Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2017

Open Access 01-12-2017 | Research

Cellular and molecular characterization of gametogenic progression in ex vivo cultured prepuberal mouse testes

Authors: J. Isoler-Alcaraz, D. Fernández-Pérez, E. Larriba, J. del Mazo

Published in: Reproductive Biology and Endocrinology | Issue 1/2017

Login to get access

Abstract

Background

Recently, an effective testis culture method using a gas-liquid interphase, capable of differentiate male germ cells from neonatal spermatogonia to spermatozoa has been developed. Nevertheless, this methodology needs deep analyses that allow future experimental approaches in basic, pathologic and/or reprotoxicologic studies. Because of this, we characterized at cellular and molecular levels the entire in vitro spermatogenic progression, in order to understand and evaluate the characteristics that define the spermatogenic process in ex vivo cultured testes compared to the in vivo development.

Methods

Testicular explants of CD1 mice aged 6 and 10 days post-partum were respectively cultured during 55 and 89 days. Cytological and molecular approaches were performed, analyzing germ cell proportion at different time culture points, meiotic markers immunodetecting synaptonemal complex protein SYCP3 by immunocytochemistry and the relative expression of different marker genes along the differentiation process by Reverse Transcription - quantitative Polymerase Chain Reaction. In addition, microRNA and piwi-interactingRNA profiles were also evaluated by Next Generation Sequencing and bioinformatic approaches.

Results

The method promoted and maintained the spermatogenic process during 89 days. At a cytological level we detected spermatogenic development delays of cultured explants compared to the natural in vivo process. The expression of different spermatogenic stages gene markers correlated with the proportion of different cell types detected in the cytological preparations.

Conclusions

In vitro progression analysis of the different spermatogenic cell types, from both 6.5 dpp and 10.5 dpp testes explants, has revealed a relative delay in relation to in vivo process. The expression of the genes studied as biomarkers correlates with the cytologically and functional detected progression and differential expression identified in vivo. After a first analysis of deep sequencing data it has been observed that as long as cultures progress, the proportion of microRNAs declined respect to piwi-interactingRNAs levels that increased, showing a similar propensity than which happens in in vivo spermatogenesis. Our study allows to improve and potentially to control the ex vivo spermatogenesis development, opening new perspectives in the reproductive biology fields including male fertility.
Appendix
Available only for authorised users
Footnotes
1
The piRNA database - piRBase. http://regulatoryrna.org/database/piRNA/. Accessed June 2016.
 
