Skip to main content
Top
Published in: Journal of Inflammation 1/2018

Open Access 01-12-2018 | Research

In vitro suppression of inflammatory cytokine response by methionine sulfoximine

Authors: Tyler J. Peters, Amruta A. Jambekar, William S. A. Brusilow

Published in: Journal of Inflammation | Issue 1/2018

Login to get access

Abstract

Background

The glutamine synthetase inhibitor methionine sulfoximine (MSO), shown previously to prevent death caused by an inflammatory liver response in mice, was tested on in vitro production of cytokines by mouse peritoneal macrophages triggered with lipopolysaccharide (LPS).

Results

MSO significantly reduced the production of Interleukin 6 (IL-6) and Tumor Necrosis Factor Alpha (TNFα) at 4 and 6 h after LPS-treatment. This reduction did not result from decreased transcription of IL-6 and TNFα genes, and therefore appeared to result from post-transcriptional inhibition of synthesis of these cytokines. MSO treatment did not inhibit total protein synthesis and did not reduce the production of a third LPS-triggered cytokine CXCL1, so the effect was not a toxic or global downregulation of the LPS response. The anti-inflammatory effects of a glutamine synthetase inhibitor were seen even though the medium contained abundant (2 mM) glutamine, suggesting that the target for this activity was not glutamine synthetase. In agreement with this hypothesis, the L,R isomer of MSO, which does not inhibit glutamine synthetase and was previously thought to be inert, both significantly reduced IL-6 secretion in isolated macrophages and increased survival in a mouse model for inflammatory liver failure.

