Skip to main content
Top
Published in: Clinical and Molecular Allergy 1/2020

01-12-2020 | Probiotics | Review

The gut microbiota, environmental factors, and links to the development of food allergy

Authors: Khui Hung Lee, Yong Song, Weidong Wu, Kan Yu, Guicheng Zhang

Published in: Clinical and Molecular Allergy | Issue 1/2020

Login to get access

Abstract

Food allergy appears to have its roots in an insufficient exposure to a diverse range of environmental microbiota during early life. Microbial exposure ensures the colonization of the gastrointestinal tract with commensal microbes, which is necessary for the induction of a balanced and tolerogenic immune function. High-throughput sequencing technology has facilitated in-depth studies of the gut microbiota as well as bacterial-derived metabolites. Although the role of the microbiota in allergies is now widely studied, its importance for food allergy was only recently noted. Studies in human cohorts have shown that there is an association of dysbiosis and pathogenesis of food allergy, while studies from animal models have demonstrated the capacity of specific species in the gut microbiota to alter immune response, which may lead to the desensitization of food allergy. This article reviews the role of the gut microbiota in food allergy, and discusses the influence of environmental factors as well as prevention and management strategies relating to such regulatory mechanism.
Literature
1.
go back to reference Tamburini S, Shen N, Wu HC, Clemente JC. The microbiome in early life: implications for health outcomes. Nat Med. 2016;22(7):713–22.PubMedCrossRef Tamburini S, Shen N, Wu HC, Clemente JC. The microbiome in early life: implications for health outcomes. Nat Med. 2016;22(7):713–22.PubMedCrossRef
2.
go back to reference Hand TW, Vujkovic-Cvijin I, Ridaura VK, Belkaid Y. Linking the microbiota, chronic disease, and the immune system. Trends Endocrinol Metab. 2016;27(12):831–43.PubMedPubMedCentralCrossRef Hand TW, Vujkovic-Cvijin I, Ridaura VK, Belkaid Y. Linking the microbiota, chronic disease, and the immune system. Trends Endocrinol Metab. 2016;27(12):831–43.PubMedPubMedCentralCrossRef
3.
go back to reference Penders J, Stobberingh EE, van den Brandt PA, Thijs C. The role of the intestinal microbiota in the development of atopic disorders. Allergy. 2007;62(11):1223–36.PubMedCrossRef Penders J, Stobberingh EE, van den Brandt PA, Thijs C. The role of the intestinal microbiota in the development of atopic disorders. Allergy. 2007;62(11):1223–36.PubMedCrossRef
4.
go back to reference Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164(3):337–40.PubMedCrossRef Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164(3):337–40.PubMedCrossRef
5.
6.
go back to reference Abrahamsson TR, Jakobsson HE, Andersson AF, Bjorksten B, Engstrand L, Jenmalm MC. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol. 2012;129(2):434–40.PubMedCrossRef Abrahamsson TR, Jakobsson HE, Andersson AF, Bjorksten B, Engstrand L, Jenmalm MC. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol. 2012;129(2):434–40.PubMedCrossRef
7.
go back to reference Bisgaard H, Li N, Bonnelykke K, Chawes BLK, Skov T, Paludan-Muller G, Stokholm J, Smith B, Krogfelt KA. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol. 2011;128(3):646–52.PubMedCrossRef Bisgaard H, Li N, Bonnelykke K, Chawes BLK, Skov T, Paludan-Muller G, Stokholm J, Smith B, Krogfelt KA. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol. 2011;128(3):646–52.PubMedCrossRef
9.
go back to reference Thaiss CA, Levy M, Suez J, Elinav E. The interplay between the innate immune system and the microbiota. Curr Opin Immunol. 2014;26:41–8.PubMedCrossRef Thaiss CA, Levy M, Suez J, Elinav E. The interplay between the innate immune system and the microbiota. Curr Opin Immunol. 2014;26:41–8.PubMedCrossRef
10.
go back to reference Bridgman SL, Kozyrskyj AL, Scott JA, Becker AB, Azad MB. Gut microbiota and allergic disease in children. Ann Allergy Asthma Immunol. 2016;116(2):99–105.PubMedCrossRef Bridgman SL, Kozyrskyj AL, Scott JA, Becker AB, Azad MB. Gut microbiota and allergic disease in children. Ann Allergy Asthma Immunol. 2016;116(2):99–105.PubMedCrossRef
11.
go back to reference Petrus NCM, Henneman P, Venema A, Mul A, van Sinderen F, Haagmans M, Mook O, Hennekam RC, Sprikkelman AB, Mannens M. Cow’s milk allergy in Dutch children: an epigenetic pilot survey. Clin Transl Allergy. 2016;6:16.PubMedPubMedCentralCrossRef Petrus NCM, Henneman P, Venema A, Mul A, van Sinderen F, Haagmans M, Mook O, Hennekam RC, Sprikkelman AB, Mannens M. Cow’s milk allergy in Dutch children: an epigenetic pilot survey. Clin Transl Allergy. 2016;6:16.PubMedPubMedCentralCrossRef
12.
go back to reference Bunyavanich S, Shen N, Grishin A, Wood R, Burks W, Dawson P, Jones SM, Leung DYM, Sampson H, Sicherer S, Clemente JC. Early-life gut microbiome composition and milk allergy resolution. J Allergy Clin Immunol. 2016;138(4):1122–30.PubMedPubMedCentralCrossRef Bunyavanich S, Shen N, Grishin A, Wood R, Burks W, Dawson P, Jones SM, Leung DYM, Sampson H, Sicherer S, Clemente JC. Early-life gut microbiome composition and milk allergy resolution. J Allergy Clin Immunol. 2016;138(4):1122–30.PubMedPubMedCentralCrossRef
13.
go back to reference Rachid RA, Gerber G, Li N, Umetsu DT, Bry L, Chatila TA. Food allergy in infancy is associated with dysbiosis of the intestinal microbiota. J Allergy Clin Immunol. 2016;137(2):235.CrossRef Rachid RA, Gerber G, Li N, Umetsu DT, Bry L, Chatila TA. Food allergy in infancy is associated with dysbiosis of the intestinal microbiota. J Allergy Clin Immunol. 2016;137(2):235.CrossRef
14.
go back to reference Savage JH, Lee-Sarwar KA, Sordillo J, Bunyavanich S, Zhou Y, O’Connor G, Sandel M, Bacharier LB, Zeiger R, Sodergren E, Weinstock GM, Gold DR, Weiss ST, Litonjua AA. A prospective microbiome-wide association study of food sensitization and food allergy in early childhood. Allergy. 2018;73(1):145–52.PubMedCrossRef Savage JH, Lee-Sarwar KA, Sordillo J, Bunyavanich S, Zhou Y, O’Connor G, Sandel M, Bacharier LB, Zeiger R, Sodergren E, Weinstock GM, Gold DR, Weiss ST, Litonjua AA. A prospective microbiome-wide association study of food sensitization and food allergy in early childhood. Allergy. 2018;73(1):145–52.PubMedCrossRef
15.