2
Non-coding RNAs. http://www.ensembl.org/info/genome/genebuild/ncrna.html. Accessed June 2016.
 
Literature
1.
go back to reference de Kretser DM, Loveland KL, Meinhardt A, Simorangkir D, Wreford N. Spermatogenesis. Hum Reprod. 1998;13(Suppl 1):1–8.CrossRefPubMed de Kretser DM, Loveland KL, Meinhardt A, Simorangkir D, Wreford N. Spermatogenesis. Hum Reprod. 1998;13(Suppl 1):1–8.CrossRefPubMed
3.
go back to reference Bellve AR, Cavicchia JC, Millette CF, O'Brien DA, Bhatnagar YM, Dym M. Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J Cell Biol. 1977;74:68–85.CrossRefPubMedPubMedCentral Bellve AR, Cavicchia JC, Millette CF, O'Brien DA, Bhatnagar YM, Dym M. Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J Cell Biol. 1977;74:68–85.CrossRefPubMedPubMedCentral
4.
go back to reference Chojnacka K, Zarzycka M, Mruk DD: Biology of the Sertoli Cell in the Fetal, Pubertal, and Adult Mammalian Testis. In Molecular Mechanisms of Cell Differentiation in Gonad Development. Volume 58. Edited by Piprek RP. Switzerland: Springer; 2016: 225–251.[Kubiak JZ, Kloc M (Series Editor): Results and Problems in Cell Differentiation]. Chojnacka K, Zarzycka M, Mruk DD: Biology of the Sertoli Cell in the Fetal, Pubertal, and Adult Mammalian Testis. In Molecular Mechanisms of Cell Differentiation in Gonad Development. Volume 58. Edited by Piprek RP. Switzerland: Springer; 2016: 225–251.[Kubiak JZ, Kloc M (Series Editor): Results and Problems in Cell Differentiation].
5.
go back to reference de Rooij DG, Griswold MD. Questions about spermatogonia posed and answered since 2000. J Androl. 2012;33:1085–95.CrossRefPubMed de Rooij DG, Griswold MD. Questions about spermatogonia posed and answered since 2000. J Androl. 2012;33:1085–95.CrossRefPubMed
6.
go back to reference Abby E, Tourpin S, Ribeiro J, Daniel K, Messiaen S, Moison D, Guerquin J, Gaillard JC, Armengaud J, Langa F, et al. Implementation of meiosis prophase I programme requires a conserved retinoid-independent stabilizer of meiotic transcripts. Nat Commun. 2016;7:10324.CrossRefPubMedPubMedCentral Abby E, Tourpin S, Ribeiro J, Daniel K, Messiaen S, Moison D, Guerquin J, Gaillard JC, Armengaud J, Langa F, et al. Implementation of meiosis prophase I programme requires a conserved retinoid-independent stabilizer of meiotic transcripts. Nat Commun. 2016;7:10324.CrossRefPubMedPubMedCentral
7.
go back to reference Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED. Histological and Histopathological Evaluation of the Testis. Clearwater: Cache River Press; 1990. Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED. Histological and Histopathological Evaluation of the Testis. Clearwater: Cache River Press; 1990.
8.
go back to reference Mecklenburg JM, Hermann BP: Mechanisms Regulating Spermatogonial Differentiation. In Molecular Mechanisms of Cell Differentiation in Gonad Development. Volume 58. Edited by Piprek RP. Switzerland: Springer; 2016: 253–287.[Kubiak JZ, Kloc M (Series Editor): Results and Problems in Cell Differentiation]. Mecklenburg JM, Hermann BP: Mechanisms Regulating Spermatogonial Differentiation. In Molecular Mechanisms of Cell Differentiation in Gonad Development. Volume 58. Edited by Piprek RP. Switzerland: Springer; 2016: 253–287.[Kubiak JZ, Kloc M (Series Editor): Results and Problems in Cell Differentiation].
9.
go back to reference Lovegrove BG. Cool sperm: why some placental mammals have a scrotum. J Evol Biol. 2014;27:801–14.CrossRefPubMed Lovegrove BG. Cool sperm: why some placental mammals have a scrotum. J Evol Biol. 2014;27:801–14.CrossRefPubMed
