Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2019

Open Access 01-12-2019 | Short communication

Blastomere movement post first cell division correlates with embryonic compaction and subsequent blastocyst formation

Authors: Kazuki Ohata, Kenji Ezoe, Tetsuya Miki, Hirofumi Morita, Ryoma Tsuchiya, Shigeru Kaneko, Tadashi Okimura, Kazuo Uchiyama, Akiko Yabuuchi, Tamotsu Kobayashi, Markus Montag, Keiichi Kato

Published in: Reproductive Biology and Endocrinology | Issue 1/2019

Login to get access

Abstract

Background

Blastomere movement (BMov) occurs after the first cell division in human embryos. This movement has been suggested as a prognostic parameter for pregnancy outcome prediction following cleavage-stage embryo transfer. However, the effect of BMov on preimplantation development and pregnancy outcome after blastocyst transfer remains unclear. Therefore, this study aimed to evaluate whether BMov after the first cell division is correlated with blastocyst formation rate and live birth rate after single vitrified-warmed blastocyst transfer (SVBT).

Methods

Nine hundred and sixty-six embryos cultured in the EmbryoScope+® time-lapse system were retrospectively analyzed. The BMov type was categorized into three groups; namely, bouncing, wobbling, and twist-and-crumble. The BMov duration (dBMov) between the first (t2) and second cell division (t3) was monitored, and the ratio of dBMov to the duration of the 2-cell stage was calculated [dBMov/(t3-t2)]. Developmental rates to the 4-cell, 8-cell, morula, blastocyst, and expanded blastocyst stages were assessed, as well as blastocyst morphological grade. The correlations between dBMov and clinical pregnancy, ongoing pregnancy, and live birth rates were evaluated.

Results

Increased dBMov/(t3-t2) was significantly correlated with decreased developmental rates to the 8-cell, morula, blastocyst, and expanded blastocyst stages, especially from the 4-cell stage to the morula stage. Analysis of different types of BMov revealed that embryos with bouncing movement exhibited significantly higher developmental rates to the 8-cell, morula, blastocyst, and expanded blastocyst stages compared with embryos with twist-and-crumble movement. The morphological quality of blastocyst-stage embryos with twist-and-crumble movement was significantly lower than that of embryos with bouncing and wobbling movements. The rates of clinical pregnancy, ongoing pregnancy, and live birth after SVBT were not correlated with BMov type or duration.