go back to reference Azad MB, Konya T, Guttman DS, Field CJ, Sears MR, HayGlass KT, Mandhane PJ, Turvey SE, Subbarao P, Becker AB, Scott JA, Kozyrskyj AL, Investigators CS, Allen R, Befus D, Brauer M, Brook J, Cyr M, Chen E, Daley D, Dell S, Denburg J, Elliott S, Grasemann H, Hegele R, Holness L, Kobor M, Kollmann T, Laprise C, Larche M, Lou W, Macri J, Miller G, Moqbel R, Moraes T, Pare P, Ramsey C, Ratjen F, Ritchie B, Sandford A, Scott J, Silverman F, Tebbutt S, Takaro T, Tang P, To T. Infant gut microbiota and food sensitization: associations in the first year of life. Clin Exp Allergy. 2015;45(3):632–43.PubMedCrossRef Azad MB, Konya T, Guttman DS, Field CJ, Sears MR, HayGlass KT, Mandhane PJ, Turvey SE, Subbarao P, Becker AB, Scott JA, Kozyrskyj AL, Investigators CS, Allen R, Befus D, Brauer M, Brook J, Cyr M, Chen E, Daley D, Dell S, Denburg J, Elliott S, Grasemann H, Hegele R, Holness L, Kobor M, Kollmann T, Laprise C, Larche M, Lou W, Macri J, Miller G, Moqbel R, Moraes T, Pare P, Ramsey C, Ratjen F, Ritchie B, Sandford A, Scott J, Silverman F, Tebbutt S, Takaro T, Tang P, To T. Infant gut microbiota and food sensitization: associations in the first year of life. Clin Exp Allergy. 2015;45(3):632–43.PubMedCrossRef
16.
go back to reference Hua X, Goedert JJ, Pu A, Yu G, Shi J. Allergy associations with the adult fecal microbiota: analysis of the American Gut Project. EBioMedicine. 2016;3:172–9.PubMedCrossRef Hua X, Goedert JJ, Pu A, Yu G, Shi J. Allergy associations with the adult fecal microbiota: analysis of the American Gut Project. EBioMedicine. 2016;3:172–9.PubMedCrossRef
17.
go back to reference Inoue R, Sawai T, Sawai C, Nakatani M, Romero-Perez GA, Ozeki M, Nonomura K, Tsukahara T. A preliminary study of gut dysbiosis in children with food allergy. Biosci Biotechnol Biochem. 2017;81(12):2396–9.PubMedCrossRef Inoue R, Sawai T, Sawai C, Nakatani M, Romero-Perez GA, Ozeki M, Nonomura K, Tsukahara T. A preliminary study of gut dysbiosis in children with food allergy. Biosci Biotechnol Biochem. 2017;81(12):2396–9.PubMedCrossRef
18.
go back to reference Ling Z, Li Z, Liu X, Cheng Y, Luo Y, Tong X, Yuan L, Wang Y, Sun J, Li L, Xiang C. Altered fecal microbiota composition associated with food allergy in infants. Appl Environ Microbiol. 2014;80(8):2546–54.PubMedPubMedCentralCrossRef Ling Z, Li Z, Liu X, Cheng Y, Luo Y, Tong X, Yuan L, Wang Y, Sun J, Li L, Xiang C. Altered fecal microbiota composition associated with food allergy in infants. Appl Environ Microbiol. 2014;80(8):2546–54.PubMedPubMedCentralCrossRef
19.
go back to reference Chen C-C, Chen K-J, Kong M-S, Chang H-J, Huang J-L. Alterations in the gut microbiotas of children with food sensitization in early life. Pediatr Allergy Immunol. 2016;27(3):254–62.PubMedCrossRef Chen C-C, Chen K-J, Kong M-S, Chang H-J, Huang J-L. Alterations in the gut microbiotas of children with food sensitization in early life. Pediatr Allergy Immunol. 2016;27(3):254–62.PubMedCrossRef
20.
go back to reference Fazlollahi M, Chun Y, Grishin A, Wood RA, Burks AW, Dawson P, Jones SM, Leung DYM, Sampson HA, Sicherer SH, Bunyavanich S. Early-life gut microbiome and egg allergy. Allergy. 2018;73(7):1515–24.PubMedCrossRef Fazlollahi M, Chun Y, Grishin A, Wood RA, Burks AW, Dawson P, Jones SM, Leung DYM, Sampson HA, Sicherer SH, Bunyavanich S. Early-life gut microbiome and egg allergy. Allergy. 2018;73(7):1515–24.PubMedCrossRef
21.
go back to reference Diaz M, Guadamuro L, Espinosa-Martos I, Mancabelli L, Jimenez S, Molinos-Norniella C, Perez-Solis D, Milani C, Rodriguez JM, Ventura M, Bousono C, Gueimonde M, Margolles A, Diaz JJ, Delgado S. Microbiota and derived parameters in fecal samples of infants with non-IgE cow’s milk protein allergy under a restricted diet. Nutrients. 2018;10(10):1481.PubMedCentralCrossRef Diaz M, Guadamuro L, Espinosa-Martos I, Mancabelli L, Jimenez S, Molinos-Norniella C, Perez-Solis D, Milani C, Rodriguez JM, Ventura M, Bousono C, Gueimonde M, Margolles A, Diaz JJ, Delgado S. Microbiota and derived parameters in fecal samples of infants with non-IgE cow’s milk protein allergy under a restricted diet. Nutrients. 2018;10(10):1481.PubMedCentralCrossRef
22.
go back to reference Berni Canani R, De Filippis F, Nocerino R, Paparo L, Di Scala C, Cosenza L, Della Gatta G, Calignano A, De Caro C, Laiola M, Gilbert JA, Ercolini D. Gut microbiota composition and butyrate production in children affected by non-IgE-mediated cow’s milk allergy. Sci Rep. 2018;8(1):12500.PubMedPubMedCentralCrossRef Berni Canani R, De Filippis F, Nocerino R, Paparo L, Di Scala C, Cosenza L, Della Gatta G, Calignano A, De Caro C, Laiola M, Gilbert JA, Ercolini D. Gut microbiota composition and butyrate production in children affected by non-IgE-mediated cow’s milk allergy. Sci Rep. 2018;8(1):12500.PubMedPubMedCentralCrossRef
23.
go back to reference Kourosh A, Luna RA, Balderas M, Nance C, Anagnostou A, Devaraj S, Davis CM. Fecal microbiome signatures are different in food-allergic children compared to siblings and healthy children. Pediatr Allergy Immunol. 2018;29(5):545–54.PubMedCrossRef Kourosh A, Luna RA, Balderas M, Nance C, Anagnostou A, Devaraj S, Davis CM. Fecal microbiome signatures are different in food-allergic children compared to siblings and healthy children. Pediatr Allergy Immunol. 2018;29(5):545–54.PubMedCrossRef
25.
go back to reference Lee E, Song E, Nam Y. Dysbiosis of gut microbiome and its impact on epigenetic regulation. Clin Epigenet. 2017;3(2):14. Lee E, Song E, Nam Y. Dysbiosis of gut microbiome and its impact on epigenetic regulation. Clin Epigenet. 2017;3(2):14.