Conclusions

Our findings provide evidence for a novel target of MSO. Future attempts to identify the additional target would therefore also provide a target for therapies to treat diseases involving damaging cytokine responses.
Literature
1.
go back to reference Sellinger OZ, Weiler P,J. The nature of the inhibition in vitro of cerebral glutamine Synthetase by the Convulsant, methionine Sulfoximine. Biochem Pharmacol. 1963;12:989–1000.CrossRefPubMed Sellinger OZ, Weiler P,J. The nature of the inhibition in vitro of cerebral glutamine Synthetase by the Convulsant, methionine Sulfoximine. Biochem Pharmacol. 1963;12:989–1000.CrossRefPubMed
2.
go back to reference Ronzio RA, Rowe WB, Meister A. Studies on the mechanism of inhibition of glutamine synthetase by methionine sulfoximine. Biochemistry. 1969;8(3):1066–75.CrossRefPubMed Ronzio RA, Rowe WB, Meister A. Studies on the mechanism of inhibition of glutamine synthetase by methionine sulfoximine. Biochemistry. 1969;8(3):1066–75.CrossRefPubMed
3.
go back to reference Manning JM, Moore S, Rowe WB, Meister A. Identification of L-methionine S-sulfoximine as the diastereoisomer of L-methionine SR-sulfoximine that inhibits glutamine synthetase. Biochemistry. 1969;8(6):2681–5.CrossRefPubMed Manning JM, Moore S, Rowe WB, Meister A. Identification of L-methionine S-sulfoximine as the diastereoisomer of L-methionine SR-sulfoximine that inhibits glutamine synthetase. Biochemistry. 1969;8(6):2681–5.CrossRefPubMed
4.
go back to reference Brusilow WS, Peters TJ. Therapeutic effects of methionine sulfoximine in multiple diseases include and extend beyond inhibition of glutamine synthetase. Expert Opin Ther Targets. 2017;21(5):461–9.CrossRefPubMed Brusilow WS, Peters TJ. Therapeutic effects of methionine sulfoximine in multiple diseases include and extend beyond inhibition of glutamine synthetase. Expert Opin Ther Targets. 2017;21(5):461–9.CrossRefPubMed
5.
go back to reference Brusilow SW, Koehler RC, Traystman RJ, Cooper AJ. Astrocyte glutamine synthetase: importance in hyperammonemic syndromes and potential target for therapy. Neurotherapeutics. 2010;7(4):452–70.CrossRefPubMedPubMedCentral Brusilow SW, Koehler RC, Traystman RJ, Cooper AJ. Astrocyte glutamine synthetase: importance in hyperammonemic syndromes and potential target for therapy. Neurotherapeutics. 2010;7(4):452–70.CrossRefPubMedPubMedCentral
6.
go back to reference Ghoddoussi F, Galloway MP, Jambekar A, Bame M, Needleman R, Brusilow WS. Methionine sulfoximine, an inhibitor of glutamine synthetase, lowers brain glutamine and glutamate in a mouse model of ALS. J Neurol Sci. 2010;290(1–2):41–7.CrossRefPubMed Ghoddoussi F, Galloway MP, Jambekar A, Bame M, Needleman R, Brusilow WS. Methionine sulfoximine, an inhibitor of glutamine synthetase, lowers brain glutamine and glutamate in a mouse model of ALS. J Neurol Sci. 2010;290(1–2):41–7.CrossRefPubMed
7.
go back to reference Brusilow WS. Identification of the isomer of methionine sulfoximine that extends the lifespan of the SOD1 G93A mouse. Neurosci Lett. 2017;647:165–7.CrossRefPubMed Brusilow WS. Identification of the isomer of methionine sulfoximine that extends the lifespan of the SOD1 G93A mouse. Neurosci Lett. 2017;647:165–7.CrossRefPubMed
8.
go back to reference Jambekar AA, Palma E, Nicolosi L, Rasola A, Petronilli V, Chiara F, Bernardi P, Needleman R, Brusilow WS. A glutamine synthetase inhibitor increases survival and decreases cytokine response in a mouse model of acute liver failure. Liver Int. 2011;31(8):1209–21.CrossRefPubMed Jambekar AA, Palma E, Nicolosi L, Rasola A, Petronilli V, Chiara F, Bernardi P, Needleman R, Brusilow WS. A glutamine synthetase inhibitor increases survival and decreases cytokine response in a mouse model of acute liver failure. Liver Int. 2011;31(8):1209–21.CrossRefPubMed
10.
go back to reference Esposito E, Cuzzocrea S. TNF-alpha as a therapeutic target in inflammatory diseases, ischemia-reperfusion injury and trauma. Curr Med Chem. 2009;16(24):3152–67.CrossRefPubMed Esposito E, Cuzzocrea S. TNF-alpha as a therapeutic target in inflammatory diseases, ischemia-reperfusion injury and trauma. Curr Med Chem. 2009;16(24):3152–67.CrossRefPubMed
11.
go back to reference Zhang X, Goncalves R, Mosser DM: The isolation and characterization of murine macrophages. Curr Protoc Immunol 2008, Chapter 14:Unit 14 11. Zhang X, Goncalves R, Mosser DM: The isolation and characterization of murine macrophages. Curr Protoc Immunol 2008, Chapter 14:Unit 14 11.
12.