Conclusions

Embryonic compaction and subsequent blastocyst formation are adversely affected by twist-and-crumble movement and prolonged movement after the first cell division. Our results indicate that the preimplantation developmental competence of human embryos could be predicted by assessing BMov after the first cell division on day 1.
Appendix
Available only for authorised users
Literature
1.
go back to reference Meseguer M, Rubio I, Cruz M, Basile N, Marcos J, Requena A. Embryo incubation and selection in a time-lapse monitoring system improves pregnancy outcome compared with a standard incubator: a retrospective cohort study. Fertil Steril. 2012;98(6):1481–9 e10.CrossRef Meseguer M, Rubio I, Cruz M, Basile N, Marcos J, Requena A. Embryo incubation and selection in a time-lapse monitoring system improves pregnancy outcome compared with a standard incubator: a retrospective cohort study. Fertil Steril. 2012;98(6):1481–9 e10.CrossRef
2.
go back to reference Kirkegaard K, Ahlstrom A, Ingerslev HJ, Hardarson T. Choosing the best embryo by time lapse versus standard morphology. Fertil Steril. 2015;103(2):323–32.CrossRef Kirkegaard K, Ahlstrom A, Ingerslev HJ, Hardarson T. Choosing the best embryo by time lapse versus standard morphology. Fertil Steril. 2015;103(2):323–32.CrossRef
3.
go back to reference Rubio I, Galan A, Larreategui Z, Ayerdi F, Bellver J, Herrero J, et al. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril. 2014;102(5):1287–94 e5.CrossRef Rubio I, Galan A, Larreategui Z, Ayerdi F, Bellver J, Herrero J, et al. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril. 2014;102(5):1287–94 e5.CrossRef
4.
go back to reference VerMilyea MD, Tan L, Anthony JT, Conaghan J, Ivani K, Gvakharia M, et al. Computer-automated time-lapse analysis results correlate with embryo implantation and clinical pregnancy: a blinded, multi-Centre study. Reprod BioMed Online. 2014;29(6):729–36.CrossRef VerMilyea MD, Tan L, Anthony JT, Conaghan J, Ivani K, Gvakharia M, et al. Computer-automated time-lapse analysis results correlate with embryo implantation and clinical pregnancy: a blinded, multi-Centre study. Reprod BioMed Online. 2014;29(6):729–36.CrossRef
5.
go back to reference Meseguer M, Herrero J, Tejera A, Hilligsoe KM, Ramsing NB, Remohi J. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011;26(10):2658–71.CrossRef Meseguer M, Herrero J, Tejera A, Hilligsoe KM, Ramsing NB, Remohi J. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011;26(10):2658–71.CrossRef
6.
go back to reference Kaser DJ, Racowsky C. Clinical outcomes following selection of human preimplantation embryos with time-lapse monitoring: a systematic review. Hum Reprod Update. 2014;20(5):617–31.CrossRef Kaser DJ, Racowsky C. Clinical outcomes following selection of human preimplantation embryos with time-lapse monitoring: a systematic review. Hum Reprod Update. 2014;20(5):617–31.CrossRef
7.
go back to reference Barberet J, Chammas J, Bruno C, Valot E, Vuillemin C, Jonval L, et al. Randomized controlled trial comparing embryo culture in two incubator systems: G185 K-system versus EmbryoScope. Fertil Steril. 2018;109(2):302–9 e1.CrossRef Barberet J, Chammas J, Bruno C, Valot E, Vuillemin C, Jonval L, et al. Randomized controlled trial comparing embryo culture in two incubator systems: G185 K-system versus EmbryoScope. Fertil Steril. 2018;109(2):302–9 e1.CrossRef
8.
go back to reference Yang ST, Shi JX, Gong F, Zhang SP, Lu CF, Tan K, et al. Cleavage pattern predicts developmental potential of day 3 human embryos produced by IVF. Reprod BioMed Online. 2015;30(6):625–34.CrossRef Yang ST, Shi JX, Gong F, Zhang SP, Lu CF, Tan K, et al. Cleavage pattern predicts developmental potential of day 3 human embryos produced by IVF. Reprod BioMed Online. 2015;30(6):625–34.CrossRef
9.
go back to reference Ebner T, Hoggerl A, Oppelt P, Radler E, Enzelsberger SH, Mayer RB, et al. Time-lapse imaging provides further evidence that planar arrangement of blastomeres is highly abnormal. Arch Gynecol Obstet. 2017;296(6):1199–205.CrossRef Ebner T, Hoggerl A, Oppelt P, Radler E, Enzelsberger SH, Mayer RB, et al. Time-lapse imaging provides further evidence that planar arrangement of blastomeres is highly abnormal. Arch Gynecol Obstet. 2017;296(6):1199–205.CrossRef
10.
go back to reference Ezoe K, Ohata K, Morita H, Ueno S, Miki T, Okimura T, et al. Prolonged blastomere movement induced by the delay of pronuclear fading and first cell division adversely affects pregnancy outcomes after fresh embryo transfer on day 2: a time-lapse study. Reprod BioMed Online. 2019; In press. Ezoe K, Ohata K, Morita H, Ueno S, Miki T, Okimura T, et al. Prolonged blastomere movement induced by the delay of pronuclear fading and first cell division adversely affects pregnancy outcomes after fresh embryo transfer on day 2: a time-lapse study. Reprod BioMed Online. 2019; In press.
11.
go back to reference Coughlan C, Ledger W, Wang Q, Liu F, Demirol A, Gurgan T, et al. Recurrent implantation failure: definition and management. Reprod BioMed Online. 2014;28(1):14–38.CrossRef Coughlan C, Ledger W, Wang Q, Liu F, Demirol A, Gurgan T, et al. Recurrent implantation failure: definition and management. Reprod BioMed Online. 2014;28(1):14–38.CrossRef
12.
go back to reference Kato K, Ezoe K, Yabuuchi A, Fukuda J, Kuroda T, Ueno S, et al. Comparison of pregnancy outcomes following fresh and electively frozen single blastocyst transfer in natural cycle and clomiphene-stimulated IVF cycles. Hum Reprod Open. 2018;2018(3):hoy006.CrossRef Kato K, Ezoe K, Yabuuchi A, Fukuda J, Kuroda T, Ueno S, et al. Comparison of pregnancy outcomes following fresh and electively frozen single blastocyst transfer in natural cycle and clomiphene-stimulated IVF cycles. Hum Reprod Open. 2018;2018(3):hoy006.CrossRef
13.
go back to reference Ajduk A, Zernicka-Goetz M. Polarity and cell division orientation in the cleavage embryo: from worm to human. Mol Hum Reprod. 2016;22(10):691–703.CrossRef Ajduk A, Zernicka-Goetz M. Polarity and cell division orientation in the cleavage embryo: from worm to human. Mol Hum Reprod. 2016;22(10):691–703.CrossRef
14.
go back to reference Prosser SL, Pelletier L. Mitotic spindle assembly in animal cells: a fine balancing act. Nat Rev Mol Cell Biol. 2017;18(3):187–201.CrossRef Prosser SL, Pelletier L. Mitotic spindle assembly in animal cells: a fine balancing act. Nat Rev Mol Cell Biol. 2017;18(3):187–201.CrossRef
15.
go back to reference Rivera RM, Kelley KL, Erdos GW, Hansen PJ. Reorganization of microfilaments and microtubules by thermal stress in two-cell bovine embryos. Biol Reprod. 2004;70(6):1852–62.CrossRef Rivera RM, Kelley KL, Erdos GW, Hansen PJ. Reorganization of microfilaments and microtubules by thermal stress in two-cell bovine embryos. Biol Reprod. 2004;70(6):1852–62.CrossRef
Metadata
Title
Blastomere movement post first cell division correlates with embryonic compaction and subsequent blastocyst formation
Authors
Kazuki Ohata
Kenji Ezoe
Tetsuya Miki
Hirofumi Morita
Ryoma Tsuchiya
Shigeru Kaneko
Tadashi Okimura
Kazuo Uchiyama
Akiko Yabuuchi
Tamotsu Kobayashi
Markus Montag
Keiichi Kato
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2019
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-019-0488-5

Other articles of this Issue 1/2019

Reproductive Biology and Endocrinology 1/2019 Go to the issue