26.
go back to reference Ipci K, Altintoprak N, Muluk NB, Senturk M, Cingi C. The possible mechanisms of the human microbiome in allergic diseases. Eur Arch Otorhinolaryngol. 2017;274(2):617–26.PubMedCrossRef Ipci K, Altintoprak N, Muluk NB, Senturk M, Cingi C. The possible mechanisms of the human microbiome in allergic diseases. Eur Arch Otorhinolaryngol. 2017;274(2):617–26.PubMedCrossRef
28.
go back to reference Muir AB, Benitez AJ, Dods K, Spergel JM, Fillon SA. Microbiome and its impact on gastrointestinal atopy. Allergy. 2016;71(9):1256–63.PubMedCrossRef Muir AB, Benitez AJ, Dods K, Spergel JM, Fillon SA. Microbiome and its impact on gastrointestinal atopy. Allergy. 2016;71(9):1256–63.PubMedCrossRef
29.
go back to reference Rios-Covian D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilan CG, Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol. 2016;7:185.PubMedPubMedCentralCrossRef Rios-Covian D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilan CG, Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol. 2016;7:185.PubMedPubMedCentralCrossRef
30.
go back to reference den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40.CrossRef den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40.CrossRef
31.
go back to reference Louis P, Duncan SH, McCrae SI, Millar J, Jackson MS, Flint HJ. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol. 2004;186(7):2099–106.PubMedPubMedCentralCrossRef Louis P, Duncan SH, McCrae SI, Millar J, Jackson MS, Flint HJ. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol. 2004;186(7):2099–106.PubMedPubMedCentralCrossRef
32.
go back to reference Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, Flint HJ, Louis P. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 2014;8(6):1323–35.PubMedPubMedCentralCrossRef Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, Flint HJ, Louis P. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 2014;8(6):1323–35.PubMedPubMedCentralCrossRef
33.
go back to reference Goverse G, Molenaar R, Macia L, Tan J, Erkelens MN, Konijn T, Knippenberg M, Cook EC, Hanekamp D, Veldhoen M, Hartog A, Roeselers G, Mackay CR, Mebius RE. Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells. J Immunol. 2017;198(5):2172–81.PubMedCrossRef Goverse G, Molenaar R, Macia L, Tan J, Erkelens MN, Konijn T, Knippenberg M, Cook EC, Hanekamp D, Veldhoen M, Hartog A, Roeselers G, Mackay CR, Mebius RE. Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells. J Immunol. 2017;198(5):2172–81.PubMedCrossRef
34.
go back to reference Cait A, Cardenas E, Dimitriu P, Amenyogbe N, Dai D, Cait J, Sbihi H, Stiemsma L, Subbarao P, Mandhane PJ, Becker AB, Moraes TJ, Sears MR, Lefebvre DL, Azad MB, Kollmann T, Turvey SE, Mohn WW. Reduced genetic potential for butyrate fermentation in the gut microbiome of infants who develop allergic sensitization. J Allergy Clin Immunol. 2019;144(6):1638–47.PubMedCrossRef Cait A, Cardenas E, Dimitriu P, Amenyogbe N, Dai D, Cait J, Sbihi H, Stiemsma L, Subbarao P, Mandhane PJ, Becker AB, Moraes TJ, Sears MR, Lefebvre DL, Azad MB, Kollmann T, Turvey SE, Mohn WW. Reduced genetic potential for butyrate fermentation in the gut microbiome of infants who develop allergic sensitization. J Allergy Clin Immunol. 2019;144(6):1638–47.PubMedCrossRef
35.
go back to reference Tan J, McKenzie C, Vuillermin PJ, Goverse G, Vinuesa CG, Mebius RE, Macia L, Mackay CR. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep. 2016;15(12):2809–24.PubMedCrossRef Tan J, McKenzie C, Vuillermin PJ, Goverse G, Vinuesa CG, Mebius RE, Macia L, Mackay CR. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep. 2016;15(12):2809–24.PubMedCrossRef
36.
go back to reference Asarat M, Apostolopoulos V, Vasiljevic T, Donkor O. Short-chain fatty acids regulate cytokines and Th17/Treg cells in human peripheral blood mononuclear cells in vitro. Immunol Invest. 2016;45(3):205–22.PubMedCrossRef Asarat M, Apostolopoulos V, Vasiljevic T, Donkor O. Short-chain fatty acids regulate cytokines and Th17/Treg cells in human peripheral blood mononuclear cells in vitro. Immunol Invest. 2016;45(3):205–22.PubMedCrossRef
37.
go back to reference Zhu Z, Zhu B, Hu C, Liu Y, Wang X, Zhang J, Wang F, Zhu M. Short-chain fatty acids as a target for prevention against food allergy by regulatory T cells. JGH Open. 2019;3(3):190–5.PubMedPubMedCentralCrossRef Zhu Z, Zhu B, Hu C, Liu Y, Wang X, Zhang J, Wang F, Zhu M. Short-chain fatty acids as a target for prevention against food allergy by regulatory T cells. JGH Open. 2019;3(3):190–5.PubMedPubMedCentralCrossRef
38.
go back to reference Khan AR, Hams E, Floudas A, Sparwasser T, Weaver CT, Fallon PG. PD-L1hi B cells are critical regulators of humoral immunity. Nat Commun. 2015;6:5997.PubMedCrossRef Khan AR, Hams E, Floudas A, Sparwasser T, Weaver CT, Fallon PG. PD-L1hi B cells are critical regulators of humoral immunity. Nat Commun. 2015;6:5997.PubMedCrossRef
39.
go back to reference van de Veen W, Stanic B, Wirz OF, Jansen K, Globinska A, Akdis M. Role of regulatory B cells in immune tolerance to allergens and beyond. J Allergy Clin Immunol. 2016;138(3):654–65.PubMedCrossRef van de Veen W, Stanic B, Wirz OF, Jansen K, Globinska A, Akdis M. Role of regulatory B cells in immune tolerance to allergens and beyond. J Allergy Clin Immunol. 2016;138(3):654–65.PubMedCrossRef
40.
go back to reference Noval Rivas M, Burton OT, Wise P, Charbonnier L-M, Georgiev P, Oettgen HC, Rachid R, Chatila TA. Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy. Immunity. 2015;42(3):512–23.PubMedCrossRef Noval Rivas M, Burton OT, Wise P, Charbonnier L-M, Georgiev P, Oettgen HC, Rachid R, Chatila TA. Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy. Immunity. 2015;42(3):512–23.PubMedCrossRef
41.
go back to reference Nagata Y, Yamamoto T, Hayashi M, Hayashi S, Kadowaki M. Improvement of therapeutic efficacy of oral immunotherapy in combination with regulatory T cell-inducer kakkonto in a murine food allergy model. PLoS ONE. 2017;12(1):e0170577.PubMedPubMedCentralCrossRef Nagata Y, Yamamoto T, Hayashi M, Hayashi S, Kadowaki M. Improvement of therapeutic efficacy of oral immunotherapy in combination with regulatory T cell-inducer kakkonto in a murine food allergy model. PLoS ONE. 2017;12(1):e0170577.PubMedPubMedCentralCrossRef
42.
go back to reference Smaldini PL, Orsini Delgado ML, Fossati CA, Docena GH. Orally-induced intestinal CD4+CD25+FoxP3+ Treg controlled undesired responses towards oral antigens and effectively dampened food allergic reactions. PLoS ONE. 2015;10(10):e0141116.PubMedPubMedCentralCrossRef Smaldini PL, Orsini Delgado ML, Fossati CA, Docena GH. Orally-induced intestinal CD4+CD25+FoxP3+ Treg controlled undesired responses towards oral antigens and effectively dampened food allergic reactions. PLoS ONE. 2015;10(10):e0141116.PubMedPubMedCentralCrossRef
43.
go back to reference Dang TD, Allen KJ, Martino DJ, Koplin JJ, Licciardi PV, Tang ML. Food-allergic infants have impaired regulatory T-cell responses following in vivo allergen exposure. Pediatr Allergy Immunol. 2016;27(1):35–43.PubMedCrossRef Dang TD, Allen KJ, Martino DJ, Koplin JJ, Licciardi PV, Tang ML. Food-allergic infants have impaired regulatory T-cell responses following in vivo allergen exposure. Pediatr Allergy Immunol. 2016;27(1):35–43.PubMedCrossRef
44.
