Skip to main content
Top
Published in: Journal of Inflammation 1/2018

Open Access 01-12-2018 | Research

Suppression of hyperexcitability of trigeminal nociceptive neurons associated with inflammatory hyperalgesia following systemic administration of lutein via inhibition of cyclooxygenase-2 cascade signaling

Authors: Yumiko Syoji, Ryota Kobayashi, Nako Miyamura, Tsukasa Hirohara, Yoshiko Kubota, Nobuo Uotsu, Kei Yui, Yoshihito Shimazu, Mamoru Takeda

Published in: Journal of Inflammation | Issue 1/2018

Login to get access

Abstract

Introduction

Lutein is a dietary constituent known to inhibit inflammation; however, its effect on nociceptive neuron-associated hyperalgesia remains to be determined. The present study therefore investigated under in vivo conditions whether administration of lutein attenuates the inflammation-induced hyperexcitability of trigeminal spinal nucleus caudalis (SpVc) neurons that is associated with mechanical hyperalgesia.

Results

Complete Freund’s adjuvant (CFA) was injected into the whisker pads of rats to induce inflammation, and then mechanical stimulation was applied to the orofacial area to assess the threshold of escape. The mechanical threshold was significantly lower in inflamed rats compared to uninjected naïve rats, and this lowered threshold was returned to control levels by 3 days after administration of lutein (10 mg/Kg, i.p.) Also the lutein administration, inflammation-induced thickness of edema was returned to control levels. The mean increased number of cyclooxygenase-2 (Cox-2)-immunoreactive cells in the whisker pads of inflamed rats was also returned to control levels by administration with lutein. The mean discharge frequency of SpVc wide-dynamic range (WDR) neurons to both nonnoxious and noxious mechanical stimuli in inflamed rats was significantly decreased after lutein administration. In addition, the increased mean spontaneous discharge of SpVc WDR in inflamed rats was significantly decreased after lutein administration. Similarly, lutein significantly diminished noxious pinch-evoked mean after discharge frequency and occurrence in inflamed rats. Finally, lutein restored the expanded mean size of the receptive field in inflamed rats to control levels.

