Skip to main content
Top
Published in: Cardiovascular Ultrasound 1/2019

Open Access 01-12-2019 | Transthoracic Echocardiography | Research

Comparison of the prognostic values of three calculation methods for echocardiographic relative wall thickness in acute decompensated heart failure

Authors: Satoshi Yamaguchi, Michio Shimabukuro, Masami Abe, Tomohiro Arakaki, Osamu Arasaki, Shinichiro Ueda

Published in: Cardiovascular Ultrasound | Issue 1/2019

Login to get access

Abstract

Purpose

Left ventricular (LV) wall thickness can be measured at the posterior wall (PW) and the intraventricular septum (IVS) in a parasternal long axis view by transthoracic echocardiography. Thus, there are three methods to calculate relative wall thickness as follows: RWTPW = 2 × PWth/LVDd; RWTIVS + PW = (IVSth + PWth) /LVDd; and RWTIVS = 2 × IVSth/LVDd (IVSth = interventricular septum thickness; LVDd = LV internal dimension at end--diastole; PWth = posterior wall thickness). The aim was to compare the prognostic values of these RWTs in patients with acute decompensated heart failure (ADHF).

Method

This was a single-center, retrospective, observational study at a Japanese community hospital. A total of 389 hospitalized ADHF patients were divided into two groups based on the three median RWT values. The primary outcome was all-cause death. Survival analysis was performed, and Cox proportional hazard models unadjusted and adjusted by Get With The Guideline score were used.

Results

High-RWTPW had poor survival (log-rank, P = 0.009) and was a significant risk (unadjusted HR (95%CI), 1.72 (1.14–2.61), P = 0.01; adjusted HR, 1.95 (1.28–2.98), P = 0.02). High-RWTIVS + PW was not associated with poor survival on survival analysis or the unadjusted Cox model. Only the adjusted Cox model showed that High-RWTIVS + PW was associated with a significant risk of the primary outcome (unadjusted HR (95%CI), 1.45 (0.96–2.17), P = 0.07; adjusted HR, 1.53 (1.01–2.32), P = 0.045). High-RWTIVS did not have significant prognostic value.