go back to reference Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K, Kim S, Fritz JV, Wilmes P, Ueha S, Matsushima K, Ohno H, Olle B, Sakaguchi S, Taniguchi T, Morita H, Hattori M, Honda K. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500(7461):232–6.CrossRefPubMed Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K, Kim S, Fritz JV, Wilmes P, Ueha S, Matsushima K, Ohno H, Olle B, Sakaguchi S, Taniguchi T, Morita H, Hattori M, Honda K. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500(7461):232–6.CrossRefPubMed
45.
go back to reference Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T, Takeda K, Hori S, Ivanov II, Umesaki Y, Itoh K, Honda K. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337–41.PubMedCrossRef Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T, Takeda K, Hori S, Ivanov II, Umesaki Y, Itoh K, Honda K. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337–41.PubMedCrossRef
46.
go back to reference Zhang J, Su H, Li Q, Wu H, Liu M, Huang J, Zeng M, Zheng Y, Sun X. Oral administration of Clostridium butyricum CGMCC0313-1 inhibits beta-lactoglobulin-induced intestinal anaphylaxis in a mouse model of food allergy. Gut Pathog. 2017;9:11.PubMedPubMedCentralCrossRef Zhang J, Su H, Li Q, Wu H, Liu M, Huang J, Zeng M, Zheng Y, Sun X. Oral administration of Clostridium butyricum CGMCC0313-1 inhibits beta-lactoglobulin-induced intestinal anaphylaxis in a mouse model of food allergy. Gut Pathog. 2017;9:11.PubMedPubMedCentralCrossRef
47.
go back to reference Abdel-Gadir A, Stephen-Victor E, Gerber GK, Noval Rivas M, Wang S, Harb H, Wang L, Li N, Crestani E, Spielman S, Secor W, Biehl H, Dibendetto N, Dong X, Umetsu DT, Bry L, Rachid R, Chatila TA. Microbiota therapy acts via a regulatory T cell MyD88/RORgammat pathway to suppress food allergy. Nat Med. 2019;25(7):1164–74.PubMedPubMedCentralCrossRef Abdel-Gadir A, Stephen-Victor E, Gerber GK, Noval Rivas M, Wang S, Harb H, Wang L, Li N, Crestani E, Spielman S, Secor W, Biehl H, Dibendetto N, Dong X, Umetsu DT, Bry L, Rachid R, Chatila TA. Microbiota therapy acts via a regulatory T cell MyD88/RORgammat pathway to suppress food allergy. Nat Med. 2019;25(7):1164–74.PubMedPubMedCentralCrossRef
48.
go back to reference Ma JY, Zhang J, Li QH, Shi ZL, Wu HJ, Zhang HQ, Tang LP, Yi R, Su H, Sun X. Oral administration of a mixture of probiotics protects against food allergy via induction of CD103(+) dendritic cells and modulates the intestinal microbiota. J Funct Foods. 2019;55:65–75.CrossRef Ma JY, Zhang J, Li QH, Shi ZL, Wu HJ, Zhang HQ, Tang LP, Yi R, Su H, Sun X. Oral administration of a mixture of probiotics protects against food allergy via induction of CD103(+) dendritic cells and modulates the intestinal microbiota. J Funct Foods. 2019;55:65–75.CrossRef
49.
go back to reference van den Elsen LW, Poyntz HC, Weyrich LS, Young W, Forbes-Blom EE. Embracing the gut microbiota: the new frontier for inflammatory and infectious diseases. Clin Transl Immunol. 2017;6(1):125.CrossRef van den Elsen LW, Poyntz HC, Weyrich LS, Young W, Forbes-Blom EE. Embracing the gut microbiota: the new frontier for inflammatory and infectious diseases. Clin Transl Immunol. 2017;6(1):125.CrossRef
50.
go back to reference Molloy J, Allen K, Collier F, Tang MLK, Ward AC, Vuillermin P. The potential link between gut microbiota and IgE-mediated food allergy in early life. Int J Environ Res Public Health. 2013;10(12):7235–56.PubMedPubMedCentralCrossRef Molloy J, Allen K, Collier F, Tang MLK, Ward AC, Vuillermin P. The potential link between gut microbiota and IgE-mediated food allergy in early life. Int J Environ Res Public Health. 2013;10(12):7235–56.PubMedPubMedCentralCrossRef
51.
go back to reference Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA. 2010;107(27):12204–9.PubMedCrossRefPubMedCentral Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA. 2010;107(27):12204–9.PubMedCrossRefPubMedCentral
52.
go back to reference Remely M, Haslberger AG. The microbial epigenome in metabolic syndrome. Mol Aspects Med. 2017;54:71–7.PubMedCrossRef Remely M, Haslberger AG. The microbial epigenome in metabolic syndrome. Mol Aspects Med. 2017;54:71–7.PubMedCrossRef
53.
go back to reference Savage J, Sordillo J, Sodergren E, Weinstock G, Gold D, Weiss S, Litonjua A. A prospective microbiome-wide association study of childhood food sensitization and allergy. J Allergy Clin Immunol. 2016;137(2):AB96.CrossRef Savage J, Sordillo J, Sodergren E, Weinstock G, Gold D, Weiss S, Litonjua A. A prospective microbiome-wide association study of childhood food sensitization and allergy. J Allergy Clin Immunol. 2016;137(2):AB96.CrossRef
54.
go back to reference Diesner SC, Bergmayr C, Pfitzner B, Assmann V, Krishnamurthy D, Starkl P, Endesfelder D, Rothballer M, Welzl G, Rattei T, Eiwegger T, Szepfalusi Z, Fehrenbach H, Jensen-Jarolim E, Hartmann A, Pali-Scholl I, Untersmayr E. A distinct microbiota composition is associated with protection from food allergy in an oral mouse immunization model. Clin Immunol. 2016;173:10–8.PubMedPubMedCentralCrossRef Diesner SC, Bergmayr C, Pfitzner B, Assmann V, Krishnamurthy D, Starkl P, Endesfelder D, Rothballer M, Welzl G, Rattei T, Eiwegger T, Szepfalusi Z, Fehrenbach H, Jensen-Jarolim E, Hartmann A, Pali-Scholl I, Untersmayr E. A distinct microbiota composition is associated with protection from food allergy in an oral mouse immunization model. Clin Immunol. 2016;173:10–8.PubMedPubMedCentralCrossRef
55.
go back to reference Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK, Tjota MY, Seo GY, Cao S, Theriault BR, Antonopoulos DA, Zhou L, Chang EB, Fu YX, Nagler CR. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA. 2014;111(36):13145–50.PubMedCrossRefPubMedCentral Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK, Tjota MY, Seo GY, Cao S, Theriault BR, Antonopoulos DA, Zhou L, Chang EB, Fu YX, Nagler CR. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA. 2014;111(36):13145–50.PubMedCrossRefPubMedCentral
56.
go back to reference Guo L, Bai H, Dong Y, Huang D, Zhang X, Gong S, Zhao X, Fei P. Comparative analysis of fecal microbiota in 5–8-year-old children with and without cow milk protein allergy. Iran J Pediatr. 2016;26(6):6397. Guo L, Bai H, Dong Y, Huang D, Zhang X, Gong S, Zhao X, Fei P. Comparative analysis of fecal microbiota in 5–8-year-old children with and without cow milk protein allergy. Iran J Pediatr. 2016;26(6):6397.
57.
go back to reference Di Costanzo M, Amoroso A, Canani RB. Gut microbiota as a target for food allergy. J Pediatr Gastroenterol Nutr. 2016;63(1):11–3. Di Costanzo M, Amoroso A, Canani RB. Gut microbiota as a target for food allergy. J Pediatr Gastroenterol Nutr. 2016;63(1):11–3.