Conclusion

These results together suggest that administration of lutein attenuates inflammatory hyperalgesia associated with hyperexcitability of nociceptive SpVc WDR neurons via inhibition of the peripheral Cox-2 signaling cascade. These findings support the proposed potential of lutein as a therapeutic agent in complementary alternative medicine strategies for preventing inflammatory mechanical hyperalgesia.
Literature
1.
go back to reference Sessle BJ. Acute and chronic craniofacial pain: brainstem mechanisms of nocicepitive transmission and neuroplasticity and their clinical correlates. Crit Rev Oral Biol Med. 2000;11:57–91.CrossRef Sessle BJ. Acute and chronic craniofacial pain: brainstem mechanisms of nocicepitive transmission and neuroplasticity and their clinical correlates. Crit Rev Oral Biol Med. 2000;11:57–91.CrossRef
2.
go back to reference Iwata K, Takeda M, Seog B, Shinoda M. Neurophysiology of orofacial pain. In: Farah CS, et al., editors. Contemporary Oral Medichine, vol. 2017. Switzerland: Springer International Publishing; 2017. p. 1–23. Iwata K, Takeda M, Seog B, Shinoda M. Neurophysiology of orofacial pain. In: Farah CS, et al., editors. Contemporary Oral Medichine, vol. 2017. Switzerland: Springer International Publishing; 2017. p. 1–23.
3.
go back to reference Takeda M, Takahashi M, Matsumoto S. Suppression of neurokinin-1 receptor in trigeminal ganglia attenuates central sensitization following inflammation. J Periph Nerv Syst. 2012;17:169–81.CrossRef Takeda M, Takahashi M, Matsumoto S. Suppression of neurokinin-1 receptor in trigeminal ganglia attenuates central sensitization following inflammation. J Periph Nerv Syst. 2012;17:169–81.CrossRef
4.
5.
go back to reference Millan MJ. The induction of pain: an integrative review. Prog Neurobiol. 1999;57:1–164.CrossRef Millan MJ. The induction of pain: an integrative review. Prog Neurobiol. 1999;57:1–164.CrossRef
6.
go back to reference Imbe H, Iwata K, Zhou Q, Zou S, Dubner R, Ren K. Orofacial deep and cutaneous tissue inflammation and trigeminal neuronal activation. Implications for persistent temporomandibular pain Cells Tissues Organs. 2001;169:238–47.CrossRef Imbe H, Iwata K, Zhou Q, Zou S, Dubner R, Ren K. Orofacial deep and cutaneous tissue inflammation and trigeminal neuronal activation. Implications for persistent temporomandibular pain Cells Tissues Organs. 2001;169:238–47.CrossRef
7.
go back to reference Iwata K, Tashiro A, Tsuboi Y, Imai T, Sumino R, Morimoto T, Dubner R, Ren K. Medullary dorsal horn neuronal activity in rats with persistent temporomandibular joint and perioral inflammation. J Neurophysiol. 1999;82:1244–53.CrossRef Iwata K, Tashiro A, Tsuboi Y, Imai T, Sumino R, Morimoto T, Dubner R, Ren K. Medullary dorsal horn neuronal activity in rats with persistent temporomandibular joint and perioral inflammation. J Neurophysiol. 1999;82:1244–53.CrossRef
8.
go back to reference Takeda M, Takahashi M, Kitagawa J, Kanazawa T, Nasu M, Matsumoto S. Brain-derived neurotrophic factor enhances the excitability of small-diameter trigeminal ganglion neurons projecting to the trigeminal nucleus interpolaris/caudalis transition zone following masseter muscle inflammation. Mol Pain. 2013;9:49.CrossRef Takeda M, Takahashi M, Kitagawa J, Kanazawa T, Nasu M, Matsumoto S. Brain-derived neurotrophic factor enhances the excitability of small-diameter trigeminal ganglion neurons projecting to the trigeminal nucleus interpolaris/caudalis transition zone following masseter muscle inflammation. Mol Pain. 2013;9:49.CrossRef
9.