10.
go back to reference Setchell BP, Ekpe G, Zupp JL, Surani MA. Transient retardation in embryo growth in normal female mice made pregnant by males whose testes had been heated. Hum Reprod. 1998;13:342–7.CrossRefPubMed Setchell BP, Ekpe G, Zupp JL, Surani MA. Transient retardation in embryo growth in normal female mice made pregnant by males whose testes had been heated. Hum Reprod. 1998;13:342–7.CrossRefPubMed
12.
go back to reference Shima JE, McLean DJ, McCarrey JR, Griswold MD. The murine testicular transcriptome: characterizing gene expression in the testis during the progression of spermatogenesis. Biol Reprod. 2004;71:319–30.CrossRefPubMed Shima JE, McLean DJ, McCarrey JR, Griswold MD. The murine testicular transcriptome: characterizing gene expression in the testis during the progression of spermatogenesis. Biol Reprod. 2004;71:319–30.CrossRefPubMed
14.
go back to reference Lopez-Alañon DM, del Mazo J. Cloning and characterization of genes expressed during gametogenesis of female and male mice. J Reprod Fertil. 1995;103:323–9.CrossRefPubMed Lopez-Alañon DM, del Mazo J. Cloning and characterization of genes expressed during gametogenesis of female and male mice. J Reprod Fertil. 1995;103:323–9.CrossRefPubMed
15.
go back to reference Lopez-Fernandez LA, del Mazo J. Characterization of genes expressed early in mouse spermatogenesis, isolated from a subtractive cDNA library. Mamm Genome. 1996;7:698–700.CrossRefPubMed Lopez-Fernandez LA, del Mazo J. Characterization of genes expressed early in mouse spermatogenesis, isolated from a subtractive cDNA library. Mamm Genome. 1996;7:698–700.CrossRefPubMed
16.
go back to reference Paz M, Morin M, del Mazo J. Proteome profile changes during mouse testis development. Comp Biochem Physiol Part D Genomics Proteomics. 2006;1:404–15.CrossRefPubMed Paz M, Morin M, del Mazo J. Proteome profile changes during mouse testis development. Comp Biochem Physiol Part D Genomics Proteomics. 2006;1:404–15.CrossRefPubMed
17.
go back to reference Comazzetto S, Di Giacomo M, Rasmussen KD, Much C, Azzi C, Perlas E, Morgan M, O'Carroll D. Oligoasthenoteratozoospermia and infertility in mice deficient for miR-34b/c and miR-449 loci. PLoS Genet. 2014;10:e1004597.CrossRefPubMedPubMedCentral Comazzetto S, Di Giacomo M, Rasmussen KD, Much C, Azzi C, Perlas E, Morgan M, O'Carroll D. Oligoasthenoteratozoospermia and infertility in mice deficient for miR-34b/c and miR-449 loci. PLoS Genet. 2014;10:e1004597.CrossRefPubMedPubMedCentral
18.
go back to reference Gou LT, Dai P, Yang JH, Xue Y, YP H, Zhou Y, Kang JY, Wang X, Li H, Hua MM, et al. Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res. 2014;24:680–700.CrossRefPubMedPubMedCentral Gou LT, Dai P, Yang JH, Xue Y, YP H, Zhou Y, Kang JY, Wang X, Li H, Hua MM, et al. Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res. 2014;24:680–700.CrossRefPubMedPubMedCentral
19.
go back to reference Korhonen HM, Meikar O, Yadav RP, Papaioannou MD, Romero Y, Da Ros M, Herrera PL, Toppari J, Nef S, Kotaja N. Dicer is required for haploid male germ cell differentiation in mice. PLoS One. 2011;6:e24821.CrossRefPubMedPubMedCentral Korhonen HM, Meikar O, Yadav RP, Papaioannou MD, Romero Y, Da Ros M, Herrera PL, Toppari J, Nef S, Kotaja N. Dicer is required for haploid male germ cell differentiation in mice. PLoS One. 2011;6:e24821.CrossRefPubMedPubMedCentral
21.
