Skip to main content
Top
Published in: Journal of Inflammation 1/2016

Open Access 01-12-2016 | Research

Circulating adipokine levels and prognostic value in septic patients

Authors: Andreas Hillenbrand, Pengfei Xu, Shaoxia Zhou, Annette Blatz, Manfred Weiss, Sebastian Hafner, Doris Henne-Bruns, Uwe Knippschild

Published in: Journal of Inflammation | Issue 1/2016

Login to get access

Abstract

Background

Adipokines have a wide range of effects and are linked to sepsis and septic shock. The aim of the present study was to describe the changes in adipokine levels in septic patients in relation to patients’ preseptic adipokine levels. Furthermore, we examined adipokines as prognostic markers.

Methods

Fourteen consecutive critically ill patients meeting the clinical criteria for severe sepsis or septic shock 3 days up to 1 month after major visceral surgery were enrolled prospectively. Plasma adipokines were measured preoperatively, 1 and 4 days after diagnosis of severe sepsis or septic shock following elective surgery.

Results

Median plasma adiponectin levels were lowered and resistin and leptin levels elevated in sepsis compared with preseptic plasma levels. MCP-1, C-reactive protein and white blood cell count were higher in septic compared with preseptic patients.
Survivors had significantly higher preseptic adipokine levels than non-survivors. Adiponectin levels of survivors decreased significant (on average by 33 %) at day one after onset of sepsis compared with preseptic levels. In contrast, median adiponectin levels of patients dying during sepsis showed a slight increase (11 %). Median BMI of survivors was 30 kg/m2, median BMI of non-survivors was 25, respectively.