Conclusions

When calculating RWT, RWTPW should be recommended for evaluating the mortality risk in ADHF.
Appendix
Available only for authorised users
Literature
1.
go back to reference Grossman W, Paulus WJ. Myocardial stress and hypertrophy: a complex interface between biophysics and cardiac remodeling. J Clin Invest. 2013;123(9):3701–3.CrossRef Grossman W, Paulus WJ. Myocardial stress and hypertrophy: a complex interface between biophysics and cardiac remodeling. J Clin Invest. 2013;123(9):3701–3.CrossRef
2.
go back to reference Gjesdal O, Bluemke DA, Lima JA. Cardiac remodeling at the population level--risk factors, screening, and outcomes. Nat Rev Cardiol. 2011;8(12):673–85.CrossRef Gjesdal O, Bluemke DA, Lima JA. Cardiac remodeling at the population level--risk factors, screening, and outcomes. Nat Rev Cardiol. 2011;8(12):673–85.CrossRef
3.
go back to reference Li L, Shigematsu Y, Hamada M, Hiwada K. Relative wall thickness is an independent predictor of left ventricular systolic and diastolic dysfunctions in essential hypertension. Hypertens Res. 2001;24(5):493–9.CrossRef Li L, Shigematsu Y, Hamada M, Hiwada K. Relative wall thickness is an independent predictor of left ventricular systolic and diastolic dysfunctions in essential hypertension. Hypertens Res. 2001;24(5):493–9.CrossRef
4.
go back to reference Pierdomenico SD, Lapenna D, Bucci A, Manente BM, Cuccurullo F, Mezzetti A. Prognostic value of left ventricular concentric remodeling in uncomplicated mild hypertension. Am J Hypertens. 2004;17(11 Pt 1):1035–9.CrossRef Pierdomenico SD, Lapenna D, Bucci A, Manente BM, Cuccurullo F, Mezzetti A. Prognostic value of left ventricular concentric remodeling in uncomplicated mild hypertension. Am J Hypertens. 2004;17(11 Pt 1):1035–9.CrossRef
5.
go back to reference Yamaguchi S, Abe M, Arasaki O, Shimabukuro M, Ueda S. The prognostic impact of a concentric left ventricular structure evaluated by transthoracic echocardiography in patients with acute decompensated heart failure: a retrospective study. Int J Cardiol. 2018;287:73–80.CrossRef Yamaguchi S, Abe M, Arasaki O, Shimabukuro M, Ueda S. The prognostic impact of a concentric left ventricular structure evaluated by transthoracic echocardiography in patients with acute decompensated heart failure: a retrospective study. Int J Cardiol. 2018;287:73–80.CrossRef
6.
go back to reference Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39.e14.CrossRef Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39.e14.CrossRef
7.
go back to reference Wang S, Song K, Guo X, Xue H, Wang N, Chen J, Zou Y, Sun K, Wang H, He J, et al. The association of metabolic syndrome with left ventricular mass and geometry in community-based hypertensive patients among Han Chinese. J Res Med Sci. 2015;20(10):963–8.CrossRef Wang S, Song K, Guo X, Xue H, Wang N, Chen J, Zou Y, Sun K, Wang H, He J, et al. The association of metabolic syndrome with left ventricular mass and geometry in community-based hypertensive patients among Han Chinese. J Res Med Sci. 2015;20(10):963–8.CrossRef
8.
go back to reference Chahal NS, Lim TK, Jain P, Chambers JC, Kooner JS, Senior R. New insights into the relationship of left ventricular geometry and left ventricular mass with cardiac function: a population study of hypertensive subjects. Eur Heart J. 2010;31(5):588–94.CrossRef Chahal NS, Lim TK, Jain P, Chambers JC, Kooner JS, Senior R. New insights into the relationship of left ventricular geometry and left ventricular mass with cardiac function: a population study of hypertensive subjects. Eur Heart J. 2010;31(5):588–94.CrossRef
9.
go back to reference Huis AE, de Man FS, van Rossum AC, Handoko ML. How to diagnose heart failure with preserved ejection fraction: the value of invasive stress testing. Netherlands Heart J. 2016;24(4):244–51.CrossRef Huis AE, de Man FS, van Rossum AC, Handoko ML. How to diagnose heart failure with preserved ejection fraction: the value of invasive stress testing. Netherlands Heart J. 2016;24(4):244–51.CrossRef
10.
go back to reference Folland ED, Parisi AF, Moynihan PF, Jones DR, Feldman CL, Tow DE. Assessment of left ventricular ejection fraction and volumes by real-time, two-dimensional echocardiography. A comparison of cineangiographic and radionuclide techniques. Circulation. 1979;60(4):760–6.CrossRef Folland ED, Parisi AF, Moynihan PF, Jones DR, Feldman CL, Tow DE. Assessment of left ventricular ejection fraction and volumes by real-time, two-dimensional echocardiography. A comparison of cineangiographic and radionuclide techniques. Circulation. 1979;60(4):760–6.CrossRef
11.
