Skip to main content
Top
Published in: World Journal of Surgical Oncology 1/2015

Open Access 01-12-2015 | Research

Expression and clinical significance of long non-coding RNA HNF1A-AS1 in human gastric cancer

Authors: Yuan Dang, Fenghua Lan, Xiaojuan Ouyang, Kai Wang, Youdong Lin, Yinghao Yu, Lie Wang, Yu Wang, Qiaojia Huang

Published in: World Journal of Surgical Oncology | Issue 1/2015

Login to get access

Abstract

Background

Increasing evidence has demonstrated that long non-coding RNAs (lncRNAs) play essential roles in the occurrence and development of human cancers, including gastric cancer (GC). However, the functional and clinical significance of lncRNAs are still poorly understood.

Methods

In this study, the expression of LncRNA HNF1A antisense RNA 1 (HNF1A-AS1) was first examined by lncRNAs microarray analysis in 6 GC tissues, and was then further verified by real-time quantitative reverse transcription PCR (qRT-PCR) both in 3 GC cell lines and 161 cases of GC tissues. We also evaluated the association between HNF1A-AS1 expression and clinicopathological features of patients with GC.

Results

LncRNAs microarray analysis results exhibited that HNF1A-AS1 was downregulated in GCs tissues (mean fold change 2.06, p < 0.05), which was further confirmed by qRT-PCR. The results from qRT-PCR showed that the expression of HNF1A-AS1 was not only downregulated in three GC cell lines (AGS, BGC-823, and MKN-45) relative to that in a normal gastric mucosal epithelial cell line (GES-1), but also decreased in GC tissues relative to that in paired adjacent non-neoplastic tissues (low expression, 94 of 161; low expression rate, 58.38 %). Furthermore, low HNF1A-AS1 expression was associated with tumor size/diameter (p = 0.005, multivariate analysis), levels of serum carcinoembryonic antigen (CEA), and carbohydrate antigen 19-9 (CA19-9), and RRM1 expression in tissue samples (p = 0.028, p = 0.009, and p = 0.006, respectively).

