Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2017

Open Access 01-12-2017 | Research

Feedback inhibition of CREB signaling by p38 MAPK contributes to the negative regulation of steroidogenesis

Authors: Jiaxin Li, Qian Zhou, Zhuang Ma, Meina Wang, Wen-Jun Shen, Salman Azhar, Zhigang Guo, Zhigang Hu

Published in: Reproductive Biology and Endocrinology | Issue 1/2017

Login to get access

Abstract

Background

Steroidogenesis is a complex, multi-steps biological process in which, cholesterol precursor is converted to steroids in a tissue specific and tropic hormone dependent manner. Given that steroidogenesis is achieved by coordinated functioning of multiple tissue specific enzymes, many steroids intermediates/metabolites are generated during this process. Both the steroid products as well as major lipoprotein cholesterol donor, high-density lipoprotein 3 (hHDL3) have the potential to negatively regulate steroidogenesis via increased oxidative stress/reactive oxygen species (ROS) generation.

Methods

In the current study, we examined the effects of treatment of a mouse model of steroidogenesis, Y1-BS1 adrenocortical tumor cells with pregnenolone, 22(R)-Hydroxycholesterol [22(R)-diol] or hHDL3 on ROS production, phosphorylation status of p38 MAPK and cAMP response element-binding protein (CREB), CREB transcriptional activity and mRNA expression of StAR, CPY11A1/P450scc and antioxidant enzymes, superoxide dismutases [Cu,ZnSOD (SOD1), MnSOD (SOD2)], catalase (CAT) and glutathione peroxidase 1 (GPX1). We also detected the steroid product in p38 MAPK inhibitor treated Y1 cells by HPLC-MS / MS.

Results

Treatment of Y1 cells with H2O2 greatly enhanced the phosphorylation of both p38 MAPK and CREB protein. Likewise, treatment of cells with pregnenolone, 22(R) diol or hHDL3 increased ROS production measured with the oxidation-sensitive fluorescent probe 2′,7′-Dichlorofluorescin diacetate (DCFH-DA). Under identical experimental conditions, treatment of cells with these agents also increased the phosphorylation of p38 MAPK and CREB. This increased CREB phosphorylation however, was associated with its decreased transcriptional activity. The stimulatory effects of pregnenolone, 22(R)-diol and hHDL3 on CREB phosphorylation was abolished by a specific p38 MAPK inhibitor, SB203580. Pregnenolone, and 22(R) diol but not hHDL3 upregulated the mRNA expression of SOD1, SOD2 and GPX1, while down-regulated the mRNA levels of StAR and CYP11A1. The p38 inhibitor SB203580 could increase the steroid production in HDL3, 22(R)-diol or pregnenolone treated cells.