go back to reference Garcia-Lopez J, Alonso L, Cardenas DB, Artaza-Alvarez H, Hourcade Jde D, Martinez S, Brieño-Enriquez MA, del Mazo J. Diversity and functional convergence of small noncoding RNAs in male germ cell differentiation and fertilization. RNA. 2015;21:946–62.CrossRefPubMedPubMedCentral Garcia-Lopez J, Alonso L, Cardenas DB, Artaza-Alvarez H, Hourcade Jde D, Martinez S, Brieño-Enriquez MA, del Mazo J. Diversity and functional convergence of small noncoding RNAs in male germ cell differentiation and fertilization. RNA. 2015;21:946–62.CrossRefPubMedPubMedCentral
22.
go back to reference Sofikitis N, Pappas E, Kawatani A, Baltogiannis D, Loutradis D, Kanakas N, Giannakis D, Dimitriadis F, Tsoukanelis K, Georgiou I, et al. Efforts to create an artificial testis: culture systems of male germ cells under biochemical conditions resembling the seminiferous tubular biochemical environment. Hum Reprod Update. 2005;11:229–59.CrossRefPubMed Sofikitis N, Pappas E, Kawatani A, Baltogiannis D, Loutradis D, Kanakas N, Giannakis D, Dimitriadis F, Tsoukanelis K, Georgiou I, et al. Efforts to create an artificial testis: culture systems of male germ cells under biochemical conditions resembling the seminiferous tubular biochemical environment. Hum Reprod Update. 2005;11:229–59.CrossRefPubMed
23.
go back to reference Tesarik J, Greco E, Mendoza C. Assisted reproduction with in-vitro-cultured testicular spermatozoa in cases of severe germ cell apoptosis: a pilot study. Hum Reprod. 2001;16:2640–5.CrossRefPubMed Tesarik J, Greco E, Mendoza C. Assisted reproduction with in-vitro-cultured testicular spermatozoa in cases of severe germ cell apoptosis: a pilot study. Hum Reprod. 2001;16:2640–5.CrossRefPubMed
25.
go back to reference Sousa M, Cremades N, Alves C, Silva J, Barros A. Developmental potential of human spermatogenic cells co-cultured with Sertoli cells. Hum Reprod. 2002;17:161–72.CrossRefPubMed Sousa M, Cremades N, Alves C, Silva J, Barros A. Developmental potential of human spermatogenic cells co-cultured with Sertoli cells. Hum Reprod. 2002;17:161–72.CrossRefPubMed
26.
go back to reference Champy C. Quelques résultats de la méthode de culture des tissus. Arch Zool Exp G E N. 1920;60:461–500. Champy C. Quelques résultats de la méthode de culture des tissus. Arch Zool Exp G E N. 1920;60:461–500.
27.
go back to reference Steinberger A. Vitro techniques for the study of spermatogenesis. Methods Enzymol. 1975;39:283–96.CrossRefPubMed Steinberger A. Vitro techniques for the study of spermatogenesis. Methods Enzymol. 1975;39:283–96.CrossRefPubMed
28.
go back to reference Steinberger A, Steinberger E, Perloff WH. Mammalian testes in organ culture. Exp Cell Res. 1964;36:19–27.CrossRefPubMed Steinberger A, Steinberger E, Perloff WH. Mammalian testes in organ culture. Exp Cell Res. 1964;36:19–27.CrossRefPubMed
29.
go back to reference Dietrich AJ, Scholten R, Vink AC, Oud JL. Testicular cell suspensions of the mouse in vitro. Andrologia. 1983;15:236–46.CrossRefPubMed Dietrich AJ, Scholten R, Vink AC, Oud JL. Testicular cell suspensions of the mouse in vitro. Andrologia. 1983;15:236–46.CrossRefPubMed
30.
go back to reference Rassoulzadegan M, Paquis-Flucklinger V, Bertino B, Sage J, Jasin M, Miyagawa K, van Heyningen V, Besmer P, Cuzin F. Transmeiotic differentiation of male germ cells in culture. Cell. 1993;75:997–1006.CrossRefPubMed Rassoulzadegan M, Paquis-Flucklinger V, Bertino B, Sage J, Jasin M, Miyagawa K, van Heyningen V, Besmer P, Cuzin F. Transmeiotic differentiation of male germ cells in culture. Cell. 1993;75:997–1006.CrossRefPubMed
31.
