Skip to main content
Top
Published in: Journal of Inflammation 1/2015

Open Access 01-12-2015 | Research

Effect of Sulforaphane on NOD2 via NF-κB: implications for Crohn’s disease

Authors: Danielle L Folkard, Gareth Marlow, Richard F Mithen, Lynnette R Ferguson

Published in: Journal of Inflammation | Issue 1/2015

Login to get access

Abstract

Background

Sulforaphane has well established anti-cancer properties and more recently anti-inflammatory properties have also been determined. Sulforaphane has been shown to inhibit PRR-mediated pro-inflammatory signalling by either directly targeting the receptor or their downstream signalling molecules such as the transcription factor, NF-κB. These results raise the possibility that PRR-mediated inflammation could be suppressed by specific dietary bioactives. We examined whether sulforaphane could suppress NF-κB via the NOD2 pathway.

Methods

Human embryonic kidney 293T (HEK293T) cells were stably transfected with NOD2 variants and the NF-κB reporter, pNifty2-SEAP. The cells were co-treated with sulforaphane and MDP and secreted alkaline phosphatase (SEAP) production was determined.

Results

We found that sulforaphane was able to significantly suppress the ligand-induced NF-κB activity at physiologically relevant concentrations, achievable via the consumption of broccoli within the diet.

