Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2017

Open Access 01-12-2017 | Research

Expression of SOX2, NANOG and OCT4 in a mouse model of lipopolysaccharide-induced acute uterine injury and intrauterine adhesions

Authors: Li Xiao, Yong Song, Wei Huang, Shiyuan Yang, Jing Fu, Xue Feng, Min Zhou

Published in: Reproductive Biology and Endocrinology | Issue 1/2017

Login to get access

Abstract

Background

Activation of inflammation-mediated endometrial injury is suggested to play a decisive role in pathogenesis of intrauterine adhesion (IUA). The stem cell theory of endometrial diseases has been given a hotspot, in that human endometrial stem cells have been isolated from the endometrium. Three transcription factors that play key roles in maintaining pluripotency and self-renewal in stem cells are sex-determining region Y-box2 (SOX2), Nanog homebox (NANOG), and octamer-binding protein (OCT4), which may be responsible for the damage or repair process of uterine endometrium. We aim to investigate the expression of SOX2, NANOG and OCT4 in a mouse model of acute uterine injury induced by peritoneal injection of lipopolysaccharide (LPS) and also analyze their changes in endometrium of women with IUA.

Methods

The mouse uterine horns were collected at 0 h, 6 h, 12 h, 18 h or 24 h after a single dose of LPS or PBS injection. Meanwhile, we recruited 19 women with IUA diagnosed by hysteroscopy and 16 disease-free women as control group. Endometrial tissue samples were collected. SOX2, NANOG, and OCT4 expression were analyzed with Quantitative Real-time Polymerase Chain Reaction and Western blotting assay.

Results

In a mouse model of acute uterine injury, there was significant upregulation of NANOG at 6 h, SOX2 and OCT4 at 12 h compared with the values before injection or PBS injection. NANOG expression reached a peak at 6 h, while SOX2 and OCT4 peaked later at 12 h after LPS treatment. NANOG mRNA and protein expressions were significantly higher in endometrium of IUA patients compared to those of the control group.