Conclusions

Adipokine levels change during the course of sepsis. Higher preseptic adiponectin levels and decreasing adiponectin levels after onset of sepsis are associated with survival of sepsis. Survival of overweight and obese patients was higher than in normal weight patients. Changes in adiponektin levels could be a prognostic marker for outcome of severe sepsis/septic shock following surgery.
Literature
1.
go back to reference Fernandez-Riejos P, Najib S, Santos-Alvarez J, Martin-Romero C, Perez-Perez A, Gonzalez-Yanes C, et al. Role of leptin in the activation of immune cells. Mediators Inflamm. 2010;2010:568343.CrossRefPubMedPubMedCentral Fernandez-Riejos P, Najib S, Santos-Alvarez J, Martin-Romero C, Perez-Perez A, Gonzalez-Yanes C, et al. Role of leptin in the activation of immune cells. Mediators Inflamm. 2010;2010:568343.CrossRefPubMedPubMedCentral
2.
go back to reference Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr. 2004;92:347–55.CrossRefPubMed Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr. 2004;92:347–55.CrossRefPubMed
3.
go back to reference Hillenbrand A, Knippschild U, Weiss M, Schrezenmeier H, Henne-Bruns D, Huber-Lang M, et al. Sepsis induced changes of adipokines and cytokines - septic patients compared to morbidly obese patients. BMC Surg. 2010;10:26.CrossRefPubMedPubMedCentral Hillenbrand A, Knippschild U, Weiss M, Schrezenmeier H, Henne-Bruns D, Huber-Lang M, et al. Sepsis induced changes of adipokines and cytokines - septic patients compared to morbidly obese patients. BMC Surg. 2010;10:26.CrossRefPubMedPubMedCentral
4.
go back to reference Fietta P, Delsante G. Focus on adipokines. Theor Biol Forum. 2013;106:103–29.PubMed Fietta P, Delsante G. Focus on adipokines. Theor Biol Forum. 2013;106:103–29.PubMed
5.
6.
go back to reference Robinson K, Kruger P, Prins J, Venkatesh B. The metabolic syndrome in critically ill patients. Best Pract Res Clin Endocrinol Metab. 2011;25:835–45.CrossRefPubMed Robinson K, Kruger P, Prins J, Venkatesh B. The metabolic syndrome in critically ill patients. Best Pract Res Clin Endocrinol Metab. 2011;25:835–45.CrossRefPubMed
7.
go back to reference Arabi YM, Dara SI, Tamim HM, Rishu AH, Bouchama A, Khedr MK, et al. Clinical characteristics, sepsis interventions and outcomes in the obese patients with septic shock: an international multicenter cohort study. Crit Care. 2013;17:R72.CrossRefPubMedPubMedCentral Arabi YM, Dara SI, Tamim HM, Rishu AH, Bouchama A, Khedr MK, et al. Clinical characteristics, sepsis interventions and outcomes in the obese patients with septic shock: an international multicenter cohort study. Crit Care. 2013;17:R72.CrossRefPubMedPubMedCentral
9.
go back to reference Stapleton RD, Dixon AE, Parsons PE, Ware LB, Suratt BT. The association between BMI and plasma cytokine levels in patients with acute lung injury. Chest. 2010;138:568–77.CrossRefPubMedPubMedCentral Stapleton RD, Dixon AE, Parsons PE, Ware LB, Suratt BT. The association between BMI and plasma cytokine levels in patients with acute lung injury. Chest. 2010;138:568–77.CrossRefPubMedPubMedCentral
10.
go back to reference Yousef AA, Amr YM, Suliman GA. The diagnostic value of serum leptin monitoring and its correlation with tumor necrosis factor-alpha in critically ill patients: a prospective observational study. Crit Care. 2010;14:R33.CrossRefPubMedPubMedCentral Yousef AA, Amr YM, Suliman GA. The diagnostic value of serum leptin monitoring and its correlation with tumor necrosis factor-alpha in critically ill patients: a prospective observational study. Crit Care. 2010;14:R33.CrossRefPubMedPubMedCentral
11.
go back to reference Vassiliadi DA, Tzanela M, Kotanidou A, Orfanos SE, Nikitas N, Armaganidis A, et al. Serial changes in adiponectin and resistin in critically ill patients with sepsis: associations with sepsis phase, severity, and circulating cytokine levels. J Crit Care. 2012;27:400–9.CrossRefPubMed Vassiliadi DA, Tzanela M, Kotanidou A, Orfanos SE, Nikitas N, Armaganidis A, et al. Serial changes in adiponectin and resistin in critically ill patients with sepsis: associations with sepsis phase, severity, and circulating cytokine levels. J Crit Care. 2012;27:400–9.CrossRefPubMed
12.
go back to reference Tschop J, Dattilo JR, Prakash PS, Kasten KR, Tschop MH, Caldwell CC. The leptin system: a potential target for sepsis induced immune suppression. Endocr Metab Immune Disord Drug Targets. 2010;10:336–47.CrossRefPubMed Tschop J, Dattilo JR, Prakash PS, Kasten KR, Tschop MH, Caldwell CC. The leptin system: a potential target for sepsis induced immune suppression. Endocr Metab Immune Disord Drug Targets. 2010;10:336–47.CrossRefPubMed
13.
go back to reference Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101:1644–55.CrossRefPubMed Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101:1644–55.CrossRefPubMed