Conclusion

Our data demonstrate induction of a ROS/p38 MAPK -mediated feedback inhibitory pathway by oxy-cholesterol and steroid intermediates and products attenuates steroidogenesis via inhibition of CREB transcriptional activity.
Literature
1.
2.
go back to reference Hu J, Zhang Z, Shen W-J, Azhar S. Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab. 2010;7:1.CrossRef Hu J, Zhang Z, Shen W-J, Azhar S. Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab. 2010;7:1.CrossRef
3.
go back to reference Azhar S, Reaven E. Scavenger receptor class BI and selective cholesteryl ester uptake: partners in the regulation of steroidogenesis. Mol Cell Endocrinol. 2002;195:1–26.CrossRefPubMed Azhar S, Reaven E. Scavenger receptor class BI and selective cholesteryl ester uptake: partners in the regulation of steroidogenesis. Mol Cell Endocrinol. 2002;195:1–26.CrossRefPubMed
4.
go back to reference Hattangady NG, Olala LO, Bollag WB, Rainey WE. Acute and chronic regulation of aldosterone production. Mol Cell Endocrinol. 2012;350:151–62.CrossRefPubMed Hattangady NG, Olala LO, Bollag WB, Rainey WE. Acute and chronic regulation of aldosterone production. Mol Cell Endocrinol. 2012;350:151–62.CrossRefPubMed
5.
go back to reference Lehoux J-G, Fleury A, Ducharme L. The acute and chronic effects of adrenocorticotropin on the levels of messenger ribonucleic acid and protein of steroidogenic enzymes in rat adrenal in vivo 1. Endocrinology. 1998;139:3913–22.PubMed Lehoux J-G, Fleury A, Ducharme L. The acute and chronic effects of adrenocorticotropin on the levels of messenger ribonucleic acid and protein of steroidogenic enzymes in rat adrenal in vivo 1. Endocrinology. 1998;139:3913–22.PubMed
6.
go back to reference Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci. 2000;25:502–8.CrossRefPubMed Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci. 2000;25:502–8.CrossRefPubMed
7.
go back to reference Hanukoglu I. Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells. Drug Metab Rev. 2006;38:171–96.CrossRefPubMed Hanukoglu I. Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells. Drug Metab Rev. 2006;38:171–96.CrossRefPubMed
8.
go back to reference Kil IS, Lee SK, Ryu KW, Woo HA, Hu M-C, Bae SH, Rhee SG. Feedback control of adrenal steroidogenesis via H 2 O 2-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol Cell. 2012;46:584–94.CrossRefPubMed Kil IS, Lee SK, Ryu KW, Woo HA, Hu M-C, Bae SH, Rhee SG. Feedback control of adrenal steroidogenesis via H 2 O 2-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol Cell. 2012;46:584–94.CrossRefPubMed
9.
go back to reference Beattie MC, Chen H, Fan J, Papadopoulos V, Miller P, Zirkin BR. Aging and luteinizing hormone effects on reactive oxygen species production and DNA damage in rat Leydig cells. Biol Reprod. 2013;88:100.CrossRefPubMedPubMedCentral Beattie MC, Chen H, Fan J, Papadopoulos V, Miller P, Zirkin BR. Aging and luteinizing hormone effects on reactive oxygen species production and DNA damage in rat Leydig cells. Biol Reprod. 2013;88:100.CrossRefPubMedPubMedCentral
10.
go back to reference Abidi P, Leers‐Sucheta S, Cortez Y, Han J, Azhar S. Evidence that age‐related changes in p38 MAP kinase contribute to the decreased steroid production by the adrenocortical cells from old rats. Aging Cell. 2008;7:168–78.CrossRefPubMed Abidi P, Leers‐Sucheta S, Cortez Y, Han J, Azhar S. Evidence that age‐related changes in p38 MAP kinase contribute to the decreased steroid production by the adrenocortical cells from old rats. Aging Cell. 2008;7:168–78.CrossRefPubMed
11.
go back to reference Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.CrossRefPubMed Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.CrossRefPubMed
12.
14.
go back to reference BEHRMAN HR, ATEN RF. Evidence That Hydrogen Peroxide Blocks Hormone-Sensitive Cholesterol Transport into Mitochondria of Rat Luteal Cells*. Endocrinology. 1991;128:2958–66.CrossRefPubMed BEHRMAN HR, ATEN RF. Evidence That Hydrogen Peroxide Blocks Hormone-Sensitive Cholesterol Transport into Mitochondria of Rat Luteal Cells*. Endocrinology. 1991;128:2958–66.CrossRefPubMed