Conclusions

Expression of pluripotency factors SOX2, NANOG and OCT4 increased in a mouse model of LPS-induced acute uterine injury. NANOG peaked earlier followed by the other two factors before returning to baseline levels. NANOG but not SOX2 and OCT4 expression was overexpressed in the endometrium of women with IUA. They may be involved in the formation or restoration of IUA, and their roles in pathogenesis of IUA need to be further studied.
Literature
1.
go back to reference Panayiotides I, Weyers S, Bosteels J, Herendael B. Intrauterine adhesions(IUA): has there been progress in understanding and treatment over the last20 years? Gynecol Surg. 2009;6:197–211.CrossRef Panayiotides I, Weyers S, Bosteels J, Herendael B. Intrauterine adhesions(IUA): has there been progress in understanding and treatment over the last20 years? Gynecol Surg. 2009;6:197–211.CrossRef
2.
3.
go back to reference Schwab KE, Chan RW, Gargett CE. Putative stem cell activity of human epithelial and stromal cells during the menstrual cycle. Fertil Steril. 2005;84 Suppl 2:1124–30.CrossRefPubMed Schwab KE, Chan RW, Gargett CE. Putative stem cell activity of human epithelial and stromal cells during the menstrual cycle. Fertil Steril. 2005;84 Suppl 2:1124–30.CrossRefPubMed
4.
5.
go back to reference Park MJ, Park HS, Cho ML, Oh HJ, Cho YG, Min SY, et al. Transforming growth factor β-transduced mesenchymal stem cells ameliorate experimental autoimmune arthritis through reciprocal regulation of Treg/Th 17 cells and osteoclastogenesis. Arthritis Rheum. 2011;63:1668–89.CrossRefPubMed Park MJ, Park HS, Cho ML, Oh HJ, Cho YG, Min SY, et al. Transforming growth factor β-transduced mesenchymal stem cells ameliorate experimental autoimmune arthritis through reciprocal regulation of Treg/Th 17 cells and osteoclastogenesis. Arthritis Rheum. 2011;63:1668–89.CrossRefPubMed
6.
go back to reference Pluchino S, Zanotti L, Brambilla E, Rovere-Querini P, Capobianco A, Alfaro-Cervello C, et al. Immune regulatory neural stem/precursor cells protect from central nervous system autoimmunity by restraining dendritic cell function. PLoS One. 2009;4:e5959.CrossRefPubMedPubMedCentral Pluchino S, Zanotti L, Brambilla E, Rovere-Querini P, Capobianco A, Alfaro-Cervello C, et al. Immune regulatory neural stem/precursor cells protect from central nervous system autoimmunity by restraining dendritic cell function. PLoS One. 2009;4:e5959.CrossRefPubMedPubMedCentral
7.
go back to reference Rajasingh J, Thangavel J, Siddiqui MR, Gomes I, Gao XP, Kishore R, et al. Improvement of cardiac function in mouse myocardial infarction after transplantation of epigenetically-modified bone marrow progenitor cells. PLoS One. 2011;6:e22550.CrossRefPubMedPubMedCentral Rajasingh J, Thangavel J, Siddiqui MR, Gomes I, Gao XP, Kishore R, et al. Improvement of cardiac function in mouse myocardial infarction after transplantation of epigenetically-modified bone marrow progenitor cells. PLoS One. 2011;6:e22550.CrossRefPubMedPubMedCentral
8.
go back to reference Hyodo S, Matsubara K, Kameda K, Matsubara Y. Endometrial injury increases side population cells in the uterine endometrium: a decisive role of estrogen. Tohoku J Exp Med. 2011;224:47–55.CrossRefPubMed Hyodo S, Matsubara K, Kameda K, Matsubara Y. Endometrial injury increases side population cells in the uterine endometrium: a decisive role of estrogen. Tohoku J Exp Med. 2011;224:47–55.CrossRefPubMed
9.
go back to reference Forte A, Schettino MT, Finicelli M, Cipollaro M, Colacurci N, Cobellis L, et al. Expression pattern of stemness-related genes in humanendometrial and endometriotic tissues. Mol Med. 2009;15:392–401.CrossRefPubMedPubMedCentral Forte A, Schettino MT, Finicelli M, Cipollaro M, Colacurci N, Cobellis L, et al. Expression pattern of stemness-related genes in humanendometrial and endometriotic tissues. Mol Med. 2009;15:392–401.CrossRefPubMedPubMedCentral
10.
go back to reference Chang JH, Au HK, Lee WC, Chi CC, Ling TY, Wang LM, et al. Expression of the pluripotent transcription factor OCT4 promotes cell migration in endometriosis. Fertil Steril. 2013;99:1332–9.CrossRefPubMed Chang JH, Au HK, Lee WC, Chi CC, Ling TY, Wang LM, et al. Expression of the pluripotent transcription factor OCT4 promotes cell migration in endometriosis. Fertil Steril. 2013;99:1332–9.CrossRefPubMed
11.
go back to reference Song Y, Xiao L, Fu J, Huang W, Wang Q, Zhang X, Yang S. Increased expression of the pluripotency markers sex-determining region Y-box 2 and Nanog homeobox in ovarian endometriosis. Reprod Biol Endocrinol. 2014;12:42.CrossRefPubMedPubMedCentral Song Y, Xiao L, Fu J, Huang W, Wang Q, Zhang X, Yang S. Increased expression of the pluripotency markers sex-determining region Y-box 2 and Nanog homeobox in ovarian endometriosis. Reprod Biol Endocrinol. 2014;12:42.CrossRefPubMedPubMedCentral
13.
go back to reference Xu RH, Sampsell-Barron TL, Gu F, Root S, Peck RM, Pan G, et al. NANOG is a direct target of TGF beta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell. 2008;3:196–206.CrossRefPubMedPubMedCentral Xu RH, Sampsell-Barron TL, Gu F, Root S, Peck RM, Pan G, et al. NANOG is a direct target of TGF beta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell. 2008;3:196–206.CrossRefPubMedPubMedCentral
14.
go back to reference Fischetti F, Carretta R, Borotto G, Durigutto P, Bulla R, Meroni PL, et al. Fluvastatin treatment inhibits leucocyte adhesion and extravasation in models of complement-mediated acute inflammation. Clin Exp Immunol. 2004;135:186–93.CrossRefPubMedPubMedCentral Fischetti F, Carretta R, Borotto G, Durigutto P, Bulla R, Meroni PL, et al. Fluvastatin treatment inhibits leucocyte adhesion and extravasation in models of complement-mediated acute inflammation. Clin Exp Immunol. 2004;135:186–93.CrossRefPubMedPubMedCentral
15.