go back to reference Staub C. A century of research on mammalian male germ cell meiotic differentiation in vitro. J Androl. 2001;22:911–26.CrossRefPubMed Staub C. A century of research on mammalian male germ cell meiotic differentiation in vitro. J Androl. 2001;22:911–26.CrossRefPubMed
32.
go back to reference Sato T, Katagiri K, Gohbara A, Inoue K, Ogonuki N, Ogura A, Kubota Y, Ogawa T. Vitro production of functional sperm in cultured neonatal mouse testes. Nature. 2011;471:504–7.CrossRefPubMed Sato T, Katagiri K, Gohbara A, Inoue K, Ogonuki N, Ogura A, Kubota Y, Ogawa T. Vitro production of functional sperm in cultured neonatal mouse testes. Nature. 2011;471:504–7.CrossRefPubMed
33.
go back to reference Sato T, Katagiri K, Kubota Y, Ogawa T. Vitro sperm production from mouse spermatogonial stem cell lines using an organ culture method. Nat Protoc. 2013;8:2098–104.CrossRefPubMed Sato T, Katagiri K, Kubota Y, Ogawa T. Vitro sperm production from mouse spermatogonial stem cell lines using an organ culture method. Nat Protoc. 2013;8:2098–104.CrossRefPubMed
34.
go back to reference Yokonishi T, Sato T, Katagiri K, Ogawa T. Vitro spermatogenesis using an organ culture technique. Methods Mol Biol. 2013;927:479–88.CrossRefPubMed Yokonishi T, Sato T, Katagiri K, Ogawa T. Vitro spermatogenesis using an organ culture technique. Methods Mol Biol. 2013;927:479–88.CrossRefPubMed
35.
go back to reference del Mazo J, Prantera G, Torres M, Ferraro M. DNA methylation changes during mouse spermatogenesis. Chromosom Res. 1994;2:147–52.CrossRef del Mazo J, Prantera G, Torres M, Ferraro M. DNA methylation changes during mouse spermatogenesis. Chromosom Res. 1994;2:147–52.CrossRef
36.
go back to reference del Mazo J, Martin-Sempere MJ, Kremer L, Avila J. Centromere pattern in different mouse seminiferous tubule cells. Cytogenet Cell Genet. 1986;43:201–6.CrossRefPubMed del Mazo J, Martin-Sempere MJ, Kremer L, Avila J. Centromere pattern in different mouse seminiferous tubule cells. Cytogenet Cell Genet. 1986;43:201–6.CrossRefPubMed
37.
go back to reference Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.CrossRefPubMed Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.CrossRefPubMed
38.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–8.CrossRefPubMed
39.
go back to reference Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.CrossRefPubMedPubMedCentral Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.CrossRefPubMedPubMedCentral
40.
go back to reference Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68–73.CrossRefPubMed Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68–73.CrossRefPubMed
41.
go back to reference Janca FC, Jost LK, Evenson DP. Mouse testicular and sperm cell development characterized from birth to adulthood by dual parameter flow cytometry. Biol Reprod. 1986;34:613–23.CrossRefPubMed Janca FC, Jost LK, Evenson DP. Mouse testicular and sperm cell development characterized from birth to adulthood by dual parameter flow cytometry. Biol Reprod. 1986;34:613–23.CrossRefPubMed
42.
go back to reference Bisig CG, Guiraldelli MF, Kouznetsova A, Scherthan H, Hoog C, Dawson DS, Pezza RJ. Synaptonemal complex components persist at centromeres and are required for homologous centromere pairing in mouse spermatocytes. PLoS Genet. 2012;8:e1002701.CrossRefPubMedPubMedCentral Bisig CG, Guiraldelli MF, Kouznetsova A, Scherthan H, Hoog C, Dawson DS, Pezza RJ. Synaptonemal complex components persist at centromeres and are required for homologous centromere pairing in mouse spermatocytes. PLoS Genet. 2012;8:e1002701.CrossRefPubMedPubMedCentral
43.