15.
go back to reference Stocco DM, Wells J, Clark BJ. The effects of hydrogen peroxide on steroidogenesis in mouse Leydig tumor cells. Endocrinology. 1993;133:2827–32.PubMed Stocco DM, Wells J, Clark BJ. The effects of hydrogen peroxide on steroidogenesis in mouse Leydig tumor cells. Endocrinology. 1993;133:2827–32.PubMed
16.
go back to reference Diemer T, Allen JA, Hales KH, Hales DB. Reactive oxygen disrupts mitochondria in MA-10 tumor Leydig cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis. Endocrinology. 2003;144:2882–91.CrossRefPubMed Diemer T, Allen JA, Hales KH, Hales DB. Reactive oxygen disrupts mitochondria in MA-10 tumor Leydig cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis. Endocrinology. 2003;144:2882–91.CrossRefPubMed
17.
go back to reference McClung JM, Judge AR, Powers SK, Yan Z. p38 MAPK links oxidative stress to autophagy-related gene expression in cachectic muscle wasting. Am J Phys Cell Phys. 2010;298:C542–9.CrossRef McClung JM, Judge AR, Powers SK, Yan Z. p38 MAPK links oxidative stress to autophagy-related gene expression in cachectic muscle wasting. Am J Phys Cell Phys. 2010;298:C542–9.CrossRef
18.
go back to reference Gutiérrez-Uzquiza Á, Arechederra M, Bragado P, Aguirre-Ghiso JA, Porras A. p38α Mediates Cell Survival in Response to Oxidative Stress via Induction of Antioxidant Genes EFFECT ON THE p70S6K PATHWAY. J Biol Chem. 2012;287:2632–42.CrossRefPubMed Gutiérrez-Uzquiza Á, Arechederra M, Bragado P, Aguirre-Ghiso JA, Porras A. p38α Mediates Cell Survival in Response to Oxidative Stress via Induction of Antioxidant Genes EFFECT ON THE p70S6K PATHWAY. J Biol Chem. 2012;287:2632–42.CrossRefPubMed
19.
go back to reference Yamada T, Egashira N, Bando A, Nishime Y, Tonogai Y, Imuta M, Yano T, Oishi R. Activation of p38 MAPK by oxidative stress underlying epirubicin-induced vascular endothelial cell injury. Free Radic Biol Med. 2012;52:1285–93.CrossRefPubMed Yamada T, Egashira N, Bando A, Nishime Y, Tonogai Y, Imuta M, Yano T, Oishi R. Activation of p38 MAPK by oxidative stress underlying epirubicin-induced vascular endothelial cell injury. Free Radic Biol Med. 2012;52:1285–93.CrossRefPubMed
20.
go back to reference Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochimica et Biophysica Acta (BBA)-Molecular Cell Res. 2007;1773:1358–75.CrossRef Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochimica et Biophysica Acta (BBA)-Molecular Cell Res. 2007;1773:1358–75.CrossRef
21.
go back to reference Cuadrado A, Nebreda AR. Mechanisms and functions of p38 MAPK signalling. Biochem J. 2010;429:403–17.CrossRefPubMed Cuadrado A, Nebreda AR. Mechanisms and functions of p38 MAPK signalling. Biochem J. 2010;429:403–17.CrossRefPubMed
22.
go back to reference Zaidi SK, Shen W-J, Bittner S, Bittner A, McLean MP, Han J, Davis RJ, Kraemer FB, Azhar S. p38 MAPK regulates steroidogenesis through transcriptional repression of STAR gene. J Mol Endocrinol. 2014;53:1–16.CrossRefPubMedPubMedCentral Zaidi SK, Shen W-J, Bittner S, Bittner A, McLean MP, Han J, Davis RJ, Kraemer FB, Azhar S. p38 MAPK regulates steroidogenesis through transcriptional repression of STAR gene. J Mol Endocrinol. 2014;53:1–16.CrossRefPubMedPubMedCentral
23.
go back to reference Abidi P, Zhang H, Zaidi SM, Shen W-J, Leers-Sucheta S, Cortez Y, Han J, Azhar S. Oxidative stress-induced inhibition of adrenal steroidogenesis requires participation of p38 mitogen-activated protein kinase signaling pathway. J Endocrinol. 2008;198:193–207.CrossRefPubMed Abidi P, Zhang H, Zaidi SM, Shen W-J, Leers-Sucheta S, Cortez Y, Han J, Azhar S. Oxidative stress-induced inhibition of adrenal steroidogenesis requires participation of p38 mitogen-activated protein kinase signaling pathway. J Endocrinol. 2008;198:193–207.CrossRefPubMed
24.
25.