go back to reference Takeda M, Takahashi M, Nasu M, Matsumoto S. Peripheral inflammation suppresses inward rectifying potassium currents of satellite glial cells in the trigeminal ganglia. Pain. 2011;152:2147–56.CrossRef Takeda M, Takahashi M, Nasu M, Matsumoto S. Peripheral inflammation suppresses inward rectifying potassium currents of satellite glial cells in the trigeminal ganglia. Pain. 2011;152:2147–56.CrossRef
10.
go back to reference Alves-Rodrigues A, Shao A. The science behind lutein. Toxicol Lett. 2004;150:57–83.CrossRef Alves-Rodrigues A, Shao A. The science behind lutein. Toxicol Lett. 2004;150:57–83.CrossRef
11.
go back to reference Horvath G, Szoke E, Kemeny A, Bagoly T, Deli J, Szente L, Pal S, Sandor K, Szolcsanyi J, Helyes Z. Lutein inhibits the function of the transient receptor potential A1 Ion Channel in different in vitro and in vivo models. J Mol Neurosci. 2012;46:1–9.CrossRef Horvath G, Szoke E, Kemeny A, Bagoly T, Deli J, Szente L, Pal S, Sandor K, Szolcsanyi J, Helyes Z. Lutein inhibits the function of the transient receptor potential A1 Ion Channel in different in vitro and in vivo models. J Mol Neurosci. 2012;46:1–9.CrossRef
12.
go back to reference Horváth G, Kemény Á, Barthó L, Molnár P, Deli J, Szente L, Bozó T, Pál S, Sándor K, Szőke É, Szolcsányi J, Helyes Z. Effects of some natural carotenoids on TRPA1- and TRPV1-induced neurogenic inflammatory processes in vivo in the mouse skin. J Mol Neurosci. 2005;56:113–21.CrossRef Horváth G, Kemény Á, Barthó L, Molnár P, Deli J, Szente L, Bozó T, Pál S, Sándor K, Szőke É, Szolcsányi J, Helyes Z. Effects of some natural carotenoids on TRPA1- and TRPV1-induced neurogenic inflammatory processes in vivo in the mouse skin. J Mol Neurosci. 2005;56:113–21.CrossRef
13.
go back to reference Kwan KY, Glazer JM, Corey DP, Rice FL, Stucky CL. TRPA1 modulates mechanotransduction in cutaneous sensory neurons. J Neurosci. 2009;29:4808–19.CrossRef Kwan KY, Glazer JM, Corey DP, Rice FL, Stucky CL. TRPA1 modulates mechanotransduction in cutaneous sensory neurons. J Neurosci. 2009;29:4808–19.CrossRef
14.
go back to reference Choi JS, Kim D, Hong YM, Mizuno S, Joo CK. Inhibition of nNOS and COX-2 expression by lutein in acute retinal ischemia. Nutrition. 2006;22:668–71.CrossRef Choi JS, Kim D, Hong YM, Mizuno S, Joo CK. Inhibition of nNOS and COX-2 expression by lutein in acute retinal ischemia. Nutrition. 2006;22:668–71.CrossRef
15.
go back to reference Izumi-Nagai K, Nagai N, Ohgami K, Satofuka S, Ozawa Y, Tsubota K, Umezawa K, Ohno S, Oike Y, Ishida S. Macular pigment lutein is antiinflammatory in preventing choroidal neovascularization. Arterioscler Thromb Vasc Biol. 2007;27:2555–62.CrossRef Izumi-Nagai K, Nagai N, Ohgami K, Satofuka S, Ozawa Y, Tsubota K, Umezawa K, Ohno S, Oike Y, Ishida S. Macular pigment lutein is antiinflammatory in preventing choroidal neovascularization. Arterioscler Thromb Vasc Biol. 2007;27:2555–62.CrossRef
16.
go back to reference Sasaki M, Ozawa Y, Kurihara T, Noda K. ImamuraY, Kobayashi S, Ishida S, Tsubota K. neuroprotective effect of an antioxidant, lutein, during retinal inflammation. Inv Ophthal Vis Sci. 2009;50:1433–9.CrossRef Sasaki M, Ozawa Y, Kurihara T, Noda K. ImamuraY, Kobayashi S, Ishida S, Tsubota K. neuroprotective effect of an antioxidant, lutein, during retinal inflammation. Inv Ophthal Vis Sci. 2009;50:1433–9.CrossRef
17.
