Skip to main content
Top
Published in: Cardiovascular Ultrasound 1/2021

Open Access 01-12-2021 | Echocardiography | Research

Prenatal evaluation of fetal atrioventricular valves by real-time 4D volume imaging with electronic matrix probe

Authors: Huiyu Tang, Wei Sun, Xue Sun, Yu Wang, Yu Qi, Dong Wang, Ying Zhang

Published in: Cardiovascular Ultrasound | Issue 1/2021

Login to get access

Abstract

Background

The purpose of this study is to evaluate the feasibility using real-time four-dimensional (RT 4D) volume imaging with electronic matrix probe to observe the morphology of atrioventricular valves in normal and abnormal fetuses, measure the area and circumference of atrioventricular valves in normal fetuses and analyze the correlation with gestational age.

Methods

RT 4D volume imaging with electronic matrix probe was used to collect cardiac volume data of 162 normal fetuses with the gestational age from 22 to 32 weeks and 19 fetuses with atrioventricular valves abnormalities were also enrolled. All the volume data were analyzed and processed in real-time. The morphology of mitral and tricuspid valves was observed in surface mode. The area and circumference of valves were measured in a 4D render view at the end of diastole and analyzed the correlation with gestational age.

Results

In 148 of 162 fetuses (91%), the 4D rendered image could be successfully obtained, which clearly showed the morphology of the atrioventricular valves. The area and circumference of mitral and tricuspid valves were positively correlated with gestational age (P < 0.01). Furthermore, 4D rendered images were successfully obtained in 17 of 19 fetuses (89%) with atrioventricular valves abnormalities.