go back to reference Yasumura Y, Buonassisi V, Sato G. Clonal analysis of differentiated function in animal cell cultures. Cancer research. 1966;26(3 Part 1):529-35. Yasumura Y, Buonassisi V, Sato G. Clonal analysis of differentiated function in animal cell cultures. Cancer research. 1966;26(3 Part 1):529-35.
26.
go back to reference Temel RE, Trigatti B, DeMattos RB, Azhar S, Krieger M, Williams DL. Scavenger receptor class B, type I (SR-BI) is the major route for the delivery of high density lipoprotein cholesterol to the steroidogenic pathway in cultured mouse adrenocortical cells. Proc Natl Acad Sci U S A. 1997;94:13600–5.CrossRefPubMedPubMedCentral Temel RE, Trigatti B, DeMattos RB, Azhar S, Krieger M, Williams DL. Scavenger receptor class B, type I (SR-BI) is the major route for the delivery of high density lipoprotein cholesterol to the steroidogenic pathway in cultured mouse adrenocortical cells. Proc Natl Acad Sci U S A. 1997;94:13600–5.CrossRefPubMedPubMedCentral
27.
go back to reference Hu Z, Li J, Kuang Z, Wang M, Azhar S, Guo Z. Cell-Specific Polymorphism and Hormonal Regulation of DNA Methylation in Scavenger Receptor Class B, Type I. DNA Cell Biol. 2016;35:280–9.CrossRefPubMed Hu Z, Li J, Kuang Z, Wang M, Azhar S, Guo Z. Cell-Specific Polymorphism and Hormonal Regulation of DNA Methylation in Scavenger Receptor Class B, Type I. DNA Cell Biol. 2016;35:280–9.CrossRefPubMed
28.
go back to reference Reaven E, Tsai L, Azhar S. Intracellular events in the “selective” transport of lipoprotein-derived cholesteryl esters. J Biol Chem. 1996;271:16208–17.CrossRefPubMed Reaven E, Tsai L, Azhar S. Intracellular events in the “selective” transport of lipoprotein-derived cholesteryl esters. J Biol Chem. 1996;271:16208–17.CrossRefPubMed
29.
go back to reference Hu Z, Hu J, Zhang Z, Shen W-J, Yun CC, Berlot CH, Kraemer FB, Azhar S. Regulation of expression and function of scavenger receptor class B, type I (SR-BI) by Na+/H+ exchanger regulatory factors (NHERFs). J Biol Chem. 2013;288:11416–35.CrossRefPubMedPubMedCentral Hu Z, Hu J, Zhang Z, Shen W-J, Yun CC, Berlot CH, Kraemer FB, Azhar S. Regulation of expression and function of scavenger receptor class B, type I (SR-BI) by Na+/H+ exchanger regulatory factors (NHERFs). J Biol Chem. 2013;288:11416–35.CrossRefPubMedPubMedCentral
30.
go back to reference Zhou Y, Wang Y, Jiaping YU. Research on the determination of serum steroid hormones by isotope dilution HPLC-MS/MS. 2015. Zhou Y, Wang Y, Jiaping YU. Research on the determination of serum steroid hormones by isotope dilution HPLC-MS/MS. 2015.
31.
go back to reference Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001;81:807–69.PubMed Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001;81:807–69.PubMed
32.
go back to reference McCubrey JA, LaHair MM, Franklin RA. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal. 2006;8:1775–89.CrossRefPubMed McCubrey JA, LaHair MM, Franklin RA. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal. 2006;8:1775–89.CrossRefPubMed
33.
go back to reference Son Y, Kim S, Chung H-T, Pae H-O. Reactive oxygen species in the activation of MAP kinases. Methods Enzymol. 2013;528:27–48.CrossRefPubMed Son Y, Kim S, Chung H-T, Pae H-O. Reactive oxygen species in the activation of MAP kinases. Methods Enzymol. 2013;528:27–48.CrossRefPubMed
34.
go back to reference Devasagayam T, Tilak J, Boloor K, Sane KS, Ghaskadbi SS, Lele R. Free radicals and antioxidants in human health: current status and future prospects. Japi. 2004;52:4. Devasagayam T, Tilak J, Boloor K, Sane KS, Ghaskadbi SS, Lele R. Free radicals and antioxidants in human health: current status and future prospects. Japi. 2004;52:4.
35.
go back to reference Xing J, Kornhauser JM, Xia Z, Thiele EA, Greenberg ME. Nerve growth factor activates extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways to stimulate CREB serine 133 phosphorylation. Mol Cell Biol. 1998;18:1946–55.CrossRefPubMedPubMedCentral Xing J, Kornhauser JM, Xia Z, Thiele EA, Greenberg ME. Nerve growth factor activates extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways to stimulate CREB serine 133 phosphorylation. Mol Cell Biol. 1998;18:1946–55.CrossRefPubMedPubMedCentral