go back to reference Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29(4):277–314.CrossRef Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29(4):277–314.CrossRef
12.
go back to reference Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA, Hahn RT, Han Y, Hung J, Lang RM, et al. Recommendations for noninvasive evaluation of native Valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr. 2017;30(4):303–71.CrossRef Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA, Hahn RT, Han Y, Hung J, Lang RM, et al. Recommendations for noninvasive evaluation of native Valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr. 2017;30(4):303–71.CrossRef
13.
go back to reference Peterson PN, Rumsfeld JS, Liang L, Albert NM, Hernandez AF, Peterson ED, Fonarow GC, Masoudi FA. American Heart Association get with the guidelines-heart failure P: a validated risk score for in-hospital mortality in patients with heart failure from the American Heart Association get with the guidelines program. Circ Cardiovasc Qual Outcomes. 2010;3(1):25–32.CrossRef Peterson PN, Rumsfeld JS, Liang L, Albert NM, Hernandez AF, Peterson ED, Fonarow GC, Masoudi FA. American Heart Association get with the guidelines-heart failure P: a validated risk score for in-hospital mortality in patients with heart failure from the American Heart Association get with the guidelines program. Circ Cardiovasc Qual Outcomes. 2010;3(1):25–32.CrossRef
14.
go back to reference Shiraishi Y, Kohsaka S, Abe T, Mizuno A, Goda A, Izumi Y, Yagawa M, Akita K, Sawano M, Inohara T, et al. Validation of the get with the guideline-heart failure risk score in Japanese patients and the potential improvement of its discrimination ability by the inclusion of B-type natriuretic peptide level. Am Heart J. 2016;171(1):33–9.CrossRef Shiraishi Y, Kohsaka S, Abe T, Mizuno A, Goda A, Izumi Y, Yagawa M, Akita K, Sawano M, Inohara T, et al. Validation of the get with the guideline-heart failure risk score in Japanese patients and the potential improvement of its discrimination ability by the inclusion of B-type natriuretic peptide level. Am Heart J. 2016;171(1):33–9.CrossRef
15.
go back to reference Kamarudin AN, Cox T, Kolamunnage-Dona R. Time-dependent ROC curve analysis in medical research: current methods and applications. BMC Med Res Methodol. 2017;17(1):53.CrossRef Kamarudin AN, Cox T, Kolamunnage-Dona R. Time-dependent ROC curve analysis in medical research: current methods and applications. BMC Med Res Methodol. 2017;17(1):53.CrossRef
16.
go back to reference Giavarina D. Understanding bland Altman analysis. Biochem Med (Zagreb). 2015;25(2):141–51.CrossRef Giavarina D. Understanding bland Altman analysis. Biochem Med (Zagreb). 2015;25(2):141–51.CrossRef
17.
go back to reference Koo TK, Li MY. A guideline of selecting and reporting Intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63.CrossRef Koo TK, Li MY. A guideline of selecting and reporting Intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63.CrossRef
18.
go back to reference van Veldhuisen DJ, Linssen GC, Jaarsma T, van Gilst WH, Hoes AW, Tijssen JG, Paulus WJ, Voors AA, Hillege HL. B-type natriuretic peptide and prognosis in heart failure patients with preserved and reduced ejection fraction. J Am Coll Cardiol. 2013;61(14):1498–506.CrossRef van Veldhuisen DJ, Linssen GC, Jaarsma T, van Gilst WH, Hoes AW, Tijssen JG, Paulus WJ, Voors AA, Hillege HL. B-type natriuretic peptide and prognosis in heart failure patients with preserved and reduced ejection fraction. J Am Coll Cardiol. 2013;61(14):1498–506.CrossRef
19.
go back to reference Kitada S, Kikuchi S, Tsujino T, Masuyama T, Ohte N. The prognostic value of brain natriuretic peptide in patients with heart failure and left ventricular ejection fraction higher than 60%: a sub-analysis of the J-MELODIC study. ESC Heart Fail. 2018;5(1):36–45.CrossRef Kitada S, Kikuchi S, Tsujino T, Masuyama T, Ohte N. The prognostic value of brain natriuretic peptide in patients with heart failure and left ventricular ejection fraction higher than 60%: a sub-analysis of the J-MELODIC study. ESC Heart Fail. 2018;5(1):36–45.CrossRef
Metadata
Title
Comparison of the prognostic values of three calculation methods for echocardiographic relative wall thickness in acute decompensated heart failure
Authors
Satoshi Yamaguchi
Michio Shimabukuro
Masami Abe
Tomohiro Arakaki
Osamu Arasaki
Shinichiro Ueda
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Cardiovascular Ultrasound / Issue 1/2019
Electronic ISSN: 1476-7120
DOI
https://doi.org/10.1186/s12947-019-0179-6

Other articles of this Issue 1/2019

Cardiovascular Ultrasound 1/2019 Go to the issue