go back to reference Buttram V, Gomel V, Siegler A, DeCherney A, Gibbons W, March C. The american fertility society classifications of adnexal adhesions, distal tubal occlusion, tubal occlusion secondary to tubal ligation, tubal pregnancies, mullerian anomalies and intrauterine adhesions. Fertil Steril. 1988;49:944–55.CrossRef Buttram V, Gomel V, Siegler A, DeCherney A, Gibbons W, March C. The american fertility society classifications of adnexal adhesions, distal tubal occlusion, tubal occlusion secondary to tubal ligation, tubal pregnancies, mullerian anomalies and intrauterine adhesions. Fertil Steril. 1988;49:944–55.CrossRef
16.
go back to reference Martin L, Finn C, Trinder G. Hypertrophy and hyperplasia in the mouse uterus after ostrogen treatment: an autoradiographic study. J Endocrinol. 1973;56:133–44.CrossRefPubMed Martin L, Finn C, Trinder G. Hypertrophy and hyperplasia in the mouse uterus after ostrogen treatment: an autoradiographic study. J Endocrinol. 1973;56:133–44.CrossRefPubMed
17.
go back to reference Ogura N, Matsuda U, Tanaka F, Shibata Y, Takiguchi H, Abiko Y. In vitro senescence enhances IL-6 production in human gingival fibroblasts induced by lipopolysaccharide from campylobacterrectus. Mech Ageing Dev. 1996;87:47–59.CrossRefPubMed Ogura N, Matsuda U, Tanaka F, Shibata Y, Takiguchi H, Abiko Y. In vitro senescence enhances IL-6 production in human gingival fibroblasts induced by lipopolysaccharide from campylobacterrectus. Mech Ageing Dev. 1996;87:47–59.CrossRefPubMed
18.
go back to reference Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA. 2004;292:81–5.CrossRefPubMed Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA. 2004;292:81–5.CrossRefPubMed
19.
go back to reference Kato K, Yoshimoto M, Kato K, Adachi S, Yamayoshi A, Arima T, et al. Characterization of side-population cells in human normal endometrium. Hum Reprod. 2007;22:1214–23.CrossRefPubMed Kato K, Yoshimoto M, Kato K, Adachi S, Yamayoshi A, Arima T, et al. Characterization of side-population cells in human normal endometrium. Hum Reprod. 2007;22:1214–23.CrossRefPubMed
20.
go back to reference Tibbetts TA, Conneely OM, O’Malley BW. Progesterone via its receptor antagonizes the pro-inflammatory activity of estrogen in the mouse uterus. Biol Reprod. 1999;60:1158–65.CrossRefPubMed Tibbetts TA, Conneely OM, O’Malley BW. Progesterone via its receptor antagonizes the pro-inflammatory activity of estrogen in the mouse uterus. Biol Reprod. 1999;60:1158–65.CrossRefPubMed
21.
go back to reference Gargett CE, Chan RW. Endometrial stem/progenitor cells and proliferative disorders of the endometrium. Minerva Ginecol. 2006;58:511–26.PubMed Gargett CE, Chan RW. Endometrial stem/progenitor cells and proliferative disorders of the endometrium. Minerva Ginecol. 2006;58:511–26.PubMed
22.
go back to reference Duan Z, Ma C, Han Y, Li Y, Zhou H. Nanog attenuates lipopolysaccharide-induced inflammatory responses by blocking nuclear factor-κB transcriptional activity in BV-2 cells. Neuro Rep. 2013;24:718–23. Duan Z, Ma C, Han Y, Li Y, Zhou H. Nanog attenuates lipopolysaccharide-induced inflammatory responses by blocking nuclear factor-κB transcriptional activity in BV-2 cells. Neuro Rep. 2013;24:718–23.
23.
go back to reference Zhou H, Chen S, Wang W, Wang Z, Wu X, Zhang Z. Nanog inhibits lipopolysaccharide-induced expression of pro-inflammatory cytokines by blocking NF-κB transcriptional activity in rat primary microglial cells. Mol Med Rep. 2012;5:842–6.PubMed Zhou H, Chen S, Wang W, Wang Z, Wu X, Zhang Z. Nanog inhibits lipopolysaccharide-induced expression of pro-inflammatory cytokines by blocking NF-κB transcriptional activity in rat primary microglial cells. Mol Med Rep. 2012;5:842–6.PubMed
24.
go back to reference Liu K, Jiang M, Lu Y, Chen H, Sun J, Wu S, et al. Sox2 cooperates with inflammation-mediated stat3 activation in the malignant transformation of foregut basal progenitor cells. Cell Stem Cell. 2013;12:304–15.CrossRefPubMedPubMedCentral Liu K, Jiang M, Lu Y, Chen H, Sun J, Wu S, et al. Sox2 cooperates with inflammation-mediated stat3 activation in the malignant transformation of foregut basal progenitor cells. Cell Stem Cell. 2013;12:304–15.CrossRefPubMedPubMedCentral
25.
go back to reference Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56.CrossRefPubMedPubMedCentral Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56.CrossRefPubMedPubMedCentral
26.
go back to reference Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, et al. Functional expression cloning of nanog, a pluripotency-sustaining factor in embryonic stem cells. Cell. 2003;113:643–55.CrossRefPubMed Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, et al. Functional expression cloning of nanog, a pluripotency-sustaining factor in embryonic stem cells. Cell. 2003;113:643–55.CrossRefPubMed
27.
go back to reference Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.CrossRefPubMed Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.CrossRefPubMed
28.
go back to reference Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell. 2008;133:1106–17.CrossRefPubMed Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell. 2008;133:1106–17.CrossRefPubMed
29.
go back to reference Chew JL, Loh YH, Zhang W, Chen X, Tam WL, Yeap LS, et al. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol. 2005;25:6031–46.CrossRefPubMedPubMedCentral Chew JL, Loh YH, Zhang W, Chen X, Tam WL, Yeap LS, et al. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol. 2005;25:6031–46.CrossRefPubMedPubMedCentral
Metadata
Title
Expression of SOX2, NANOG and OCT4 in a mouse model of lipopolysaccharide-induced acute uterine injury and intrauterine adhesions
Authors
Li Xiao
Yong Song
Wei Huang
Shiyuan Yang
Jing Fu
Xue Feng
Min Zhou
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2017
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-017-0234-9

Other articles of this Issue 1/2017

Reproductive Biology and Endocrinology 1/2017 Go to the issue