go back to reference Simpson AE, Tomkins PT, Cooper KL. An investigation of the temporal induction of cytokine mRNAs in LPS-challenged thioglycollate-elicited murine peritoneal macrophages using the reverse transcription polymerase chain reaction. Inflamm Res. 1997;46(2):65–71.CrossRefPubMed Simpson AE, Tomkins PT, Cooper KL. An investigation of the temporal induction of cytokine mRNAs in LPS-challenged thioglycollate-elicited murine peritoneal macrophages using the reverse transcription polymerase chain reaction. Inflamm Res. 1997;46(2):65–71.CrossRefPubMed
13.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.CrossRefPubMed
14.
go back to reference Hines IN, Wheeler MD. Recent advances in alcoholic liver disease III. Role of the innate immune response in alcoholic hepatitis. Am J Physiol Gastrointest Liver Physiol. 2004;287(2):G310–4.CrossRefPubMed Hines IN, Wheeler MD. Recent advances in alcoholic liver disease III. Role of the innate immune response in alcoholic hepatitis. Am J Physiol Gastrointest Liver Physiol. 2004;287(2):G310–4.CrossRefPubMed
15.
go back to reference DeMarco V, Dyess K, Strauss D, West CM, Neu J. Inhibition of glutamine synthetase decreases proliferation of cultured rat intestinal epithelial cells. J Nutr. 1999;129(1):57–62.CrossRefPubMed DeMarco V, Dyess K, Strauss D, West CM, Neu J. Inhibition of glutamine synthetase decreases proliferation of cultured rat intestinal epithelial cells. J Nutr. 1999;129(1):57–62.CrossRefPubMed
17.
go back to reference Dadsetan S, Kukolj E, Bak LK, Sorensen M, Ott P, Vilstrup H, Schousboe A, Keiding S, Waagepetersen HS. Brain alanine formation as an ammonia-scavenging pathway during hyperammonemia: effects of glutamine synthetase inhibition in rats and astrocyte-neuron co-cultures. J Cereb Blood Flow Metab. 2013;33(8):1235–41.CrossRefPubMedPubMedCentral Dadsetan S, Kukolj E, Bak LK, Sorensen M, Ott P, Vilstrup H, Schousboe A, Keiding S, Waagepetersen HS. Brain alanine formation as an ammonia-scavenging pathway during hyperammonemia: effects of glutamine synthetase inhibition in rats and astrocyte-neuron co-cultures. J Cereb Blood Flow Metab. 2013;33(8):1235–41.CrossRefPubMedPubMedCentral
18.
go back to reference Sawant KV, Poluri KM, Dutta AK, Sepuru KM, Troshkina A, Garofalo RP, Rajarathnam K. Chemokine CXCL1 mediated neutrophil recruitment: role of glycosaminoglycan interactions. Sci Rep. 2016;6:33123.CrossRefPubMedPubMedCentral Sawant KV, Poluri KM, Dutta AK, Sepuru KM, Troshkina A, Garofalo RP, Rajarathnam K. Chemokine CXCL1 mediated neutrophil recruitment: role of glycosaminoglycan interactions. Sci Rep. 2016;6:33123.CrossRefPubMedPubMedCentral
19.
go back to reference Reid VC, Brabbs CE, Mitchinson MJ. Cellular damage in mouse peritoneal macrophages exposed to cholesteryl linoleate. Atherosclerosis. 1992;92(2–3):251–60.CrossRefPubMed Reid VC, Brabbs CE, Mitchinson MJ. Cellular damage in mouse peritoneal macrophages exposed to cholesteryl linoleate. Atherosclerosis. 1992;92(2–3):251–60.CrossRefPubMed
20.
go back to reference Hentchel KL, Escalante-Semerena JC. In Salmonella enterica, the Gcn5-related acetyltransferase MddA (formerly YncA) acetylates methionine sulfoximine and methionine sulfone, blocking their toxic effects. J Bacteriol. 2015;197(2):314–25.CrossRefPubMed Hentchel KL, Escalante-Semerena JC. In Salmonella enterica, the Gcn5-related acetyltransferase MddA (formerly YncA) acetylates methionine sulfoximine and methionine sulfone, blocking their toxic effects. J Bacteriol. 2015;197(2):314–25.CrossRefPubMed
21.
go back to reference Singh AK, Syiem MB, Singh RS, Adhikari S, Rai AN. A common transport system for methionine, L-methionine-DL-sulfoximine (MSX), and phosphinothricin (PPT) in the diazotrophic cyanobacterium Nostoc muscorum. Curr Microbiol. 2008;56(5):436–41.CrossRefPubMed Singh AK, Syiem MB, Singh RS, Adhikari S, Rai AN. A common transport system for methionine, L-methionine-DL-sulfoximine (MSX), and phosphinothricin (PPT) in the diazotrophic cyanobacterium Nostoc muscorum. Curr Microbiol. 2008;56(5):436–41.CrossRefPubMed
22.
go back to reference Newsholme P: Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? J Nutr 2001, 131(9 Suppl):2515S–2522S; discussion 2523S–2514S. Newsholme P: Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? J Nutr 2001, 131(9 Suppl):2515S–2522S; discussion 2523S–2514S.
23.
go back to reference Rowe WB, Meister A. Identification of L-methionine-S-sulfoximine as the convulsant isomer of methionine sulfoximine. Proc Natl Acad Sci U S A. 1970;66(2):500–6.CrossRefPubMedPubMedCentral Rowe WB, Meister A. Identification of L-methionine-S-sulfoximine as the convulsant isomer of methionine sulfoximine. Proc Natl Acad Sci U S A. 1970;66(2):500–6.CrossRefPubMedPubMedCentral