14.
go back to reference Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–63.CrossRefPubMed Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–63.CrossRefPubMed
15.
go back to reference Soares AF, Guichardant M, Cozzone D, Bernoud-Hubac N, Bouzaidi-Tiali N, Lagarde M, et al. Effects of oxidative stress on adiponectin secretion and lactate production in 3 T3-L1 adipocytes. Free Radic Biol Med. 2005;38:882–9.CrossRefPubMed Soares AF, Guichardant M, Cozzone D, Bernoud-Hubac N, Bouzaidi-Tiali N, Lagarde M, et al. Effects of oxidative stress on adiponectin secretion and lactate production in 3 T3-L1 adipocytes. Free Radic Biol Med. 2005;38:882–9.CrossRefPubMed
16.
go back to reference Walkey AJ, Rice TW, Konter J, Ouchi N, Shibata R, Walsh K, et al. Plasma adiponectin and mortality in critically ill subjects with acute respiratory failure. Crit Care Med. 2010;38:2329–34.CrossRefPubMedPubMedCentral Walkey AJ, Rice TW, Konter J, Ouchi N, Shibata R, Walsh K, et al. Plasma adiponectin and mortality in critically ill subjects with acute respiratory failure. Crit Care Med. 2010;38:2329–34.CrossRefPubMedPubMedCentral
17.
go back to reference Hillenbrand A, Weiss M, Knippschild U, Stromeyer HG, Henne-Bruns D, Huber-Lang M, et al. Association of adiponectin levels and insulin demand in critically ill patients. Diabetes Metab Syndr Obes. 2011;4:45–51.CrossRefPubMedPubMedCentral Hillenbrand A, Weiss M, Knippschild U, Stromeyer HG, Henne-Bruns D, Huber-Lang M, et al. Association of adiponectin levels and insulin demand in critically ill patients. Diabetes Metab Syndr Obes. 2011;4:45–51.CrossRefPubMedPubMedCentral
18.
go back to reference Welters ID, Bing C, Ding C, Leuwer M, Hall AM. Circulating anti-inflammatory adipokines High Molecular Weight Adiponectin and Zinc-alpha2-glycoprotein (ZAG) are inhibited in early sepsis, but increase with clinical recovery: a pilot study. BMC Anesthesiol. 2014;14:124.CrossRefPubMedPubMedCentral Welters ID, Bing C, Ding C, Leuwer M, Hall AM. Circulating anti-inflammatory adipokines High Molecular Weight Adiponectin and Zinc-alpha2-glycoprotein (ZAG) are inhibited in early sepsis, but increase with clinical recovery: a pilot study. BMC Anesthesiol. 2014;14:124.CrossRefPubMedPubMedCentral
19.
go back to reference Farooqi IS, O’Rahilly S. 20 years of leptin: human disorders of leptin action. J Endocrinol. 2014;223:T63–70.CrossRefPubMed Farooqi IS, O’Rahilly S. 20 years of leptin: human disorders of leptin action. J Endocrinol. 2014;223:T63–70.CrossRefPubMed
20.
go back to reference Behnes M, Brueckmann M, Lang S, Putensen C, Saur J, Borggrefe M, et al. Alterations of leptin in the course of inflammation and severe sepsis. BMC Infect Dis. 2012;12:217.CrossRefPubMedPubMedCentral Behnes M, Brueckmann M, Lang S, Putensen C, Saur J, Borggrefe M, et al. Alterations of leptin in the course of inflammation and severe sepsis. BMC Infect Dis. 2012;12:217.CrossRefPubMedPubMedCentral
21.
go back to reference Joshi RK, Lee SA. Obesity related adipokines and colorectal cancer: a review and meta-analysis. Asian Pac J Cancer Prev. 2014;15:397–405.CrossRefPubMed Joshi RK, Lee SA. Obesity related adipokines and colorectal cancer: a review and meta-analysis. Asian Pac J Cancer Prev. 2014;15:397–405.CrossRefPubMed
22.
go back to reference Matsuda A, Matsutani T, Sasajima K, Furukawa K, Tajiri T, Tamura K, et al. Preoperative plasma adiponectin level is a risk factor for postoperative infection following colorectal cancer surgery. J Surg Res. 2009;157:227–34.CrossRefPubMed Matsuda A, Matsutani T, Sasajima K, Furukawa K, Tajiri T, Tamura K, et al. Preoperative plasma adiponectin level is a risk factor for postoperative infection following colorectal cancer surgery. J Surg Res. 2009;157:227–34.CrossRefPubMed
23.
go back to reference Hillenbrand A, Fassler J, Huber N, Xu P, Henne-Bruns D, Templin M, et al. Changed adipocytokine concentrations in colorectal tumor patients and morbidly obese patients compared to healthy controls. BMC Cancer. 2012;12:545.CrossRefPubMedPubMedCentral Hillenbrand A, Fassler J, Huber N, Xu P, Henne-Bruns D, Templin M, et al. Changed adipocytokine concentrations in colorectal tumor patients and morbidly obese patients compared to healthy controls. BMC Cancer. 2012;12:545.CrossRefPubMedPubMedCentral
Metadata
Title
Circulating adipokine levels and prognostic value in septic patients
Authors
Andreas Hillenbrand
Pengfei Xu
Shaoxia Zhou
Annette Blatz
Manfred Weiss
Sebastian Hafner
Doris Henne-Bruns
Uwe Knippschild
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Inflammation / Issue 1/2016
Electronic ISSN: 1476-9255
DOI
https://doi.org/10.1186/s12950-016-0138-z

Other articles of this Issue 1/2016

Journal of Inflammation 1/2016 Go to the issue