go back to reference Sekiguchi K, Takehana S, Shibuya E, Matsuzawa N, Hidaka S, Kanai Y, Inoue M, Kubota Y, Shimazu Y, Takeda M. Resveratrol attenuates inflammation induced hyperexcitability of trigeminal spinal nucleus caudalis neurons associated with hyperalgesia in rats. Mol Pain. 2016;12:1–11.CrossRef Sekiguchi K, Takehana S, Shibuya E, Matsuzawa N, Hidaka S, Kanai Y, Inoue M, Kubota Y, Shimazu Y, Takeda M. Resveratrol attenuates inflammation induced hyperexcitability of trigeminal spinal nucleus caudalis neurons associated with hyperalgesia in rats. Mol Pain. 2016;12:1–11.CrossRef
18.
go back to reference Konvicka JJ, Meyer TA, McDavid AJ, Roberson CR. Complementary/ alternative medicine use among chronic pain clinic patients. J Perianesth Nurs. 2008;23:17–23.CrossRef Konvicka JJ, Meyer TA, McDavid AJ, Roberson CR. Complementary/ alternative medicine use among chronic pain clinic patients. J Perianesth Nurs. 2008;23:17–23.CrossRef
19.
go back to reference Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983;16:109–10.CrossRef Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983;16:109–10.CrossRef
20.
go back to reference Takeda M, Tanimoto T, Ikeda M, Nasu M, Kadoi J, Shima Y, Ohta H, Matsumoto S. Temporomandibular joint inflammation potentiates the excitability of trigeminal root ganglion neurons innervating the facial skin in rats. J Neurophysiol. 2005;93:2723–38.CrossRef Takeda M, Tanimoto T, Ikeda M, Nasu M, Kadoi J, Shima Y, Ohta H, Matsumoto S. Temporomandibular joint inflammation potentiates the excitability of trigeminal root ganglion neurons innervating the facial skin in rats. J Neurophysiol. 2005;93:2723–38.CrossRef
21.
go back to reference Matsumoto Y, Komatsu K, Takehana S, Syoji Y, Kobayashi A, Shimazu Y, Takeda M. Resveratrol suppress c-fos expression of rat trigeminal spinal nucleus caudalis and C1 dorsal horn neurons following mustard oil-induced acute inflammation. Eur J Oral Sci. 2017;125:338–44.CrossRef Matsumoto Y, Komatsu K, Takehana S, Syoji Y, Kobayashi A, Shimazu Y, Takeda M. Resveratrol suppress c-fos expression of rat trigeminal spinal nucleus caudalis and C1 dorsal horn neurons following mustard oil-induced acute inflammation. Eur J Oral Sci. 2017;125:338–44.CrossRef
22.
go back to reference Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 2nd ed. New York: Academic Press; 1986. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 2nd ed. New York: Academic Press; 1986.
23.
go back to reference Takehana S, Srkiguchi K, Inoue M, Kubota Y, Ito Y, Yui K, Shimazu Y, Takeda M. Systemic administration of resveratrol suppress the nociceptive neuronal activity of spinal trigeminal nucleus caudalis in rats. Brain Res Bull. 2016;120:117–22.CrossRef Takehana S, Srkiguchi K, Inoue M, Kubota Y, Ito Y, Yui K, Shimazu Y, Takeda M. Systemic administration of resveratrol suppress the nociceptive neuronal activity of spinal trigeminal nucleus caudalis in rats. Brain Res Bull. 2016;120:117–22.CrossRef
24.
go back to reference Takeda M, Tanimoto T, Matsumoto S. Change in mechanical receptive field properties induced by GABAA receptor activation in the trigeminal spinal nucleus caudalis neurons in rats. Exp Brain Res. 2000;134:409–16.CrossRef Takeda M, Tanimoto T, Matsumoto S. Change in mechanical receptive field properties induced by GABAA receptor activation in the trigeminal spinal nucleus caudalis neurons in rats. Exp Brain Res. 2000;134:409–16.CrossRef
25.
go back to reference Ness TJ. Intravenous lidocaine inhibits nociceptive reflex and spinal neurons in the rat. Anesthesiology. 2000;92:1685–91.CrossRef Ness TJ. Intravenous lidocaine inhibits nociceptive reflex and spinal neurons in the rat. Anesthesiology. 2000;92:1685–91.CrossRef
26.