Conclusions

Taken together, our data indicate that lncRNA HNF1A-AS1 may be a regulator of GC, and thus, it may have potential as a novel biomarker and treatment target for this type of cancer.
Literature
1.
go back to reference Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006;24:2137–50.CrossRefPubMed Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006;24:2137–50.CrossRefPubMed
2.
go back to reference Yamashita K, Sakuramoto S, Nemoto M, Shibata T, Mieno H, Katada N, et al.Trend in gastric cancer: 35 years of surgical experience in Japan. World J Gastroenterol. 2011;17:3390–7.PubMedCentralCrossRefPubMed Yamashita K, Sakuramoto S, Nemoto M, Shibata T, Mieno H, Katada N, et al.Trend in gastric cancer: 35 years of surgical experience in Japan. World J Gastroenterol. 2011;17:3390–7.PubMedCentralCrossRefPubMed
3.
go back to reference Dang Y, Wang YC, Huang QJ. Microarray and next-generation sequencing to analyse gastric cancer. Asian Pac J Cancer Prev. 2014;15:8033–9.PubMed Dang Y, Wang YC, Huang QJ. Microarray and next-generation sequencing to analyse gastric cancer. Asian Pac J Cancer Prev. 2014;15:8033–9.PubMed
4.
5.
go back to reference Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316(5830):1484–8.CrossRefPubMed Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316(5830):1484–8.CrossRefPubMed
6.
go back to reference Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155–9.CrossRefPubMed Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155–9.CrossRefPubMed
8.
10.
go back to reference Wang Y, Feng X, Jia R, Liu G, Zhang M, Fan D, et al. Microarray expression profile analysis of long non-coding RNAs of advanced stage human gastric cardia adenocarcinoma. Mol Genet Genomics. 2014;289:291–302.CrossRefPubMed Wang Y, Feng X, Jia R, Liu G, Zhang M, Fan D, et al. Microarray expression profile analysis of long non-coding RNAs of advanced stage human gastric cardia adenocarcinoma. Mol Genet Genomics. 2014;289:291–302.CrossRefPubMed
11.
go back to reference Song H, Sun W, Ye G, Ding X, Liu Z, Zhang S, et al. Long non-coding RNA expression profile in human gastric cancer and its clinical significances. J Transl Med. 2013;11:225.PubMedCentralCrossRefPubMed Song H, Sun W, Ye G, Ding X, Liu Z, Zhang S, et al. Long non-coding RNA expression profile in human gastric cancer and its clinical significances. J Transl Med. 2013;11:225.PubMedCentralCrossRefPubMed
12.
go back to reference Shao Y, Chen H, Jiang X, Chen S, Li P, Ye M, et al. Low expression of lncRNA-HMlincRNA717 in human gastric cancer and its clinical significances. Tumour Biol. 2014;35:9591–5.CrossRefPubMed Shao Y, Chen H, Jiang X, Chen S, Li P, Ye M, et al. Low expression of lncRNA-HMlincRNA717 in human gastric cancer and its clinical significances. Tumour Biol. 2014;35:9591–5.CrossRefPubMed
13.
go back to reference Yang X, Song JH, Cheng Y, Wu W, Bhagat T, Yu Y, et al. Long non-coding RNA HNF1A-AS1 regulates proliferation and migration in oesophageal adenocarcinoma cells. Gut. 2014;63:881–90.CrossRefPubMed Yang X, Song JH, Cheng Y, Wu W, Bhagat T, Yu Y, et al. Long non-coding RNA HNF1A-AS1 regulates proliferation and migration in oesophageal adenocarcinoma cells. Gut. 2014;63:881–90.CrossRefPubMed
14.
go back to reference Li CH, Chen Y. Targeting long non-coding RNAs in cancers: progress and prospects. Inter J Biochem Cell Biol. 2013;45:1895–910.CrossRef Li CH, Chen Y. Targeting long non-coding RNAs in cancers: progress and prospects. Inter J Biochem Cell Biol. 2013;45:1895–910.CrossRef
15.
go back to reference Tang JY, Lee JC, Chang YT, Hou MF, Huang HW, Liaw CC, et al. Long noncoding RNAs-related diseases, cancers, and drugs. Scientific World Journal. 2013;943539. Tang JY, Lee JC, Chang YT, Hou MF, Huang HW, Liaw CC, et al. Long noncoding RNAs-related diseases, cancers, and drugs. Scientific World Journal. 2013;943539.
16.
go back to reference Sun W, Wu Y, Yu X, Liu X, Song H, Xia T, et al. Decreased expression of long noncoding RNA AC096655.1-002 in gastric cancer and its clinical significance. Tumour Biol. 2013;34:2697–701.CrossRefPubMed Sun W, Wu Y, Yu X, Liu X, Song H, Xia T, et al. Decreased expression of long noncoding RNA AC096655.1-002 in gastric cancer and its clinical significance. Tumour Biol. 2013;34:2697–701.CrossRefPubMed
17.
go back to reference He X, Bao W, Li X, Chen Z, Che Q, Wang H, et al. The long non-coding RNA HOTAIR is upregulated in endometrial carcinoma and correlates with poor prognosis. Int J Mol Med. 2014;33:325–32.PubMed He X, Bao W, Li X, Chen Z, Che Q, Wang H, et al. The long non-coding RNA HOTAIR is upregulated in endometrial carcinoma and correlates with poor prognosis. Int J Mol Med. 2014;33:325–32.PubMed
18.
go back to reference Zhang EB, Yin DD, Sun M, Kong R, Liu XH, You LH, et al. P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell Death Dis. 2014;5:e1243.PubMedCentralCrossRefPubMed Zhang EB, Yin DD, Sun M, Kong R, Liu XH, You LH, et al. P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell Death Dis. 2014;5:e1243.PubMedCentralCrossRefPubMed
19.
go back to reference Huang MD, Chen WM, Qi FZ, Sun M, Xu TP, Ma P, et al. Long non-coding RNA TUG1 is up-regulated in hepatocellular carcinoma and promotes cell growth and apoptosis by epigenetically silencing of KLF2. Mol Cancer. 2015;14(1):165.PubMedCentralCrossRefPubMed Huang MD, Chen WM, Qi FZ, Sun M, Xu TP, Ma P, et al. Long non-coding RNA TUG1 is up-regulated in hepatocellular carcinoma and promotes cell growth and apoptosis by epigenetically silencing of KLF2. Mol Cancer. 2015;14(1):165.PubMedCentralCrossRefPubMed
20.
go back to reference Wang Q, Liu X, Zhou J, Huang Y, Zhang S, Shen J, et al. Ribonucleotide reductase large subunit M1 predicts poor survival due to modulation of proliferative and invasive ability of gastric cancer. PLoS One. 2013;8, e70191.PubMedCentralCrossRefPubMed Wang Q, Liu X, Zhou J, Huang Y, Zhang S, Shen J, et al. Ribonucleotide reductase large subunit M1 predicts poor survival due to modulation of proliferative and invasive ability of gastric cancer. PLoS One. 2013;8, e70191.PubMedCentralCrossRefPubMed
Metadata
Title
Expression and clinical significance of long non-coding RNA HNF1A-AS1 in human gastric cancer
Authors
Yuan Dang
Fenghua Lan
Xiaojuan Ouyang
Kai Wang
Youdong Lin
Yinghao Yu
Lie Wang
Yu Wang
Qiaojia Huang
Publication date
01-12-2015
Publisher
BioMed Central
Published in
World Journal of Surgical Oncology / Issue 1/2015
Electronic ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-015-0706-3

Other articles of this Issue 1/2015

World Journal of Surgical Oncology 1/2015 Go to the issue