go back to reference Grzmil P, Boinska D, Kleene KC, Adham I, Schluter G, Kamper M, Buyandelger B, Meinhardt A, Wolf S, Engel W. Prm3, the fourth gene in the mouse protamine gene cluster, encodes a conserved acidic protein that affects sperm motility. Biol Reprod. 2008;78:958–67.CrossRefPubMed Grzmil P, Boinska D, Kleene KC, Adham I, Schluter G, Kamper M, Buyandelger B, Meinhardt A, Wolf S, Engel W. Prm3, the fourth gene in the mouse protamine gene cluster, encodes a conserved acidic protein that affects sperm motility. Biol Reprod. 2008;78:958–67.CrossRefPubMed
44.
go back to reference Choi H, Lee B, Jin S, Kwon JT, Kim J, Jeong J, Oh S, Cho BN, Park ZY, Cho C. Identification and characterization of promoter and regulatory regions for mouse Adam2 gene expression. Mol Biol Rep. 2013;40:787–96.CrossRefPubMed Choi H, Lee B, Jin S, Kwon JT, Kim J, Jeong J, Oh S, Cho BN, Park ZY, Cho C. Identification and characterization of promoter and regulatory regions for mouse Adam2 gene expression. Mol Biol Rep. 2013;40:787–96.CrossRefPubMed
45.
go back to reference Paz M, Lopez-Casas PP, del Mazo J. Changes in vinexin expression patterns in the mouse testis induced by developmental exposure to 17beta-estradiol. Biol Reprod. 2007;77:605–13.CrossRefPubMed Paz M, Lopez-Casas PP, del Mazo J. Changes in vinexin expression patterns in the mouse testis induced by developmental exposure to 17beta-estradiol. Biol Reprod. 2007;77:605–13.CrossRefPubMed
46.
go back to reference Hayashi K, Chuva de Sousa Lopes SM, Kaneda M, Tang F, Hajkova P, Lao K, O’Carroll D, Das PP, Tarakhovsky A, Miska EA, Surani MA. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One. 2008;3:e1738.CrossRefPubMedPubMedCentral Hayashi K, Chuva de Sousa Lopes SM, Kaneda M, Tang F, Hajkova P, Lao K, O’Carroll D, Das PP, Tarakhovsky A, Miska EA, Surani MA. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One. 2008;3:e1738.CrossRefPubMedPubMedCentral
47.
go back to reference Kim VN. Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes. Genes Dev. 2006;20:1993–7.CrossRefPubMed Kim VN. Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes. Genes Dev. 2006;20:1993–7.CrossRefPubMed
48.
go back to reference Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T, et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature. 2006;442:203–7.PubMed Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T, et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature. 2006;442:203–7.PubMed
49.
go back to reference Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science. 2007;316:744–7.CrossRefPubMed Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science. 2007;316:744–7.CrossRefPubMed
50.
go back to reference Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell. 2011;146:519–32.CrossRefPubMed Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell. 2011;146:519–32.CrossRefPubMed
51.
go back to reference Zhou Q, Wang M, Yuan Y, Wang X, Fu R, Wan H, Xie M, Liu M, Guo X, Zheng Y, et al. Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell. 2016;18:330–40.CrossRefPubMed Zhou Q, Wang M, Yuan Y, Wang X, Fu R, Wan H, Xie M, Liu M, Guo X, Zheng Y, et al. Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell. 2016;18:330–40.CrossRefPubMed
52.
go back to reference Chapin RE, Winton T, Nowland W, Danis N, Kumpf S, Johnson K, Coburn A, Stukenborg JB. Lost in translation: the search for an in vitro screen for spermatogenic toxicity. Birth Defects Res B Dev Reprod Toxicol. 2016;107:225–42.CrossRefPubMed Chapin RE, Winton T, Nowland W, Danis N, Kumpf S, Johnson K, Coburn A, Stukenborg JB. Lost in translation: the search for an in vitro screen for spermatogenic toxicity. Birth Defects Res B Dev Reprod Toxicol. 2016;107:225–42.CrossRefPubMed