Conclusions

The reference range of the area and circumference of atrioventricular valves in normal fetuses at different gestational weeks could be determined by using the RT 4D volume imaging with electronic matrix probe, which can provide certain diagnostic information for the clinic. The RT 4D images could display the valves morphology vividly in both normal and abnormal fetuses, including some subtle lesions which are not identified by traditional two-dimensional (2D) echocardiography. It is feasible to use the RT 4D volume imaging with electronic matrix probe to perform the prenatal evaluation in the fetal atrioventricular valves.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900.CrossRef Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900.CrossRef
2.
go back to reference Massaro AN, El-Dib M, Glass P, Aly H. Factors associated with adverse neurodevelopmental outcomes in infants with congenital heart disease. Brain and Development. 2008;30:437–46.CrossRef Massaro AN, El-Dib M, Glass P, Aly H. Factors associated with adverse neurodevelopmental outcomes in infants with congenital heart disease. Brain and Development. 2008;30:437–46.CrossRef
3.
go back to reference Allan LD, Crawford DC, Anderson RH, Tynan M. Spectrum of congenital heart disease detected echocardiographically in prenatal life. Br Heart J. 1985;54:523–6.CrossRef Allan LD, Crawford DC, Anderson RH, Tynan M. Spectrum of congenital heart disease detected echocardiographically in prenatal life. Br Heart J. 1985;54:523–6.CrossRef
4.
go back to reference Xiong Y, Liu T, Wu Y, Xu JF, et al. Comparison of real-time three-dimensional echocardiography and spatiotemporal image correlation in assessment of fetal interventricular septum. J Matern Fetal Neonatal Med. 2012;25:2333–8.CrossRef Xiong Y, Liu T, Wu Y, Xu JF, et al. Comparison of real-time three-dimensional echocardiography and spatiotemporal image correlation in assessment of fetal interventricular septum. J Matern Fetal Neonatal Med. 2012;25:2333–8.CrossRef
5.
go back to reference Yeo L, Luewan S, Markush D, Gill N, Romero R. Prenatal diagnosis of Dextrocardia with complex congenital heart disease using fetal intelligent navigation echocardiography (FINE) and a literature review. Fetal Diagn Ther. 2018;43:304–16.CrossRef Yeo L, Luewan S, Markush D, Gill N, Romero R. Prenatal diagnosis of Dextrocardia with complex congenital heart disease using fetal intelligent navigation echocardiography (FINE) and a literature review. Fetal Diagn Ther. 2018;43:304–16.CrossRef
6.
go back to reference Yagel S, Cohen SM, Shapiro I, Valsky DV. 3D and 4D ultrasound in fetal cardiac scanning: a new look at the fetal heart. Ultrasound Obstet Gynecol. 2007;29:81–95.CrossRef Yagel S, Cohen SM, Shapiro I, Valsky DV. 3D and 4D ultrasound in fetal cardiac scanning: a new look at the fetal heart. Ultrasound Obstet Gynecol. 2007;29:81–95.CrossRef
7.
go back to reference Yagel S, Cohen SM, Rosenak D, Messing B, et al. Added value of three−/four-dimensional ultrasound in offline analysis and diagnosis of congenital heart disease. Ultrasound Obstet Gynecol. 2001;37:432–7.CrossRef Yagel S, Cohen SM, Rosenak D, Messing B, et al. Added value of three−/four-dimensional ultrasound in offline analysis and diagnosis of congenital heart disease. Ultrasound Obstet Gynecol. 2001;37:432–7.CrossRef
8.
go back to reference Araujo Júnior E, Tonni G, Bravo-Valenzuela NJ, Da Silva CF, et al. Assessment of fetal congenital heart diseases by 4-dimensional ultrasound using spatiotemporal image correlation: pictorial review. Ultrasound Q. 2018;34:11–7.CrossRef Araujo Júnior E, Tonni G, Bravo-Valenzuela NJ, Da Silva CF, et al. Assessment of fetal congenital heart diseases by 4-dimensional ultrasound using spatiotemporal image correlation: pictorial review. Ultrasound Q. 2018;34:11–7.CrossRef
9.
go back to reference Votino C, Cos T, Abu-Rustum R, et al. Use of spatiotemporal image correlation at 11-14 weeks' gestation. Ultrasound Obstet Gynecol. 2013;42:669–78.CrossRef Votino C, Cos T, Abu-Rustum R, et al. Use of spatiotemporal image correlation at 11-14 weeks' gestation. Ultrasound Obstet Gynecol. 2013;42:669–78.CrossRef
10.
go back to reference Hu G, Zhang Y, Fan M, et al. Evaluation of fetal cardiac valve anomalies by four-dimensional echocardiography with spatiotemporal image correlation (4DSTIC). Echocardiography. 2016;33:1726–34.CrossRef Hu G, Zhang Y, Fan M, et al. Evaluation of fetal cardiac valve anomalies by four-dimensional echocardiography with spatiotemporal image correlation (4DSTIC). Echocardiography. 2016;33:1726–34.CrossRef
11.
go back to reference Guasina F, Belliusi F, Morganelli G, et al. Electronic spatiotemporal image correlation improves four-dimensional fetal echocardiography. Ultrasound Obstet Gynecol. 2018;51:357–60.CrossRef Guasina F, Belliusi F, Morganelli G, et al. Electronic spatiotemporal image correlation improves four-dimensional fetal echocardiography. Ultrasound Obstet Gynecol. 2018;51:357–60.CrossRef
12.
go back to reference Pepes S, Parthenakis F, Makrigiannakis A, Germanakis I. Electronic versus conventional spatiotemporal image correlation (STIC) fetal echocardiography: a direct comparison. J Matern Fetal Neonatal Med. 2020;4:1–8.CrossRef Pepes S, Parthenakis F, Makrigiannakis A, Germanakis I. Electronic versus conventional spatiotemporal image correlation (STIC) fetal echocardiography: a direct comparison. J Matern Fetal Neonatal Med. 2020;4:1–8.CrossRef
13.
go back to reference Gembruch U. Prenatal diagnosis of congenital heart disease. Prenat Diagn. 1997;17:1283–98.CrossRef Gembruch U. Prenatal diagnosis of congenital heart disease. Prenat Diagn. 1997;17:1283–98.CrossRef
14.
go back to reference American Institute of Ultrasound in Medicine. AIUM practice guideline for the performance of fetal echocardiography. J Ultrasound Med. 2013;32:1067–82.CrossRef American Institute of Ultrasound in Medicine. AIUM practice guideline for the performance of fetal echocardiography. J Ultrasound Med. 2013;32:1067–82.CrossRef
15.
go back to reference Rolo LC, Nardozza LM, Araoju Júnior E, et al. Reference ranges of atrioventricular valve areas by means of four-dimensional ultrasonography using spatiotemporal image correlation in the rendering mode. Prenat Diagn. 2013;33:50–5.CrossRef Rolo LC, Nardozza LM, Araoju Júnior E, et al. Reference ranges of atrioventricular valve areas by means of four-dimensional ultrasonography using spatiotemporal image correlation in the rendering mode. Prenat Diagn. 2013;33:50–5.CrossRef
16.
go back to reference Adriaanse BM, Uittenbogaard LB, Tromp CH, et al. Prenatal examination of the area and morphology of the atrioventricular valves using four-dimensional ultrasound in normal and abnormal hearts. Prenat Diagn. 2015;35:741–7.CrossRef Adriaanse BM, Uittenbogaard LB, Tromp CH, et al. Prenatal examination of the area and morphology of the atrioventricular valves using four-dimensional ultrasound in normal and abnormal hearts. Prenat Diagn. 2015;35:741–7.CrossRef
17.
go back to reference Chaoui R, Abuhamad A, Martins J, Heling KS. Recent development in three and four dimension fetal echocardiography. Fetal Diagn Ther. 2020;47:345–53.CrossRef Chaoui R, Abuhamad A, Martins J, Heling KS. Recent development in three and four dimension fetal echocardiography. Fetal Diagn Ther. 2020;47:345–53.CrossRef
18.
go back to reference Bosch AEVD, Harkel DJT, Mcghie JS, et al. Surgical validation of real-time transthoracic 3D echocardiographic assessment of atrioventricular septal defects. Int J Cardiol. 2006;11:213–8.CrossRef Bosch AEVD, Harkel DJT, Mcghie JS, et al. Surgical validation of real-time transthoracic 3D echocardiographic assessment of atrioventricular septal defects. Int J Cardiol. 2006;11:213–8.CrossRef
19.
go back to reference Acar P, Abadir S, Roux D, et al. Ebstein's anomaly assessed by real-time 3-D echocardiography. Ann Thorac Surg. 2006;82:731–3.CrossRef Acar P, Abadir S, Roux D, et al. Ebstein's anomaly assessed by real-time 3-D echocardiography. Ann Thorac Surg. 2006;82:731–3.CrossRef
20.
go back to reference Devore GR, Satou G, Sklansky M. 4D fetal echocardiography—an update. Echocardiography. 2017;34:1788–98.CrossRef Devore GR, Satou G, Sklansky M. 4D fetal echocardiography—an update. Echocardiography. 2017;34:1788–98.CrossRef
Metadata
Title
Prenatal evaluation of fetal atrioventricular valves by real-time 4D volume imaging with electronic matrix probe
Authors
Huiyu Tang
Wei Sun
Xue Sun
Yu Wang
Yu Qi
Dong Wang
Ying Zhang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Cardiovascular Ultrasound / Issue 1/2021
Electronic ISSN: 1476-7120
DOI
https://doi.org/10.1186/s12947-021-00240-7

Other articles of this Issue 1/2021

Cardiovascular Ultrasound 1/2021 Go to the issue