2006;12:500–6.CrossRef
26.
go back to reference Marei WF, Wathes DC, Fouladi-Nashta AA. Impact of linoleic acid on bovine oocyte maturation and embryo development. Reproduction. 2010;139:979–88.CrossRef Marei WF, Wathes DC, Fouladi-Nashta AA. Impact of linoleic acid on bovine oocyte maturation and embryo development. Reproduction. 2010;139:979–88.CrossRef
27.
go back to reference Niu Z, Lin N, Gu R, Sun Y, Feng Y. Associations between insulin resistance, free fatty acids, and oocyte quality in polycystic ovary syndrome during in vitro fertilization. J Clin Endocrinol Metab. 2014;99:E2269–76.CrossRef Niu Z, Lin N, Gu R, Sun Y, Feng Y. Associations between insulin resistance, free fatty acids, and oocyte quality in polycystic ovary syndrome during in vitro fertilization. J Clin Endocrinol Metab. 2014;99:E2269–76.CrossRef
28.
go back to reference Arya BK, Haq AU, Chaudhury K. Oocyte quality reflected by follicular fluid analysis in poly cystic ovary syndrome (PCOS): a hypothesis based on intermediates of energy metabolism. Med Hypotheses. 2012;78:475–8.CrossRef Arya BK, Haq AU, Chaudhury K. Oocyte quality reflected by follicular fluid analysis in poly cystic ovary syndrome (PCOS): a hypothesis based on intermediates of energy metabolism. Med Hypotheses. 2012;78:475–8.CrossRef
29.
go back to reference Chang HM, Qiao J, Leung PC. Oocyte-somatic cell interactions in the human ovary-novel role of bone morphogenetic proteins and growth differentiation factors. Hum Reprod Update. 2016;23:1–18.CrossRef Chang HM, Qiao J, Leung PC. Oocyte-somatic cell interactions in the human ovary-novel role of bone morphogenetic proteins and growth differentiation factors. Hum Reprod Update. 2016;23:1–18.CrossRef
30.
go back to reference Pirwany IR, Fleming R, Greer IA, Packard CJ, Sattar N. Lipids and lipoprotein subfractions in women with PCOS: relationship to metabolic and endocrine parameters. Clin Endocrinol. 2001;54:447–53.CrossRef Pirwany IR, Fleming R, Greer IA, Packard CJ, Sattar N. Lipids and lipoprotein subfractions in women with PCOS: relationship to metabolic and endocrine parameters. Clin Endocrinol. 2001;54:447–53.CrossRef
31.
go back to reference Attie AD, Krauss RM, Gray-Keller MP, Brownlie A, Miyazaki M, Kastelein JJ, Lusis AJ, Stalenhoef AF, Stoehr JP, Hayden MR, Ntambi JM. Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia. J Lipid Res. 2002;43:1899–907.CrossRef Attie AD, Krauss RM, Gray-Keller MP, Brownlie A, Miyazaki M, Kastelein JJ, Lusis AJ, Stalenhoef AF, Stoehr JP, Hayden MR, Ntambi JM. Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia. J Lipid Res. 2002;43:1899–907.CrossRef
32.
go back to reference Zhao Y, Fu L, Li R, Wang LN, Yang Y, Liu NN, Zhang CM, Wang Y, Liu P, Tu BB, et al. Metabolic profiles characterizing different phenotypes of polycystic ovary syndrome: plasma metabolomics analysis. BMC Med. 2012;10:153.CrossRef Zhao Y, Fu L, Li R, Wang LN, Yang Y, Liu NN, Zhang CM, Wang Y, Liu P, Tu BB, et al. Metabolic profiles characterizing different phenotypes of polycystic ovary syndrome: plasma metabolomics analysis. BMC Med. 2012;10:153.CrossRef
33.
go back to reference Lin TT, Chang HM, Hu XL, Leung PCK, Zhu YM. Follicular localization of growth differentiation factor 8 and its receptors in normal and polycystic ovary syndrome ovaries. Biol Reprod. 2018;98:683–94.CrossRef Lin TT, Chang HM, Hu XL, Leung PCK, Zhu YM. Follicular localization of growth differentiation factor 8 and its receptors in normal and polycystic ovary syndrome ovaries. Biol Reprod. 2018;98:683–94.CrossRef
34.
go back to reference Zhu S, Zhao C, Wu Y, Yang Q, Shao A, Wang T, Wu J, Yin Y, Li Y, Hou J, et al. Identification of a Vav2-dependent mechanism for GDNF/ret control of mesolimbic DAT trafficking. Nat Neurosci. 2015;18:1084–93.CrossRef Zhu S, Zhao C, Wu Y, Yang Q, Shao A, Wang T, Wu J, Yin Y, Li Y, Hou J, et al. Identification of a Vav2-dependent mechanism for GDNF/ret control of mesolimbic DAT trafficking. Nat Neurosci. 2015;18:1084–93.CrossRef
35.
go back to reference Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33:981–1030.CrossRef Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33:981–1030.CrossRef
36.
go back to reference Norman RJ, Dewailly D, Legro RS, Hickey TE. Polycystic ovary syndrome. Lancet. 2007;370:685–97.CrossRef Norman RJ, Dewailly D, Legro RS, Hickey TE. Polycystic ovary syndrome. Lancet. 2007;370:685–97.CrossRef
37.
go back to reference Li S, Chu Q, Ma J, Sun Y, Tao T, Huang R, Liao Y, Yue J, Zheng J, Wang L, et al. Discovery of novel lipid profiles in PCOS: do insulin and androgen oppositely regulate bioactive lipid production? J Clin Endocrinol Metab. 2017;102:810–21.CrossRef Li S, Chu Q, Ma J, Sun Y, Tao T, Huang R, Liao Y, Yue J, Zheng J, Wang L, et al. Discovery of novel lipid profiles in PCOS: do insulin and androgen oppositely regulate bioactive lipid production? J Clin Endocrinol Metab. 2017;102:810–21.CrossRef
Metadata
Title
Identification of potential metabolic biomarkers of polycystic ovary syndrome in follicular fluid by SWATH mass spectrometry
Authors
Zhengao Sun
Hsun-Ming Chang
Aijuan Wang
Jingyan Song
Xingxing Zhang
Jiayin Guo
Peter C. K. Leung
Fang Lian
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2019
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-019-0490-y

Other articles of this Issue 1/2019

Reproductive Biology and Endocrinology 1/2019 Go to the issue