59.
go back to reference Bloomfield SF, Rook GA, Scott EA, Shanahan F, Stanwell-Smith R, Turner P. Time to abandon the hygiene hypothesis: new perspectives on allergic disease, the human microbiome, infectious disease prevention and the role of targeted hygiene. Perspect Public Health. 2016;136(4):213–24.PubMedPubMedCentralCrossRef Bloomfield SF, Rook GA, Scott EA, Shanahan F, Stanwell-Smith R, Turner P. Time to abandon the hygiene hypothesis: new perspectives on allergic disease, the human microbiome, infectious disease prevention and the role of targeted hygiene. Perspect Public Health. 2016;136(4):213–24.PubMedPubMedCentralCrossRef
60.
go back to reference Sordillo JE, Zhou Y, McGeachie MJ, Ziniti J, Lange N, Laranjo N, Savage JR, Carey V, O’Connor G, Sandel M, Strunk R, Bacharier L, Zeiger R, Weiss ST, Weinstock G, Gold DR, Litonjua AA. Factors influencing the infant gut microbiome at age 3–6 months: findings from the ethnically diverse Vitamin D Antenatal Asthma Reduction Trial (VDAART). J Allergy Clin Immunol. 2017;139(2):482.e14–91.e14.CrossRef Sordillo JE, Zhou Y, McGeachie MJ, Ziniti J, Lange N, Laranjo N, Savage JR, Carey V, O’Connor G, Sandel M, Strunk R, Bacharier L, Zeiger R, Weiss ST, Weinstock G, Gold DR, Litonjua AA. Factors influencing the infant gut microbiome at age 3–6 months: findings from the ethnically diverse Vitamin D Antenatal Asthma Reduction Trial (VDAART). J Allergy Clin Immunol. 2017;139(2):482.e14–91.e14.CrossRef
61.
go back to reference Papathoma E, Triga M, Fouzas S, Dimitriou G. Cesarean section delivery and development of food allergy and atopic dermatitis in early childhood. Pediatr Allergy Immunol. 2016;27(4):419–24.PubMedCrossRef Papathoma E, Triga M, Fouzas S, Dimitriou G. Cesarean section delivery and development of food allergy and atopic dermatitis in early childhood. Pediatr Allergy Immunol. 2016;27(4):419–24.PubMedCrossRef
62.
go back to reference Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: a systematic review. BMC Gastroenterol. 2016;16(1):86.PubMedPubMedCentralCrossRef Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: a systematic review. BMC Gastroenterol. 2016;16(1):86.PubMedPubMedCentralCrossRef
63.
64.
go back to reference Bashir MEH, Louie S, Shi HN, Nagler-Anderson C. Toll-like receptor 4 signaling by intestinal microbes influences susceptibility to food allergy. J Immunol. 2004;172(11):6978–87.PubMedCrossRef Bashir MEH, Louie S, Shi HN, Nagler-Anderson C. Toll-like receptor 4 signaling by intestinal microbes influences susceptibility to food allergy. J Immunol. 2004;172(11):6978–87.PubMedCrossRef
65.
go back to reference Love BL, Mann JR, Hardin JW, Lu ZK, Cox C, Amrol DJ. Antibiotic prescription and food allergy in young children. Allergy Asthma Clin Immunol. 2016;12:41.PubMedPubMedCentralCrossRef Love BL, Mann JR, Hardin JW, Lu ZK, Cox C, Amrol DJ. Antibiotic prescription and food allergy in young children. Allergy Asthma Clin Immunol. 2016;12:41.PubMedPubMedCentralCrossRef
66.
go back to reference Hirsch AG, Pollak J, Glass TA, Poulsen MN, Bailey-Davis L, Mowery J, Schwartz BS. Early-life antibiotic use and subsequent diagnosis of food allergy and allergic diseases. Clin Exp Allergy. 2017;47(2):236–44.PubMedCrossRef Hirsch AG, Pollak J, Glass TA, Poulsen MN, Bailey-Davis L, Mowery J, Schwartz BS. Early-life antibiotic use and subsequent diagnosis of food allergy and allergic diseases. Clin Exp Allergy. 2017;47(2):236–44.PubMedCrossRef
67.
go back to reference Gupta RS, Singh AM, Walkner M, Caruso D, Bryce PJ, Wang X, Pongracic JA, Smith BM. Hygiene factors associated with childhood food allergy and asthma. Allergy Asthma Proc. 2016;37(6):140–6.CrossRef Gupta RS, Singh AM, Walkner M, Caruso D, Bryce PJ, Wang X, Pongracic JA, Smith BM. Hygiene factors associated with childhood food allergy and asthma. Allergy Asthma Proc. 2016;37(6):140–6.CrossRef
68.
go back to reference Brown K, DeCoffe D, Molcan E, Gibson D. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients. 2012;4(8):1095–119.PubMedPubMedCentralCrossRef Brown K, DeCoffe D, Molcan E, Gibson D. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients. 2012;4(8):1095–119.PubMedPubMedCentralCrossRef
69.
go back to reference Roduit C, Frei R, Depner M, Schaub B, Loss G, Genuneit J, Pfefferle P, Hyvärinen A, Karvonen A, Riedler J, Dalphin J, Pekkanen J, von Mutius R, Braun-Fahrländer C, Lauener R. Increased food diversity in the first year of life is inversely associated with allergic diseases. J Allergy Clin Immunol. 2014;133(4):1056–64.PubMedCrossRef Roduit C, Frei R, Depner M, Schaub B, Loss G, Genuneit J, Pfefferle P, Hyvärinen A, Karvonen A, Riedler J, Dalphin J, Pekkanen J, von Mutius R, Braun-Fahrländer C, Lauener R. Increased food diversity in the first year of life is inversely associated with allergic diseases. J Allergy Clin Immunol. 2014;133(4):1056–64.PubMedCrossRef
70.
go back to reference Grummer-Strawn LM, Scanlon KS, Fein SB. Infant feeding and feeding transitions during the first year of life. Pediatrics. 2008;122:36–42.CrossRef Grummer-Strawn LM, Scanlon KS, Fein SB. Infant feeding and feeding transitions during the first year of life. Pediatrics. 2008;122:36–42.CrossRef
72.
go back to reference Yoshioka H, Iseki K, Fujita K. Development and differences of intestinal flora in the neonatal period in breast-fed and bottle-fed infants. Pediatrics. 1983;72(3):317–21.PubMed Yoshioka H, Iseki K, Fujita K. Development and differences of intestinal flora in the neonatal period in breast-fed and bottle-fed infants. Pediatrics. 1983;72(3):317–21.PubMed
73.
go back to reference Walker WA, Iyengar RS. Breast milk, microbiota, and intestinal immune homeostasis. Pediatr Res. 2015;77(1–2):220–8.PubMedCrossRef Walker WA, Iyengar RS. Breast milk, microbiota, and intestinal immune homeostasis. Pediatr Res. 2015;77(1–2):220–8.PubMedCrossRef
74.
go back to reference Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, Welling GW. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr. 2000;30(1):61–7.PubMedCrossRef Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, Welling GW. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr. 2000;30(1):61–7.PubMedCrossRef
75.
go back to reference Gil F, Amezqueta A, Martinez D, Aznal E, Etayo V, Dura T, Sanchez-Valverde F. Association between caesarean delivery and isolated doses of formula feeding in cow milk allergy. Int Arch Allergy Immunol. 2017;173(3):147–52.PubMedCrossRef Gil F, Amezqueta A, Martinez D, Aznal E, Etayo V, Dura T, Sanchez-Valverde F. Association between caesarean delivery and isolated doses of formula feeding in cow milk allergy. Int Arch Allergy Immunol. 2017;173(3):147–52.PubMedCrossRef
76.