36.
go back to reference Delghandi MP, Johannessen M, Moens U. The cAMP signalling pathway activates CREB through PKA, p38 and MSK1 in NIH 3 T3 cells. Cell Signal. 2005;17:1343–51.CrossRefPubMed Delghandi MP, Johannessen M, Moens U. The cAMP signalling pathway activates CREB through PKA, p38 and MSK1 in NIH 3 T3 cells. Cell Signal. 2005;17:1343–51.CrossRefPubMed
37.
go back to reference Iordanov M, Bender K, Ade T, Schmid W, Sachsenmaier C, Engel K, Gaestel M, Rahmsdorf H, Herrlich P. CREB is activated by UVC through a p38/HOG‐1‐dependent protein kinase. EMBO J. 1997;16:1009–22.CrossRefPubMedPubMedCentral Iordanov M, Bender K, Ade T, Schmid W, Sachsenmaier C, Engel K, Gaestel M, Rahmsdorf H, Herrlich P. CREB is activated by UVC through a p38/HOG‐1‐dependent protein kinase. EMBO J. 1997;16:1009–22.CrossRefPubMedPubMedCentral
38.
go back to reference Naqvi S, Martin KJ, Arthur JS. CREB phosphorylation at Ser133 regulates transcription via distinct mechanisms downstream of cAMP and MAPK signalling. Biochem J. 2014;458:469–79.CrossRefPubMed Naqvi S, Martin KJ, Arthur JS. CREB phosphorylation at Ser133 regulates transcription via distinct mechanisms downstream of cAMP and MAPK signalling. Biochem J. 2014;458:469–79.CrossRefPubMed
39.
go back to reference Quinn P, Payne A. Steroid product-induced, oxygen-mediated damage of microsomal cytochrome P-450 enzymes in Leydig cell cultures. Relationship to desensitization. J Biol Chem. 1985;260:2092–9.PubMed Quinn P, Payne A. Steroid product-induced, oxygen-mediated damage of microsomal cytochrome P-450 enzymes in Leydig cell cultures. Relationship to desensitization. J Biol Chem. 1985;260:2092–9.PubMed
40.
go back to reference Grewal T, de Diego I, Kirchhoff MF, Tebar F, Heeren J, Rinninger F, Enrich C. High density lipoprotein-induced signaling of the MAPK pathway involves scavenger receptor type BI-mediated activation of Ras. J Biol Chem. 2003;278:16478–81.CrossRefPubMed Grewal T, de Diego I, Kirchhoff MF, Tebar F, Heeren J, Rinninger F, Enrich C. High density lipoprotein-induced signaling of the MAPK pathway involves scavenger receptor type BI-mediated activation of Ras. J Biol Chem. 2003;278:16478–81.CrossRefPubMed
41.
go back to reference Pan B, Ma Y, Ren H, He Y, Wang Y, Lv X, Liu D, Ji L, Yu B, Wang Y. Diabetic HDL is dysfunctional in stimulating endothelial cell migration and proliferation due to down regulation of SR-BI expression. PLoS One. 2012;7:e48530.CrossRefPubMedPubMedCentral Pan B, Ma Y, Ren H, He Y, Wang Y, Lv X, Liu D, Ji L, Yu B, Wang Y. Diabetic HDL is dysfunctional in stimulating endothelial cell migration and proliferation due to down regulation of SR-BI expression. PLoS One. 2012;7:e48530.CrossRefPubMedPubMedCentral
43.
go back to reference Shaywitz AJ, Greenberg ME. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem. 1999;68:821–61.CrossRefPubMed Shaywitz AJ, Greenberg ME. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem. 1999;68:821–61.CrossRefPubMed
44.
go back to reference Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol. 2001;2:599–609.CrossRefPubMed Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol. 2001;2:599–609.CrossRefPubMed
45.
go back to reference Sakamoto KM, Frank DA. CREB in the pathophysiology of cancer: implications for targeting transcription factors for cancer therapy. Clin Cancer Res. 2009;15:2583–7.CrossRefPubMedPubMedCentral Sakamoto KM, Frank DA. CREB in the pathophysiology of cancer: implications for targeting transcription factors for cancer therapy. Clin Cancer Res. 2009;15:2583–7.CrossRefPubMedPubMedCentral
46.
go back to reference Stocco DM. StAR protein and the regulation of steroid hormone biosynthesis. Annu Rev Physiol. 2001;63:193–213.CrossRefPubMed Stocco DM. StAR protein and the regulation of steroid hormone biosynthesis. Annu Rev Physiol. 2001;63:193–213.CrossRefPubMed