53.
go back to reference Johnson L, Thompson DL Jr, Varner DD. Role of Sertoli cell number and function on regulation of spermatogenesis. Anim Reprod Sci. 2008;105:23–51.CrossRefPubMed Johnson L, Thompson DL Jr, Varner DD. Role of Sertoli cell number and function on regulation of spermatogenesis. Anim Reprod Sci. 2008;105:23–51.CrossRefPubMed
54.
go back to reference Sharpe RM, McKinnell C, Kivlin C, Fisher JS. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction. 2003;125:769–84.CrossRefPubMed Sharpe RM, McKinnell C, Kivlin C, Fisher JS. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction. 2003;125:769–84.CrossRefPubMed
55.
go back to reference Hogg K, Western PS. Differentiation of fetal male germline and gonadal progenitor cells is disrupted in organ cultures containing Knockout serum replacement. Stem Cells Dev. 2015;24:2899–911.CrossRefPubMed Hogg K, Western PS. Differentiation of fetal male germline and gonadal progenitor cells is disrupted in organ cultures containing Knockout serum replacement. Stem Cells Dev. 2015;24:2899–911.CrossRefPubMed
56.
go back to reference Joyce KL, Porcelli J, Cooke PS. Neonatal goitrogen treatment increases adult testis size and sperm production in the mouse. J Androl. 1993;14:448–55.PubMed Joyce KL, Porcelli J, Cooke PS. Neonatal goitrogen treatment increases adult testis size and sperm production in the mouse. J Androl. 1993;14:448–55.PubMed
57.
go back to reference de la Fuente R, Parra MT, Viera A, Calvente A, Gomez R, Suja JA, Rufas JS, Page J. Meiotic pairing and segregation of achiasmate sex chromosomes in eutherian mammals: the role of SYCP3 protein. PLoS Genet. 2007;3:e198.CrossRefPubMedPubMedCentral de la Fuente R, Parra MT, Viera A, Calvente A, Gomez R, Suja JA, Rufas JS, Page J. Meiotic pairing and segregation of achiasmate sex chromosomes in eutherian mammals: the role of SYCP3 protein. PLoS Genet. 2007;3:e198.CrossRefPubMedPubMedCentral
58.
go back to reference Martin-Coello J, Gomendio M, Roldan ER. Protamine 3 shows evidence of weak, positive selection in mouse species (genus Mus)--but it is not a protamine. Biol Reprod. 2011;84:320–6.CrossRefPubMed Martin-Coello J, Gomendio M, Roldan ER. Protamine 3 shows evidence of weak, positive selection in mouse species (genus Mus)--but it is not a protamine. Biol Reprod. 2011;84:320–6.CrossRefPubMed
59.
go back to reference Gil-Alberdi L, del Mazo J. Microtubule-associated proteins during mouse spermatogenesis: localization of a protein immunologically related to brain MAP1B protein in the synaptonemal complex. Cytogenet Cell Genet. 1992;59:1–5.CrossRefPubMed Gil-Alberdi L, del Mazo J. Microtubule-associated proteins during mouse spermatogenesis: localization of a protein immunologically related to brain MAP1B protein in the synaptonemal complex. Cytogenet Cell Genet. 1992;59:1–5.CrossRefPubMed
60.
go back to reference De Gendt K, Verhoeven G, Amieux PS, Wilkinson MF. Genome-wide identification of AR-regulated genes translated in Sertoli cells in vivo using the RiboTag approach. Mol Endocrinol. 2014;28:575–91.CrossRefPubMedPubMedCentral De Gendt K, Verhoeven G, Amieux PS, Wilkinson MF. Genome-wide identification of AR-regulated genes translated in Sertoli cells in vivo using the RiboTag approach. Mol Endocrinol. 2014;28:575–91.CrossRefPubMedPubMedCentral
61.