go back to reference Takeda M, Matsumoto S, Sessle BJ, Shinoda M, Iwata K. Peripheral and central mechanisms of trigeminal neuropathic and inflammatory pain. Journal of Oral Biosciences. 2011;53:318–29.CrossRef Takeda M, Matsumoto S, Sessle BJ, Shinoda M, Iwata K. Peripheral and central mechanisms of trigeminal neuropathic and inflammatory pain. Journal of Oral Biosciences. 2011;53:318–29.CrossRef
27.
go back to reference Harriott AM, Gold MS. Contribution of primary afferent channels to neuropathic pain. Curr Pain Headache Rep. 2009;13:197–207.CrossRef Harriott AM, Gold MS. Contribution of primary afferent channels to neuropathic pain. Curr Pain Headache Rep. 2009;13:197–207.CrossRef
28.
go back to reference Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD. The capsacin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–24.CrossRef Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD. The capsacin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–24.CrossRef
29.
go back to reference Kim HI, Kim TH, Song JH. Resveratrol inhibits Na+ currents in rat dorsal root ganglion neurons. Brain Res. 2005;1045:134–41.CrossRef Kim HI, Kim TH, Song JH. Resveratrol inhibits Na+ currents in rat dorsal root ganglion neurons. Brain Res. 2005;1045:134–41.CrossRef
30.
go back to reference Akopian AN, Sivilotti L, Wood JN. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature. 1996;379:257–62.CrossRef Akopian AN, Sivilotti L, Wood JN. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature. 1996;379:257–62.CrossRef
31.
go back to reference Kadoi M, Takeda M, Matsumoto S. Prostaglandin E2 potentiates the excitability of small-diameter trigeminal root ganglion neurons projecting onto the superficial layer of cervical dorsal horn in rats. Exp Brain Res. 2007;176:227–36.CrossRef Kadoi M, Takeda M, Matsumoto S. Prostaglandin E2 potentiates the excitability of small-diameter trigeminal root ganglion neurons projecting onto the superficial layer of cervical dorsal horn in rats. Exp Brain Res. 2007;176:227–36.CrossRef
32.
go back to reference Kitagawa J, Kanda K, Sugiura M, Tsuboi Y, Ogawa A, Shimizu K, Koyama N, Kamo H, Watanabe T, Ren K, Iwata K. Effect of chronic inflammation on dorsal horn nociceptive neurons in aged rats. J Neurophysiol. 2005;93:3594–604.CrossRef Kitagawa J, Kanda K, Sugiura M, Tsuboi Y, Ogawa A, Shimizu K, Koyama N, Kamo H, Watanabe T, Ren K, Iwata K. Effect of chronic inflammation on dorsal horn nociceptive neurons in aged rats. J Neurophysiol. 2005;93:3594–604.CrossRef
33.
go back to reference Tsuboi Y, Iwata K, Dostrovsky JO, Chiang CY, Sessle BJ, Hu JW. Modulation of astroglial glutamine synthetase activity affects nociceptive behavior and central sensitization of medullary dorsal horn nociceptive neurons in a rat model of chronic pulpitis. Eur J Neurosci. 2011;34:292–302.CrossRef Tsuboi Y, Iwata K, Dostrovsky JO, Chiang CY, Sessle BJ, Hu JW. Modulation of astroglial glutamine synthetase activity affects nociceptive behavior and central sensitization of medullary dorsal horn nociceptive neurons in a rat model of chronic pulpitis. Eur J Neurosci. 2011;34:292–302.CrossRef
34.
go back to reference Radhakrishnan V, Henry JL. Antagonism of nociceptive responses of cat spinal dorsal horn neurons in vivo by the NK-1 receptor antagonists CP-96,345 and CP-99,994, but not by CP-96,344. Neuroscience. 1995;64:943–58.CrossRef Radhakrishnan V, Henry JL. Antagonism of nociceptive responses of cat spinal dorsal horn neurons in vivo by the NK-1 receptor antagonists CP-96,345 and CP-99,994, but not by CP-96,344. Neuroscience. 1995;64:943–58.CrossRef
35.