47.
go back to reference Simpson ER, Miller DA. Cholesterol side-chain cleavage, cytochrome P450, and iron-sulfur protein in human placental mitochondria. Arch Biochem Biophys. 1978;190:800–8.CrossRefPubMed Simpson ER, Miller DA. Cholesterol side-chain cleavage, cytochrome P450, and iron-sulfur protein in human placental mitochondria. Arch Biochem Biophys. 1978;190:800–8.CrossRefPubMed
48.
go back to reference Lavoie HA, King SR. Transcriptional regulation of steroidogenic genes: STARD1, CYP11A1 and HSD3B. Exp Biol Med. 2009;234:880–907.CrossRef Lavoie HA, King SR. Transcriptional regulation of steroidogenic genes: STARD1, CYP11A1 and HSD3B. Exp Biol Med. 2009;234:880–907.CrossRef
49.
go back to reference Chen H, Irizarry RA, Luo L, Zirkin BR. Leydig cell gene expression: effects of age and caloric restriction. Exp Gerontol. 2004;39:31–43.CrossRefPubMed Chen H, Irizarry RA, Luo L, Zirkin BR. Leydig cell gene expression: effects of age and caloric restriction. Exp Gerontol. 2004;39:31–43.CrossRefPubMed
50.
go back to reference Fu H, Wada-Hiraike O, Hirano M, Kawamura Y, Sakurabashi A, Shirane A, Morita Y, Isono W, Oishi H, Koga K. SIRT3 positively regulates the expression of folliculogenesis-and luteinization-related genes and progesterone secretion by manipulating oxidative stress in human luteinized granulosa cells. Endocrinology. 2014;155:3079–87.CrossRefPubMed Fu H, Wada-Hiraike O, Hirano M, Kawamura Y, Sakurabashi A, Shirane A, Morita Y, Isono W, Oishi H, Koga K. SIRT3 positively regulates the expression of folliculogenesis-and luteinization-related genes and progesterone secretion by manipulating oxidative stress in human luteinized granulosa cells. Endocrinology. 2014;155:3079–87.CrossRefPubMed
51.
go back to reference Indo HP, Yen H-C, Nakanishi I, Matsumoto K-i, Tamura M, Nagano Y, Matsui H, Gusev O, Cornette R, Okuda T. A mitochondrial superoxide theory for oxidative stress diseases and aging. J Clin Biochem Nutr. 2015;56:1.CrossRefPubMed Indo HP, Yen H-C, Nakanishi I, Matsumoto K-i, Tamura M, Nagano Y, Matsui H, Gusev O, Cornette R, Okuda T. A mitochondrial superoxide theory for oxidative stress diseases and aging. J Clin Biochem Nutr. 2015;56:1.CrossRefPubMed
52.
53.
go back to reference Stocco DM, Wang X, Jo Y, Manna PR. Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol Endocrinol. 2005;19:2647–59.CrossRefPubMed Stocco DM, Wang X, Jo Y, Manna PR. Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol Endocrinol. 2005;19:2647–59.CrossRefPubMed
54.
go back to reference Lin Y, Hou X, Shen WJ, Hanssen R, Khor VK, Cortez Y, Roseman AN, Azhar S, Kraemer FB. SNARE-mediated cholesterol movement to mitochondria supports steroidogenesis in rodent cells. Mol Endocrinol. 2016;30(2):234-47. Lin Y, Hou X, Shen WJ, Hanssen R, Khor VK, Cortez Y, Roseman AN, Azhar S, Kraemer FB. SNARE-mediated cholesterol movement to mitochondria supports steroidogenesis in rodent cells. Mol Endocrinol. 2016;30(2):234-47.
55.
go back to reference Vitale G, Salvioli S, Franceschi C. Oxidative stress and the ageing endocrine system. Nat Rev Endocrinol. 2013;9:228–40.CrossRefPubMed Vitale G, Salvioli S, Franceschi C. Oxidative stress and the ageing endocrine system. Nat Rev Endocrinol. 2013;9:228–40.CrossRefPubMed
57.
go back to reference Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.CrossRefPubMed Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.CrossRefPubMed
58.
go back to reference Ye Z-W, Zhang J, Townsend DM, Tew KD. Oxidative stress, redox regulation and diseases of cellular differentiation. Biochimica et Biophysica Acta (BBA)-General Subjects. 2015;1850:1607–21.CrossRef Ye Z-W, Zhang J, Townsend DM, Tew KD. Oxidative stress, redox regulation and diseases of cellular differentiation. Biochimica et Biophysica Acta (BBA)-General Subjects. 2015;1850:1607–21.CrossRef