24.
26.
go back to reference Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011;1813(5):878–88.CrossRefPubMed Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011;1813(5):878–88.CrossRefPubMed
27.
go back to reference Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16(5):585–601.CrossRefPubMed Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16(5):585–601.CrossRefPubMed
29.
go back to reference May U, Schiffelholz T, Baier PC, Krueger JM, Rose-John S, Scheller J. IL-6-trans-signalling increases rapid-eye-movement sleep in rats. Eur J Pharmacol. 2009;613(1–3):141–5.CrossRefPubMedPubMedCentral May U, Schiffelholz T, Baier PC, Krueger JM, Rose-John S, Scheller J. IL-6-trans-signalling increases rapid-eye-movement sleep in rats. Eur J Pharmacol. 2009;613(1–3):141–5.CrossRefPubMedPubMedCentral
30.
go back to reference Takahashi W, Nakada TA, Yazaki M, Oda S. Interleukin-6 levels act as a diagnostic marker for infection and a prognostic marker in patients with organ dysfunction in intensive care units. Shock. 2016;46(3):254–60.CrossRefPubMed Takahashi W, Nakada TA, Yazaki M, Oda S. Interleukin-6 levels act as a diagnostic marker for infection and a prognostic marker in patients with organ dysfunction in intensive care units. Shock. 2016;46(3):254–60.CrossRefPubMed
31.
go back to reference Hou T, Huang D, Zeng R, Ye Z, Zhang Y. Accuracy of serum interleukin (IL)-6 in sepsis diagnosis: a systematic review and meta-analysis. Int J Clin Exp Med. 2015;8(9):15238–45.PubMedPubMedCentral Hou T, Huang D, Zeng R, Ye Z, Zhang Y. Accuracy of serum interleukin (IL)-6 in sepsis diagnosis: a systematic review and meta-analysis. Int J Clin Exp Med. 2015;8(9):15238–45.PubMedPubMedCentral
32.
go back to reference Castell JV, Gomez-Lechon MJ, David M, Andus T, Geiger T, Trullenque R, Fabra R, Heinrich PC. Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett. 1989;242(2):237–9.CrossRefPubMed Castell JV, Gomez-Lechon MJ, David M, Andus T, Geiger T, Trullenque R, Fabra R, Heinrich PC. Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett. 1989;242(2):237–9.CrossRefPubMed
33.
go back to reference Hofmann S, Grasberger H, Jung P, Bidlingmaier M, Vlotides J, Janssen OE, Landgraf R. The tumour necrosis factor-alpha induced vascular permeability is associated with a reduction of VE-cadherin expression. Eur J Med Res. 2002;7(4):171–6.PubMed Hofmann S, Grasberger H, Jung P, Bidlingmaier M, Vlotides J, Janssen OE, Landgraf R. The tumour necrosis factor-alpha induced vascular permeability is associated with a reduction of VE-cadherin expression. Eur J Med Res. 2002;7(4):171–6.PubMed
34.
go back to reference Jeitner TM, Cooper AJ. Inhibition of human glutamine synthetase by L-methionine-S,R-sulfoximine-relevance to the treatment of neurological diseases. Metab Brain Dis. 2014;29(4):983–9.CrossRefPubMed Jeitner TM, Cooper AJ. Inhibition of human glutamine synthetase by L-methionine-S,R-sulfoximine-relevance to the treatment of neurological diseases. Metab Brain Dis. 2014;29(4):983–9.CrossRefPubMed
35.
go back to reference Murphy C, Newsholme P. Macrophage-mediated lysis of a beta-cell line, tumour necrosis factor-alpha release from bacillus Calmette-Guerin (BCG)-activated murine macrophages and interleukin-8 release from human monocytes are dependent on extracellular glutamine concentration and glutamine metabolism. Clin Sci (Lond). 1999;96(1):89–97. Murphy C, Newsholme P. Macrophage-mediated lysis of a beta-cell line, tumour necrosis factor-alpha release from bacillus Calmette-Guerin (BCG)-activated murine macrophages and interleukin-8 release from human monocytes are dependent on extracellular glutamine concentration and glutamine metabolism. Clin Sci (Lond). 1999;96(1):89–97.
36.
go back to reference Yassad A, Lavoinne A, Bion A, Daveau M, Husson A. Glutamine accelerates interleukin-6 production by rat peritoneal macrophages in culture. FEBS Lett. 1997;413(1):81–4.CrossRefPubMed Yassad A, Lavoinne A, Bion A, Daveau M, Husson A. Glutamine accelerates interleukin-6 production by rat peritoneal macrophages in culture. FEBS Lett. 1997;413(1):81–4.CrossRefPubMed
Metadata
Title
In vitro suppression of inflammatory cytokine response by methionine sulfoximine
Authors
Tyler J. Peters
Amruta A. Jambekar
William S. A. Brusilow
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Inflammation / Issue 1/2018
Electronic ISSN: 1476-9255
DOI
https://doi.org/10.1186/s12950-018-0193-8

Other articles of this Issue 1/2018

Journal of Inflammation 1/2018 Go to the issue