go back to reference Richards JL, Yap YA, McLeod KH, Mackay CR, Marino E. Dietary metabolites and the gut microbiota: an alternative approach to control inflammatory and autoimmune diseases. Clin Transl Immunol. 2016;5(5):e82.CrossRef Richards JL, Yap YA, McLeod KH, Mackay CR, Marino E. Dietary metabolites and the gut microbiota: an alternative approach to control inflammatory and autoimmune diseases. Clin Transl Immunol. 2016;5(5):e82.CrossRef
78.
go back to reference Lanis JM, Alexeev EE, Curtis VF, Kitzenberg DA, Kao DJ, Battista KD, Gerich ME, Glover LE, Kominsky DJ, Colgan SP. Tryptophan metabolite activation of the aryl hydrocarbon receptor regulates IL-10 receptor expression on intestinal epithelia. Mucosal Immunol. 2017;10(5):1133–44.PubMedPubMedCentralCrossRef Lanis JM, Alexeev EE, Curtis VF, Kitzenberg DA, Kao DJ, Battista KD, Gerich ME, Glover LE, Kominsky DJ, Colgan SP. Tryptophan metabolite activation of the aryl hydrocarbon receptor regulates IL-10 receptor expression on intestinal epithelia. Mucosal Immunol. 2017;10(5):1133–44.PubMedPubMedCentralCrossRef
79.
go back to reference David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.PubMedCrossRef David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.PubMedCrossRef
80.
go back to reference Miyazato S, Tsuda M, Kishimoto Y, Hosono A. Suppressive effect of dietary resistant maltodextrin on systemic immunity in a mouse model of food allergy. Biosci Microbiota Food Health. 2018;38:89–95.CrossRef Miyazato S, Tsuda M, Kishimoto Y, Hosono A. Suppressive effect of dietary resistant maltodextrin on systemic immunity in a mouse model of food allergy. Biosci Microbiota Food Health. 2018;38:89–95.CrossRef
81.
go back to reference Smith PK, Masilamani M, Li X-M, Sampson HA. The false alarm hypothesis: food allergy is associated with high dietary advanced glycation end-products and proglycating dietary sugars that mimic alarmins. J Allergy Clin Immunol. 2017;139(2):429–37.PubMedCrossRef Smith PK, Masilamani M, Li X-M, Sampson HA. The false alarm hypothesis: food allergy is associated with high dietary advanced glycation end-products and proglycating dietary sugars that mimic alarmins. J Allergy Clin Immunol. 2017;139(2):429–37.PubMedCrossRef
82.
go back to reference Velmurugan G. Gut microbiota in toxicological risk assessment of drugs and chemicals: the need of hour. Gut Microbes. 2018;9(5):465–8.PubMedPubMedCentral Velmurugan G. Gut microbiota in toxicological risk assessment of drugs and chemicals: the need of hour. Gut Microbes. 2018;9(5):465–8.PubMedPubMedCentral
83.
go back to reference Yamashita H, Matsuhara H, Miotani S, Sako Y, Matsui T, Tanaka H, Inagaki N. Artificial sweeteners and mixture of food additives cause to break oral tolerance and induce food allergy in murine oral tolerance model for food allergy. Clin Exp Allergy. 2017;47(9):1204–13.PubMedCrossRef Yamashita H, Matsuhara H, Miotani S, Sako Y, Matsui T, Tanaka H, Inagaki N. Artificial sweeteners and mixture of food additives cause to break oral tolerance and induce food allergy in murine oral tolerance model for food allergy. Clin Exp Allergy. 2017;47(9):1204–13.PubMedCrossRef
84.
go back to reference Jin YN, Bursley J, Dover H, Gangur V, Rockwell CE. The effect of the common food additive tBHQ in OVA-elicited food allergy. J Immunol. 2018;200(1):104.4. Jin YN, Bursley J, Dover H, Gangur V, Rockwell CE. The effect of the common food additive tBHQ in OVA-elicited food allergy. J Immunol. 2018;200(1):104.4.
85.
go back to reference Gruzieva O, Bellander T, Eneroth K, Kull I, Melen E, Nordling E, van Hage M, Wickman M, Moskalenko V, Hulchiy O, Pershagen G. Traffic-related air pollution and development of allergic sensitization in children during the first 8 years of life. J Allergy Clin Immunol. 2012;129(1):240–6.PubMedCrossRef Gruzieva O, Bellander T, Eneroth K, Kull I, Melen E, Nordling E, van Hage M, Wickman M, Moskalenko V, Hulchiy O, Pershagen G. Traffic-related air pollution and development of allergic sensitization in children during the first 8 years of life. J Allergy Clin Immunol. 2012;129(1):240–6.PubMedCrossRef
86.
go back to reference Sbihi H, Allen RW, Becker A, Brook JR, Mandhane P, Scott JA, Sears MR, Subbarao P, Takaro TK, Turvey SE, Brauer M. Perinatal exposure to traffic-related air pollution and atopy at 1 year of age in a multi-center Canadian birth cohort study. Environ Health Perspect. 2015;123(9):902–8.PubMedPubMedCentralCrossRef Sbihi H, Allen RW, Becker A, Brook JR, Mandhane P, Scott JA, Sears MR, Subbarao P, Takaro TK, Turvey SE, Brauer M. Perinatal exposure to traffic-related air pollution and atopy at 1 year of age in a multi-center Canadian birth cohort study. Environ Health Perspect. 2015;123(9):902–8.PubMedPubMedCentralCrossRef
87.
go back to reference Wang IJ, Tung TH, Tang CS, Zhao ZH. Allergens, air pollutants, and childhood allergic diseases. Int J Hyg Environ Health. 2016;219(1):66–71.PubMedCrossRef Wang IJ, Tung TH, Tang CS, Zhao ZH. Allergens, air pollutants, and childhood allergic diseases. Int J Hyg Environ Health. 2016;219(1):66–71.PubMedCrossRef
88.
go back to reference Mutlu EA, Comba IY, Cho T, Engen PA, Yazici C, Soberanes S, Hamanaka RB, Nigdelioglu R, Meliton AY, Ghio AJ, Budinger GRS, Mutlu GM. Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. Environ Pollut. 2018;240:817–30.PubMedPubMedCentralCrossRef Mutlu EA, Comba IY, Cho T, Engen PA, Yazici C, Soberanes S, Hamanaka RB, Nigdelioglu R, Meliton AY, Ghio AJ, Budinger GRS, Mutlu GM. Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. Environ Pollut. 2018;240:817–30.PubMedPubMedCentralCrossRef
89.
go back to reference Barcik W, Untersmayr E, Pati-Scholl I, O’Mahony L, Frei R. Influence of microbiome and diet on immune responses in food allergy models. Drug Discov Today Ther Strateg. 2015;17–18:71–80. Barcik W, Untersmayr E, Pati-Scholl I, O’Mahony L, Frei R. Influence of microbiome and diet on immune responses in food allergy models. Drug Discov Today Ther Strateg. 2015;17–18:71–80.