60.
go back to reference Kulisz A, Chen N, Chandel NS, Shao Z, Schumacker PT. Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytes. Am J Phys Lung Cell Mol Phys. 2002;282:L1324–9. Kulisz A, Chen N, Chandel NS, Shao Z, Schumacker PT. Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytes. Am J Phys Lung Cell Mol Phys. 2002;282:L1324–9.
61.
go back to reference Yu F-Q, Han C-S, Yang W, Jin X, Hu Z-Y, Liu Y-X. Activation of the p38 MAPK pathway by follicle-stimulating hormone regulates steroidogenesis in granulosa cells differentially. J Endocrinol. 2005;186:85–96.CrossRefPubMed Yu F-Q, Han C-S, Yang W, Jin X, Hu Z-Y, Liu Y-X. Activation of the p38 MAPK pathway by follicle-stimulating hormone regulates steroidogenesis in granulosa cells differentially. J Endocrinol. 2005;186:85–96.CrossRefPubMed
62.
go back to reference Butler MP, Hanly JA, Moynagh PN. Pellino3 is a novel upstream regulator of p38 MAPK and activates CREB in a p38-dependent manner. J Biol Chem. 2005;280:27759–68.CrossRefPubMed Butler MP, Hanly JA, Moynagh PN. Pellino3 is a novel upstream regulator of p38 MAPK and activates CREB in a p38-dependent manner. J Biol Chem. 2005;280:27759–68.CrossRefPubMed
63.
go back to reference Jinlian L, Yingbin Z, Chunbo W. p38 MAPK in regulating cellular responses to ultraviolet radiation. J Biomed Sci. 2007;14:303–12.CrossRefPubMed Jinlian L, Yingbin Z, Chunbo W. p38 MAPK in regulating cellular responses to ultraviolet radiation. J Biomed Sci. 2007;14:303–12.CrossRefPubMed
64.
go back to reference Olala LO, Choudhary V, Johnson MH, Bollag WB. Angiotensin II-induced protein kinase D activates the ATF/CREB family of transcription factors and promotes StAR mRNA expression. Endocrinology. 2014;155:2524–33.CrossRefPubMedPubMedCentral Olala LO, Choudhary V, Johnson MH, Bollag WB. Angiotensin II-induced protein kinase D activates the ATF/CREB family of transcription factors and promotes StAR mRNA expression. Endocrinology. 2014;155:2524–33.CrossRefPubMedPubMedCentral
65.
go back to reference Saha B, Singh SK, Sarkar C, Bera R, Ratha J, Tobin DJ, Bhadra R. Activation of the Mitf promoter by lipid‐stimulated activation of p38‐stress signalling to CREB. Pigment Cell Res. 2006;19:595–605.CrossRefPubMed Saha B, Singh SK, Sarkar C, Bera R, Ratha J, Tobin DJ, Bhadra R. Activation of the Mitf promoter by lipid‐stimulated activation of p38‐stress signalling to CREB. Pigment Cell Res. 2006;19:595–605.CrossRefPubMed
66.
go back to reference Manna P, Eubank D, Lalli E, Sassone-Corsi P, Stocco D. Transcriptional regulation of the mouse steroidogenic acute regulatory protein gene by the cAMP response-element binding protein and steroidogenic factor 1. J Mol Endocrinol. 2003;30:381–97.CrossRefPubMed Manna P, Eubank D, Lalli E, Sassone-Corsi P, Stocco D. Transcriptional regulation of the mouse steroidogenic acute regulatory protein gene by the cAMP response-element binding protein and steroidogenic factor 1. J Mol Endocrinol. 2003;30:381–97.CrossRefPubMed
67.
go back to reference Clem BF, Hudson EA, Clark BJ. Cyclic adenosine 3′, 5′-monophosphate (cAMP) enhances cAMP-responsive element binding (CREB) protein phosphorylation and phospho-CREB interaction with the mouse steroidogenic acute regulatory protein gene promoter. Endocrinology. 2005;146:1348–56.CrossRefPubMed Clem BF, Hudson EA, Clark BJ. Cyclic adenosine 3′, 5′-monophosphate (cAMP) enhances cAMP-responsive element binding (CREB) protein phosphorylation and phospho-CREB interaction with the mouse steroidogenic acute regulatory protein gene promoter. Endocrinology. 2005;146:1348–56.CrossRefPubMed
68.
go back to reference Cherradi N, Bideau M, Arnaudeau S, Demaurex N, James RW, Azhar S, Capponi AM. Angiotensin II promotes selective uptake of high density lipoprotein cholesterol esters in bovine adrenal glomerulosa and human adrenocortical carcinoma cells through induction of scavenger receptor class B type I. Endocrinology. 2001;142:4540–9.CrossRefPubMed Cherradi N, Bideau M, Arnaudeau S, Demaurex N, James RW, Azhar S, Capponi AM. Angiotensin II promotes selective uptake of high density lipoprotein cholesterol esters in bovine adrenal glomerulosa and human adrenocortical carcinoma cells through induction of scavenger receptor class B type I. Endocrinology. 2001;142:4540–9.CrossRefPubMed