go back to reference Bao J, Li D, Wang L, Wu J, Hu Y, Wang Z, Chen Y, Cao X, Jiang C, Yan W, Xu C. MicroRNA-449 and microRNA-34b/c function redundantly in murine testes by targeting E2F transcription factor-retinoblastoma protein (E2F-pRb) pathway. J Biol Chem. 2012;287:21686–98.CrossRefPubMedPubMedCentral Bao J, Li D, Wang L, Wu J, Hu Y, Wang Z, Chen Y, Cao X, Jiang C, Yan W, Xu C. MicroRNA-449 and microRNA-34b/c function redundantly in murine testes by targeting E2F transcription factor-retinoblastoma protein (E2F-pRb) pathway. J Biol Chem. 2012;287:21686–98.CrossRefPubMedPubMedCentral
62.
go back to reference Bouhallier F, Allioli N, Lavial F, Chalmel F, Perrard MH, Durand P, Samarut J, Pain B, Rouault JP. Role of miR-34c microRNA in the late steps of spermatogenesis. RNA. 2010;16:720–31.CrossRefPubMedPubMedCentral Bouhallier F, Allioli N, Lavial F, Chalmel F, Perrard MH, Durand P, Samarut J, Pain B, Rouault JP. Role of miR-34c microRNA in the late steps of spermatogenesis. RNA. 2010;16:720–31.CrossRefPubMedPubMedCentral
63.
go back to reference Wu J, Bao J, Kim M, Yuan S, Tang C, Zheng H, Mastick GS, Xu C, Yan W. Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis. Proc Natl Acad Sci U S A. 2014;111:E2851–7.CrossRefPubMedPubMedCentral Wu J, Bao J, Kim M, Yuan S, Tang C, Zheng H, Mastick GS, Xu C, Yan W. Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis. Proc Natl Acad Sci U S A. 2014;111:E2851–7.CrossRefPubMedPubMedCentral
64.
go back to reference Choi JS, JH O, Park HJ, Choi MS, Park SM, Kang SJ, MJ O, Kim SJ, Hwang SY, Yoon S. miRNA regulation of cytotoxic effects in mouse Sertoli cells exposed to nonylphenol. Reprod Biol Endocrinol. 2011;9:126.CrossRefPubMedPubMedCentral Choi JS, JH O, Park HJ, Choi MS, Park SM, Kang SJ, MJ O, Kim SJ, Hwang SY, Yoon S. miRNA regulation of cytotoxic effects in mouse Sertoli cells exposed to nonylphenol. Reprod Biol Endocrinol. 2011;9:126.CrossRefPubMedPubMedCentral
65.
go back to reference Hughes PJ, McLellan H, Lowes DA, Kahn SZ, Bilmen JG, Tovey SC, Godfrey RE, Michell RH, Kirk CJ, Michelangeli F. Estrogenic alkylphenols induce cell death by inhibiting testis endoplasmic reticulum ca(2+) pumps. Biochem Biophys Res Commun. 2000;277:568–74.CrossRefPubMed Hughes PJ, McLellan H, Lowes DA, Kahn SZ, Bilmen JG, Tovey SC, Godfrey RE, Michell RH, Kirk CJ, Michelangeli F. Estrogenic alkylphenols induce cell death by inhibiting testis endoplasmic reticulum ca(2+) pumps. Biochem Biophys Res Commun. 2000;277:568–74.CrossRefPubMed
66.
go back to reference Tang D, Huang Y, Liu W, Zhang X. Up-regulation of microRNA-210 is associated with spermatogenesis by targeting IGF2 in male infertility. Med Sci Monit. 2016;22:2905–10.CrossRefPubMedPubMedCentral Tang D, Huang Y, Liu W, Zhang X. Up-regulation of microRNA-210 is associated with spermatogenesis by targeting IGF2 in male infertility. Med Sci Monit. 2016;22:2905–10.CrossRefPubMedPubMedCentral
67.
go back to reference Niu Z, Goodyear SM, Rao S, Wu X, Tobias JW, Avarbock MR, Brinster RL. MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A. 2011;108:12740–5.CrossRefPubMedPubMedCentral Niu Z, Goodyear SM, Rao S, Wu X, Tobias JW, Avarbock MR, Brinster RL. MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A. 2011;108:12740–5.CrossRefPubMedPubMedCentral
Metadata
Title
Cellular and molecular characterization of gametogenic progression in ex vivo cultured prepuberal mouse testes
Authors
J. Isoler-Alcaraz
D. Fernández-Pérez
E. Larriba
J. del Mazo
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2017
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-017-0305-y

Other articles of this Issue 1/2017

Reproductive Biology and Endocrinology 1/2017 Go to the issue