90.
go back to reference Rachid R, Chatila TA. The role of the gut microbiota in food allergy. Curr Opin Pediatr. 2016;28(6):748–53.PubMedCrossRef Rachid R, Chatila TA. The role of the gut microbiota in food allergy. Curr Opin Pediatr. 2016;28(6):748–53.PubMedCrossRef
91.
go back to reference Sidhu M, van der Poorten D. The gut microbiome. Aust Fam Physician. 2017;46(4):206–11.PubMed Sidhu M, van der Poorten D. The gut microbiome. Aust Fam Physician. 2017;46(4):206–11.PubMed
92.
go back to reference Berti C, Agostoni C, Davanzo R, Hypponen E, Isolauri E, Meltzer HM, Steegers-Theunissen RP, Cetin I. Early-life nutritional exposures and lifelong health: immediate and long-lasting impacts of probiotics, vitamin D, and breastfeeding. Nutr Rev. 2017;75(2):83–97.PubMed Berti C, Agostoni C, Davanzo R, Hypponen E, Isolauri E, Meltzer HM, Steegers-Theunissen RP, Cetin I. Early-life nutritional exposures and lifelong health: immediate and long-lasting impacts of probiotics, vitamin D, and breastfeeding. Nutr Rev. 2017;75(2):83–97.PubMed
93.
go back to reference Berni Canani R, Sangwan N, Stefka AT, Nocerino R, Paparo L, Aitoro R, Calignano A, Khan AA, Gilbert JA, Nagler CR. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants. ISME J. 2016;10(3):742–50.PubMedCrossRef Berni Canani R, Sangwan N, Stefka AT, Nocerino R, Paparo L, Aitoro R, Calignano A, Khan AA, Gilbert JA, Nagler CR. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants. ISME J. 2016;10(3):742–50.PubMedCrossRef
94.
go back to reference Thang CL, Baurhoo B, Boye JI, Simpson BK, Zhao X. Effects of Lactobacillus rhamnosus GG supplementation on cow’s milk allergy in a mouse model. Allergy Asthma Clin Immunol. 2011;7:20.PubMedPubMedCentralCrossRef Thang CL, Baurhoo B, Boye JI, Simpson BK, Zhao X. Effects of Lactobacillus rhamnosus GG supplementation on cow’s milk allergy in a mouse model. Allergy Asthma Clin Immunol. 2011;7:20.PubMedPubMedCentralCrossRef
95.
go back to reference Neau E, Delannoy J, Marion C, Cottart C-H, Labellie C, Holowacz S, Butel M-J, Kapel N, Waligora-Dupriet A-J. Three novel candidate probiotic strains with prophylactic properties in a murine model of cow’s milk allergy. Appl Environ Microbiol. 2016;82(6):1722–33.PubMedPubMedCentralCrossRef Neau E, Delannoy J, Marion C, Cottart C-H, Labellie C, Holowacz S, Butel M-J, Kapel N, Waligora-Dupriet A-J. Three novel candidate probiotic strains with prophylactic properties in a murine model of cow’s milk allergy. Appl Environ Microbiol. 2016;82(6):1722–33.PubMedPubMedCentralCrossRef
96.
go back to reference Berni Canani R, Di Costanzo M, Bedogni G, Amoroso A, Cosenza L, Di Scala C, Granata V, Nocerino R. Extensively hydrolyzed casein formula containing Lactobacillus rhamnosus GG reduces the occurrence of other allergic manifestations in children with cow’s milk allergy: 3-year randomized controlled trial. J Allergy Clin Immunol. 2017;139(6):1906–13.PubMedCrossRef Berni Canani R, Di Costanzo M, Bedogni G, Amoroso A, Cosenza L, Di Scala C, Granata V, Nocerino R. Extensively hydrolyzed casein formula containing Lactobacillus rhamnosus GG reduces the occurrence of other allergic manifestations in children with cow’s milk allergy: 3-year randomized controlled trial. J Allergy Clin Immunol. 2017;139(6):1906–13.PubMedCrossRef
97.
go back to reference Paparo L, Nocerino R, Bruno C, Di Scala C, Cosenza L, Bedogni G, Di Costanzo M, Mennini M, D’Argenio V, Salvatore F, Berni Canani R. Publisher correction: randomized controlled trial on the influence of dietary intervention on epigenetic mechanisms in children with cow’s milk allergy: the EPICMA study. Sci Rep. 2019;9(1):9504.PubMedPubMedCentralCrossRef Paparo L, Nocerino R, Bruno C, Di Scala C, Cosenza L, Bedogni G, Di Costanzo M, Mennini M, D’Argenio V, Salvatore F, Berni Canani R. Publisher correction: randomized controlled trial on the influence of dietary intervention on epigenetic mechanisms in children with cow’s milk allergy: the EPICMA study. Sci Rep. 2019;9(1):9504.PubMedPubMedCentralCrossRef
98.
go back to reference Jensen H, Dromtorp SM, Axelsson L, Grimmer S. Immunomodulation of monocytes by probiotic and selected lactic acid bacteria. Probiotics Antimicrob Proteins. 2015;7(1):14–23.PubMedCrossRef Jensen H, Dromtorp SM, Axelsson L, Grimmer S. Immunomodulation of monocytes by probiotic and selected lactic acid bacteria. Probiotics Antimicrob Proteins. 2015;7(1):14–23.PubMedCrossRef
99.
go back to reference Tanoue T, Atarashi K, Honda K. Development and maintenance of intestinal regulatory T cells. Nat Rev Immunol. 2016;16(5):295–309.PubMedCrossRef Tanoue T, Atarashi K, Honda K. Development and maintenance of intestinal regulatory T cells. Nat Rev Immunol. 2016;16(5):295–309.PubMedCrossRef
100.
go back to reference Tang ML, Ponsonby AL, Orsini F, Tey D, Robinson M, Su EL, Licciardi P, Burks W, Donath S. Administration of a probiotic with peanut oral immunotherapy: a randomized trial. J Allergy Clin Immunol. 2015;135(3):737–44.PubMedCrossRef Tang ML, Ponsonby AL, Orsini F, Tey D, Robinson M, Su EL, Licciardi P, Burks W, Donath S. Administration of a probiotic with peanut oral immunotherapy: a randomized trial. J Allergy Clin Immunol. 2015;135(3):737–44.PubMedCrossRef
101.
go back to reference Fu L, Song J, Wang C, Fu S, Wang Y. Bifidobacterium infantis potentially alleviates shrimp tropomyosin-induced allergy by tolerogenic dendritic cell-dependent induction of regulatory T cells and alterations in gut microbiota. Front Immunol. 2017;8:1536.PubMedPubMedCentralCrossRef Fu L, Song J, Wang C, Fu S, Wang Y. Bifidobacterium infantis potentially alleviates shrimp tropomyosin-induced allergy by tolerogenic dendritic cell-dependent induction of regulatory T cells and alterations in gut microbiota. Front Immunol. 2017;8:1536.PubMedPubMedCentralCrossRef
102.
go back to reference Shi Y, Xu LZ, Peng K, Wu W, Wu R, Liu ZQ, Yang G, Geng XR, Liu J, Liu ZG, Liu Z, Yang PC. Specific immunotherapy in combination with Clostridium butyricum inhibits allergic inflammation in the mouse intestine. Sci Rep. 2015;5:17651.PubMedPubMedCentralCrossRef Shi Y, Xu LZ, Peng K, Wu W, Wu R, Liu ZQ, Yang G, Geng XR, Liu J, Liu ZG, Liu Z, Yang PC. Specific immunotherapy in combination with Clostridium butyricum inhibits allergic inflammation in the mouse intestine. Sci Rep. 2015;5:17651.PubMedPubMedCentralCrossRef
103.