69.
go back to reference Xing Y, Cohen A, Rothblat G, Sankaranarayanan S, Weibel G, Royer L, Francone OL, Rainey WE. Aldosterone Production in Human Adrenocortical Cells Is Stimulated by High-Density Lipoprotein 2 (HDL2) through Increased Expression of Aldosterone Synthase (CYP11B2). Endocrinology. 2011;152:751–63.CrossRefPubMedPubMedCentral Xing Y, Cohen A, Rothblat G, Sankaranarayanan S, Weibel G, Royer L, Francone OL, Rainey WE. Aldosterone Production in Human Adrenocortical Cells Is Stimulated by High-Density Lipoprotein 2 (HDL2) through Increased Expression of Aldosterone Synthase (CYP11B2). Endocrinology. 2011;152:751–63.CrossRefPubMedPubMedCentral
70.
go back to reference Saha S, Bornstein SR, Graessler J, Kopprasch S. Very-low-density lipoprotein mediates transcriptional regulation of aldosterone synthase in human adrenocortical cells through multiple signaling pathways. Cell Tissue Res. 2012;348:71–80.CrossRefPubMed Saha S, Bornstein SR, Graessler J, Kopprasch S. Very-low-density lipoprotein mediates transcriptional regulation of aldosterone synthase in human adrenocortical cells through multiple signaling pathways. Cell Tissue Res. 2012;348:71–80.CrossRefPubMed
71.
go back to reference Manna PR, Stocco DM. The Role of Specific Mitogen-Activated Protein Kinase Signaling Cascades in the Regulation of Steroidogenesis. J Signal Transduction. 2011;2011:821615.CrossRef Manna PR, Stocco DM. The Role of Specific Mitogen-Activated Protein Kinase Signaling Cascades in the Regulation of Steroidogenesis. J Signal Transduction. 2011;2011:821615.CrossRef
72.
go back to reference Svechnikov K, Stocco DM, Söder O. Interleukin-1alpha stimulates steroidogenic acute regulatory protein expression via p38 MAP kinase in immature rat Leydig cells. J Mol Endocrinol. 2003;30:59–67.CrossRefPubMed Svechnikov K, Stocco DM, Söder O. Interleukin-1alpha stimulates steroidogenic acute regulatory protein expression via p38 MAP kinase in immature rat Leydig cells. J Mol Endocrinol. 2003;30:59–67.CrossRefPubMed
73.
go back to reference Tajima K, Dantes A, Yao Z, Sorokina K, Kotsuji F, Seger R, Amsterdam A. Down-regulation of steroidogenic response to gonadotropins in human and rat preovulatory granulosa cells involves mitogen-activated protein kinase activation and modulation of DAX-1 and steroidogenic factor-1. J Clin Endocrinol Metab. 2003;88:2288–99.CrossRefPubMed Tajima K, Dantes A, Yao Z, Sorokina K, Kotsuji F, Seger R, Amsterdam A. Down-regulation of steroidogenic response to gonadotropins in human and rat preovulatory granulosa cells involves mitogen-activated protein kinase activation and modulation of DAX-1 and steroidogenic factor-1. J Clin Endocrinol Metab. 2003;88:2288–99.CrossRefPubMed
74.
go back to reference Otis M, Campbell S, Payet MD, Gallo-Payet N. Angiotensin II stimulates protein synthesis and inhibits proliferation in primary cultures of rat adrenal glomerulosa cells. Endocrinology. 2005;146:633–42.CrossRefPubMed Otis M, Campbell S, Payet MD, Gallo-Payet N. Angiotensin II stimulates protein synthesis and inhibits proliferation in primary cultures of rat adrenal glomerulosa cells. Endocrinology. 2005;146:633–42.CrossRefPubMed
Metadata
Title
Feedback inhibition of CREB signaling by p38 MAPK contributes to the negative regulation of steroidogenesis
Authors
Jiaxin Li
Qian Zhou
Zhuang Ma
Meina Wang
Wen-Jun Shen
Salman Azhar
Zhigang Guo
Zhigang Hu
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2017
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-017-0239-4

Other articles of this Issue 1/2017

Reproductive Biology and Endocrinology 1/2017 Go to the issue