go back to reference Higashima M, Ohno K, Kinoshit H, Koshino Y. Involvement of GABA(a) and GABA(B) receptors in afterdischarge generation in rat hippocampal slices. Brain Res. 2000;865:186–93.CrossRef Higashima M, Ohno K, Kinoshit H, Koshino Y. Involvement of GABA(a) and GABA(B) receptors in afterdischarge generation in rat hippocampal slices. Brain Res. 2000;865:186–93.CrossRef
36.
go back to reference Burstein R, Cutrer MF, Yarnitsky D. The development of cutaneous allodynia during a migraine attack clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine. Brain. 2000;123:1703–9.CrossRef Burstein R, Cutrer MF, Yarnitsky D. The development of cutaneous allodynia during a migraine attack clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine. Brain. 2000;123:1703–9.CrossRef
37.
go back to reference Roch M, Messlinger K, Kulchitsky V, Tichonovich O, Azev O, Koulchitsky S. Ongoing activity in trigeminal wide-dynamic range neurons is driven from the periphery. Neuroscience. 2007;150:681–91.CrossRef Roch M, Messlinger K, Kulchitsky V, Tichonovich O, Azev O, Koulchitsky S. Ongoing activity in trigeminal wide-dynamic range neurons is driven from the periphery. Neuroscience. 2007;150:681–91.CrossRef
38.
go back to reference Kessler RC, Soukup J, Davis RB, Foster DF, Wilkey SA, Van Rompay MI, Eisenberg DM. The use of complementary and alternative therapies to treat anxiety and depression in the United States. Am J Psychiatry. 2001;158:289–94.CrossRef Kessler RC, Soukup J, Davis RB, Foster DF, Wilkey SA, Van Rompay MI, Eisenberg DM. The use of complementary and alternative therapies to treat anxiety and depression in the United States. Am J Psychiatry. 2001;158:289–94.CrossRef
39.
go back to reference Rosenberg EI, Genao I, Chen I, Mechaber AJ, Wood JA, Faselis CJ. Complementary and alternative medicine use by primary care patients with chronic pain. Pain Med. 2008;9:1065–72.CrossRef Rosenberg EI, Genao I, Chen I, Mechaber AJ, Wood JA, Faselis CJ. Complementary and alternative medicine use by primary care patients with chronic pain. Pain Med. 2008;9:1065–72.CrossRef
40.
go back to reference Rivat C, Richebé P, Laboureyras E, Laulin JP, Havouis R, Noble F, Moulinoux JP, Simonnet G. Polyamine deficient diet to relieve pain hypersensitivity. Pain. 2008;137:125–37.CrossRef Rivat C, Richebé P, Laboureyras E, Laulin JP, Havouis R, Noble F, Moulinoux JP, Simonnet G. Polyamine deficient diet to relieve pain hypersensitivity. Pain. 2008;137:125–37.CrossRef
41.
go back to reference Shir Y, Raja SN, Weissman C, Campbell JN, Seltzer Z. Consumption of soy diet before nerve injury preempts the development of neuropathic pain in rats. Anesthesiology. 2001;95:1238–44.CrossRef Shir Y, Raja SN, Weissman C, Campbell JN, Seltzer Z. Consumption of soy diet before nerve injury preempts the development of neuropathic pain in rats. Anesthesiology. 2001;95:1238–44.CrossRef
42.
go back to reference Tall JM, Raja N. Dietary constituents as novel therapeutics for pain. Clin J Pain. 2004;20:19–26.CrossRef Tall JM, Raja N. Dietary constituents as novel therapeutics for pain. Clin J Pain. 2004;20:19–26.CrossRef
Metadata
Title
Suppression of hyperexcitability of trigeminal nociceptive neurons associated with inflammatory hyperalgesia following systemic administration of lutein via inhibition of cyclooxygenase-2 cascade signaling
Authors
Yumiko Syoji
Ryota Kobayashi
Nako Miyamura
Tsukasa Hirohara
Yoshiko Kubota
Nobuo Uotsu
Kei Yui
Yoshihito Shimazu
Mamoru Takeda
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Inflammation / Issue 1/2018
Electronic ISSN: 1476-9255
DOI
https://doi.org/10.1186/s12950-018-0200-0

Other articles of this Issue 1/2018

Journal of Inflammation 1/2018 Go to the issue