go back to reference Mileti E, Matteoli G, Iliev ID, Rescigno M. Comparison of the immunomodulatory properties of three probiotic strains of Lactobacilli using complex culture systems: prediction for in vivo efficacy. PLoS ONE. 2009;4(9):7056.CrossRef Mileti E, Matteoli G, Iliev ID, Rescigno M. Comparison of the immunomodulatory properties of three probiotic strains of Lactobacilli using complex culture systems: prediction for in vivo efficacy. PLoS ONE. 2009;4(9):7056.CrossRef
104.
go back to reference Scourboutakos MJ, Franco-Arellano B, Murphy SA, Norsen S, Comelli EM, L’Abbe MR. Mismatch between probiotic benefits in trials versus food products. Nutrients. 2017;9(4):400.PubMedCentralCrossRef Scourboutakos MJ, Franco-Arellano B, Murphy SA, Norsen S, Comelli EM, L’Abbe MR. Mismatch between probiotic benefits in trials versus food products. Nutrients. 2017;9(4):400.PubMedCentralCrossRef
105.
go back to reference Liu Z, Liu W, Ran C, Hu J, Zhou Z. Abrupt suspension of probiotics administration may increase host pathogen susceptibility by inducing gut dysbiosis. Sci Rep. 2016;6:23214.PubMedPubMedCentralCrossRef Liu Z, Liu W, Ran C, Hu J, Zhou Z. Abrupt suspension of probiotics administration may increase host pathogen susceptibility by inducing gut dysbiosis. Sci Rep. 2016;6:23214.PubMedPubMedCentralCrossRef
106.
107.
go back to reference Camps-Bossacoma M, Perez-Cano FJ, Franch A, Castell M. Gut microbiota in a rat oral sensitization model: effect of a cocoa-enriched diet. Oxid Med Cell Longev. 2017;2017:7417505.PubMedPubMedCentralCrossRef Camps-Bossacoma M, Perez-Cano FJ, Franch A, Castell M. Gut microbiota in a rat oral sensitization model: effect of a cocoa-enriched diet. Oxid Med Cell Longev. 2017;2017:7417505.PubMedPubMedCentralCrossRef
108.
go back to reference Camps-Bossacoma M, Abril-Gil M, Saldana-Ruiz S, Franch A, Perez-Cano FJ, Castell M. Cocoa diet prevents antibody synthesis and modifies lymph node composition and functionality in a rat oral sensitization model. Nutrients. 2016;8(4):242.PubMedPubMedCentralCrossRef Camps-Bossacoma M, Abril-Gil M, Saldana-Ruiz S, Franch A, Perez-Cano FJ, Castell M. Cocoa diet prevents antibody synthesis and modifies lymph node composition and functionality in a rat oral sensitization model. Nutrients. 2016;8(4):242.PubMedPubMedCentralCrossRef
109.
go back to reference Candy DCA, Van Ampting MTJ, Oude Nijhuis MM, Wopereis H, Butt AM, Peroni DG, Vandenplas Y, Fox AT, Shah N, West CE, Garssen J, Harthoorn LF, Knol J, Michaelis LJ. A synbiotic-containing amino-acid-based formula improves gut microbiota in non-IgE-mediated allergic infants. Pediatr Res. 2018;83(3):677–86.PubMedCrossRef Candy DCA, Van Ampting MTJ, Oude Nijhuis MM, Wopereis H, Butt AM, Peroni DG, Vandenplas Y, Fox AT, Shah N, West CE, Garssen J, Harthoorn LF, Knol J, Michaelis LJ. A synbiotic-containing amino-acid-based formula improves gut microbiota in non-IgE-mediated allergic infants. Pediatr Res. 2018;83(3):677–86.PubMedCrossRef
110.
go back to reference Borody TJ, Khoruts A. Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol. 2011;9(2):88–96.PubMedCrossRef Borody TJ, Khoruts A. Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol. 2011;9(2):88–96.PubMedCrossRef
111.
go back to reference Gupta S, Allen-Vercoe E, Petrof EO. Fecal microbiota transplantation: in perspective. Ther Adv Gastroenterol. 2016;9(2):229–39.CrossRef Gupta S, Allen-Vercoe E, Petrof EO. Fecal microbiota transplantation: in perspective. Ther Adv Gastroenterol. 2016;9(2):229–39.CrossRef
112.
go back to reference Liu S-X, Li Y-H, Dai W-K, Li X-S, Qiu C-Z, Ruan M-L, Zou B, Dong C, Liu Y-H, He J-Y, Huang Z-H, Shu S-N. Fecal microbiota transplantation induces remission of infantile allergic colitis through gut microbiota re-establishment. World J Gastroenterol. 2017;23(48):8570–81.PubMedPubMedCentralCrossRef Liu S-X, Li Y-H, Dai W-K, Li X-S, Qiu C-Z, Ruan M-L, Zou B, Dong C, Liu Y-H, He J-Y, Huang Z-H, Shu S-N. Fecal microbiota transplantation induces remission of infantile allergic colitis through gut microbiota re-establishment. World J Gastroenterol. 2017;23(48):8570–81.PubMedPubMedCentralCrossRef
113.
go back to reference Petrof EO, Gloor GB, Vanner SJ, Weese SJ, Carter D, Daigneault MC, Brown EM, Schroeter K, Allen-Vercoe E. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome. 2013;1(1):3.PubMedPubMedCentralCrossRef Petrof EO, Gloor GB, Vanner SJ, Weese SJ, Carter D, Daigneault MC, Brown EM, Schroeter K, Allen-Vercoe E. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome. 2013;1(1):3.PubMedPubMedCentralCrossRef
114.
go back to reference Feehley T, Plunkett CH, Bao R, Choi Hong SM, Culleen E, Belda-Ferre P, Campbell E, Aitoro R, Nocerino R, Paparo L, Andrade J, Antonopoulos DA, Berni Canani R, Nagler CR. Healthy infants harbor intestinal bacteria that protect against food allergy. Nat Med. 2019;25(3):448–53.PubMedPubMedCentralCrossRef Feehley T, Plunkett CH, Bao R, Choi Hong SM, Culleen E, Belda-Ferre P, Campbell E, Aitoro R, Nocerino R, Paparo L, Andrade J, Antonopoulos DA, Berni Canani R, Nagler CR. Healthy infants harbor intestinal bacteria that protect against food allergy. Nat Med. 2019;25(3):448–53.PubMedPubMedCentralCrossRef
115.
go back to reference Dong P, Feng JJ, Yan DY, Lyu YJ, Xu X. Early-life gut microbiome and cow’s milk allergy—a prospective case–control 6-month follow-up study. Saudi J Biol Sci. 2018;25(5):875–80.PubMedCrossRef Dong P, Feng JJ, Yan DY, Lyu YJ, Xu X. Early-life gut microbiome and cow’s milk allergy—a prospective case–control 6-month follow-up study. Saudi J Biol Sci. 2018;25(5):875–80.PubMedCrossRef
116.
go back to reference Nagano Y, Itoh K, Honda K. The induction of Treg cells by gut-indigenous Clostridium. Curr Opin Immunol. 2012;24(4):392–7.PubMedCrossRef Nagano Y, Itoh K, Honda K. The induction of Treg cells by gut-indigenous Clostridium. Curr Opin Immunol. 2012;24(4):392–7.PubMedCrossRef
Metadata
Title
The gut microbiota, environmental factors, and links to the development of food allergy
Authors
Khui Hung Lee
Yong Song
Weidong Wu
Kan Yu
Guicheng Zhang
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Clinical and Molecular Allergy / Issue 1/2020
Electronic ISSN: 1476-7961
DOI
https://doi.org/10.1186/s12948-020-00120-x

Other articles of this Issue 1/2020

Clinical and Molecular Allergy 1/2020 Go to the issue