Conclusions

These results demonstrate that the anti-inflammatory role of sulforaphane is not restricted to LPS-induced inflammatory signalling. These data add to the growing evidence that PRR activation can be inhibited by specific phytochemicals and thus suggests that diet could be a way of controlling inflammation. This is particularly important for a disease like Crohn’s disease where diet can play a key role in relieving or exacerbating symptoms.
Literature
1.
go back to reference Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem. 2001;276(7):4812–8.CrossRefPubMed Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem. 2001;276(7):4812–8.CrossRefPubMed
2.
go back to reference Strober W, Murray PJ, Kitani A, Watanabe T. Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol. 2006;6(1):9–20.CrossRefPubMed Strober W, Murray PJ, Kitani A, Watanabe T. Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol. 2006;6(1):9–20.CrossRefPubMed
3.
go back to reference Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 2003;278(11):8869–72.CrossRefPubMed Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 2003;278(11):8869–72.CrossRefPubMed
4.
go back to reference Lavelle EC, Murphy C, O'Neill LA, Creagh EM. The role of TLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis. Mucosal Immunol. 2010;3(1):17–28.CrossRefPubMedCentralPubMed Lavelle EC, Murphy C, O'Neill LA, Creagh EM. The role of TLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis. Mucosal Immunol. 2010;3(1):17–28.CrossRefPubMedCentralPubMed
5.
go back to reference Inohara N, Nunez G. NODs: intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol. 2003;3(5):371–82.CrossRefPubMed Inohara N, Nunez G. NODs: intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol. 2003;3(5):371–82.CrossRefPubMed
7.
go back to reference Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature. 2001;411(6837):599–603.CrossRefPubMed Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature. 2001;411(6837):599–603.CrossRefPubMed
8.
go back to reference Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature. 2001;411(6837):603–6.CrossRefPubMed Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature. 2001;411(6837):603–6.CrossRefPubMed
9.
go back to reference Lecat A, Piette J, Legrand-Poels S. The protein Nod2: an innate receptor more complex than previously assumed. Biochem Pharmacol. 2010;80(12):2021–31.CrossRefPubMed Lecat A, Piette J, Legrand-Poels S. The protein Nod2: an innate receptor more complex than previously assumed. Biochem Pharmacol. 2010;80(12):2021–31.CrossRefPubMed
10.
go back to reference Borzutzky A, Fried A, Chou J, Bonilla FA, Kim S, Dedeoglu F. NOD2-associated diseases: Bridging innate immunity and autoinflammation. Clin Immunol. 2010;134(3):251–61.CrossRefPubMed Borzutzky A, Fried A, Chou J, Bonilla FA, Kim S, Dedeoglu F. NOD2-associated diseases: Bridging innate immunity and autoinflammation. Clin Immunol. 2010;134(3):251–61.CrossRefPubMed
11.
go back to reference Bonen DK, Ogura Y, Nicolae DL, Inohara N, Saab L, Tanabe T, et al. Crohn's disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan. Gastroenterology. 2003;124(1):140–6.CrossRefPubMed Bonen DK, Ogura Y, Nicolae DL, Inohara N, Saab L, Tanabe T, et al. Crohn's disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan. Gastroenterology. 2003;124(1):140–6.CrossRefPubMed
12.
go back to reference Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J Biol Chem. 2003;278(8):5509–12.CrossRefPubMed Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J Biol Chem. 2003;278(8):5509–12.CrossRefPubMed
13.
go back to reference Lecine P, Esmiol S, Metais JY, Nicoletti C, Nourry C, McDonald C, et al. The NOD2-RICK complex signals from the plasma membrane. J Biol Chem. 2007;282(20):15197–207.CrossRefPubMed Lecine P, Esmiol S, Metais JY, Nicoletti C, Nourry C, McDonald C, et al. The NOD2-RICK complex signals from the plasma membrane. J Biol Chem. 2007;282(20):15197–207.CrossRefPubMed
14.
go back to reference Dinkova-Kostova AT, Kostov RV. Glucosinolates and isothiocyanates in health and disease. Trends Mol Med. 2012;18(6):337–47.CrossRefPubMed Dinkova-Kostova AT, Kostov RV. Glucosinolates and isothiocyanates in health and disease. Trends Mol Med. 2012;18(6):337–47.CrossRefPubMed
15.
go back to reference Fahey JW, Zhang Y, Talalay P. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci U S A. 1997;94(19):10367–72.CrossRefPubMedCentralPubMed Fahey JW, Zhang Y, Talalay P. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci U S A. 1997;94(19):10367–72.CrossRefPubMedCentralPubMed
16.
go back to reference Traka MH, Saha S, Huseby S, Kopriva S, Walley PG, Barker GC, et al. Genetic regulation of glucoraphanin accumulation in Beneforte broccoli. New Phytol. 2013;198(4):1085–95.CrossRefPubMedCentralPubMed Traka MH, Saha S, Huseby S, Kopriva S, Walley PG, Barker GC, et al. Genetic regulation of glucoraphanin accumulation in Beneforte broccoli. New Phytol. 2013;198(4):1085–95.CrossRefPubMedCentralPubMed
17.
go back to reference Herr I, Büchler MW. Dietary constituents of broccoli and other cruciferous vegetables: Implications for prevention and therapy of cancer. Cancer Treat Rev. 2010;36(5):377–83.CrossRefPubMed Herr I, Büchler MW. Dietary constituents of broccoli and other cruciferous vegetables: Implications for prevention and therapy of cancer. Cancer Treat Rev. 2010;36(5):377–83.CrossRefPubMed
18.
go back to reference Zhang X, Shu XO, Xiang YB, Yang G, Li H, Gao J, et al. Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality. Am J Clin Nutr. 2011;94(1):240–6.CrossRefPubMedCentralPubMed Zhang X, Shu XO, Xiang YB, Yang G, Li H, Gao J, et al. Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality. Am J Clin Nutr. 2011;94(1):240–6.CrossRefPubMedCentralPubMed
19.
go back to reference Guerrero-Beltrán CE, Calderón-Oliver M, Pedraza-Chaverri J, Chirino YI. Protective effect of sulforaphane against oxidative stress: Recent advances. Exp Toxicol Pathol. 2012;64(5):503–8.CrossRefPubMed Guerrero-Beltrán CE, Calderón-Oliver M, Pedraza-Chaverri J, Chirino YI. Protective effect of sulforaphane against oxidative stress: Recent advances. Exp Toxicol Pathol. 2012;64(5):503–8.CrossRefPubMed
20.
go back to reference Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhauser C. Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem. 2001;276(34):32008–15.CrossRefPubMed Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhauser C. Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem. 2001;276(34):32008–15.CrossRefPubMed
21.
go back to reference Zhao L, Lee JY, Hwang DH. Inhibition of pattern recognition receptor-mediated inflammation by bioactive phytochemicals. Nutr Rev. 2011;69(6):310–20.CrossRefPubMed Zhao L, Lee JY, Hwang DH. Inhibition of pattern recognition receptor-mediated inflammation by bioactive phytochemicals. Nutr Rev. 2011;69(6):310–20.CrossRefPubMed
22.
go back to reference Muta T, Takeshige K. Essential roles of CD14 and lipopolysaccharide-binding protein for activation of toll-like receptor (TLR)2 as well as TLR4 Reconstitution of TLR2- and TLR4-activation by distinguishable ligands in LPS preparations. Eur J Biochem. 2001;268(16):4580–9.CrossRefPubMed Muta T, Takeshige K. Essential roles of CD14 and lipopolysaccharide-binding protein for activation of toll-like receptor (TLR)2 as well as TLR4 Reconstitution of TLR2- and TLR4-activation by distinguishable ligands in LPS preparations. Eur J Biochem. 2001;268(16):4580–9.CrossRefPubMed
23.
go back to reference Philpott M, Mackay L, Ferguson LR, Forbes D, Skinner M. Cell culture models in developing nutrigenomics foods for inflammatory bowel disease. Mutat Res. 2007;622(1–2):94–102.CrossRefPubMed Philpott M, Mackay L, Ferguson LR, Forbes D, Skinner M. Cell culture models in developing nutrigenomics foods for inflammatory bowel disease. Mutat Res. 2007;622(1–2):94–102.CrossRefPubMed
24.
go back to reference Canto E, Moga E, Ricart E, Garcia-Bosch O, Garcia-Planella E, Juarez C, et al. MDP-Induced selective tolerance to TLR4 ligands: impairment in NOD2 mutant Crohn's disease patients. Inflamm Bowel Dis. 2009;15(11):1686–96.CrossRefPubMed Canto E, Moga E, Ricart E, Garcia-Bosch O, Garcia-Planella E, Juarez C, et al. MDP-Induced selective tolerance to TLR4 ligands: impairment in NOD2 mutant Crohn's disease patients. Inflamm Bowel Dis. 2009;15(11):1686–96.CrossRefPubMed
25.
go back to reference Tsai WH, Huang DY, Yu YH, Chen CY, Lin WW. Dual roles of NOD2 in TLR4-mediated signal transduction and -induced inflammatory gene expression in macrophages. Cell Microbiol. 2011;13(5):717–30.CrossRefPubMed Tsai WH, Huang DY, Yu YH, Chen CY, Lin WW. Dual roles of NOD2 in TLR4-mediated signal transduction and -induced inflammatory gene expression in macrophages. Cell Microbiol. 2011;13(5):717–30.CrossRefPubMed
26.
27.
go back to reference Eckmann L, Karin M. NOD2 and Crohn's disease: loss or gain of function? Immunity. 2005;22(6):661–7.CrossRefPubMed Eckmann L, Karin M. NOD2 and Crohn's disease: loss or gain of function? Immunity. 2005;22(6):661–7.CrossRefPubMed
28.
go back to reference Philpott DJ, Sorbara MT, Robertson SJ, Croitoru K, Girardin SE. NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol. 2014;14(1):9–23.CrossRefPubMed Philpott DJ, Sorbara MT, Robertson SJ, Croitoru K, Girardin SE. NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol. 2014;14(1):9–23.CrossRefPubMed
29.
go back to reference Triggs CM, Munday K, Hu R, Fraser AG, Gearry RB, Barclay ML, et al. Dietary factors in chronic inflammation: food tolerances and intolerances of a New Zealand Caucasian Crohn's disease population. Mutat Res. 2010;690(1–2):123–38.CrossRefPubMed Triggs CM, Munday K, Hu R, Fraser AG, Gearry RB, Barclay ML, et al. Dietary factors in chronic inflammation: food tolerances and intolerances of a New Zealand Caucasian Crohn's disease population. Mutat Res. 2010;690(1–2):123–38.CrossRefPubMed
Metadata
Title
Effect of Sulforaphane on NOD2 via NF-κB: implications for Crohn’s disease
Authors
Danielle L Folkard
Gareth Marlow
Richard F Mithen
Lynnette R Ferguson
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Inflammation / Issue 1/2015
Electronic ISSN: 1476-9255
DOI
https://doi.org/10.1186/s12950-015-0051-x

Other articles of this Issue 1/2015

Journal of Inflammation 1/2015 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.