Skip to main content
Top
Published in: Cardiovascular Ultrasound 1/2018

Open Access 01-12-2018 | Research

Feasibility of basic transesophageal echocardiography in hemorrhagic shock: potential applications during resuscitative endovascular balloon occlusion of the aorta (REBOA)

Authors: William A. Teeter, Bianca M. Conti, Phil J. Wasicek, Jonathan J. Morrison, Dawn Parsell, Bryan Gamble, Melanie R. Hoehn, Thomas M. Scalea, Samuel M. Galvagno Jr

Published in: Cardiovascular Ultrasound | Issue 1/2018

Login to get access

Abstract

Background

There are numerous studies in the cardiovascular literature that have employed transesophageal echocardiography (TEE) in swine models, but data regarding the use of basic TEE in swine models is limited. The primary aim of this study is to describe an echocardiographic method that can be used with relative ease to qualitatively assess cardiovascular function in a porcine hemorrhagic shock model using resuscitative endovascular balloon occlusion of the aorta (REBOA).

Methods

Multiplane basic TEE exams were performed in 15 during an experimental hemorrhage model using REBOA. Cardiac anatomical structure and functional measurements were obtained. In a convenience sample (two animals from each group), advanced functional cardiovascular measurements were obtained before and after REBOA inflation for comparison with qualitative assessments.

Results

Basic TEE exams were performed in 15 swine. Appropriate REBOA placement was confirmed using TEE in all animals and verified with fluoroscopy. Left ventricular volume was decreased in all animals, and left ventricular systolic function increased following REBOA inflation. Right ventricular systolic function and volume remained normal prior to and after hemorrhage and REBOA use. Mean ejection fraction (EF) decreased from 64% (S.D. 9.6) to 62.1 (S.D. 16.8) after hemorrhage and REBOA inflation (p = 0.76); fractional area of change (FAC) decreased from 49.8 (S.D. 9.0) to 48.5 (S.D. 13.6) after hemorrhage and REBOA inflation (p = 0.82).

Conclusion

Basic TEE, which requires less training than advanced TEE, may be employed by laboratory investigators and practitioners across a wide spectrum of experimental and clinical settings.
Literature
1.
go back to reference Huenges K, Pokorny S, Berndt RCJ, Lutter G. Transesophageal echocardiography in swine: establishment of a baseline. Ultrasound Med Biol. 2017;43:974–80.CrossRefPubMed Huenges K, Pokorny S, Berndt RCJ, Lutter G. Transesophageal echocardiography in swine: establishment of a baseline. Ultrasound Med Biol. 2017;43:974–80.CrossRefPubMed
2.
go back to reference Ren JFSD, Lighty GW Jr, Menz VV, Michele JJ, Li KS, Dillon SM, Marchlinski FESB. Multiplane transesophageal and intracardiac echocardiography in large swine: imaging technique, normal values, and research applications. Echocardiography. 1997;14:135–48.CrossRefPubMed Ren JFSD, Lighty GW Jr, Menz VV, Michele JJ, Li KS, Dillon SM, Marchlinski FESB. Multiplane transesophageal and intracardiac echocardiography in large swine: imaging technique, normal values, and research applications. Echocardiography. 1997;14:135–48.CrossRefPubMed
3.
go back to reference Morrison JJRJ, Rt H, Watson JD, Sokol KK, Rasmussen TE. Use of resuscitative endovascular balloon occlusion of the aorta in a highly lethal model of noncompressible torso hemorrhage. Shock. 2014;41:130–7.CrossRefPubMed Morrison JJRJ, Rt H, Watson JD, Sokol KK, Rasmussen TE. Use of resuscitative endovascular balloon occlusion of the aorta in a highly lethal model of noncompressible torso hemorrhage. Shock. 2014;41:130–7.CrossRefPubMed
4.
go back to reference Scott DJEJ, Villamaria C, Morrison JJ, Houston R 4th, Spencer JR, TE R. A novel fluoroscopy-free, resuscitative endovascular aortic balloon occlusion system in a model of hemorrhagic shock. J Trauma Acute Care Surg. 2013;75:122–8.CrossRefPubMed Scott DJEJ, Villamaria C, Morrison JJ, Houston R 4th, Spencer JR, TE R. A novel fluoroscopy-free, resuscitative endovascular aortic balloon occlusion system in a model of hemorrhagic shock. J Trauma Acute Care Surg. 2013;75:122–8.CrossRefPubMed
5.
go back to reference Crick SJ, Sheppard MN, Ho SY, Gebstein L, Anderson RH. Anatomy of the pig heart: comparisons with normal human cardiac structure. J Anat. 1998;193:105–19.CrossRefPubMedPubMedCentral Crick SJ, Sheppard MN, Ho SY, Gebstein L, Anderson RH. Anatomy of the pig heart: comparisons with normal human cardiac structure. J Anat. 1998;193:105–19.CrossRefPubMedPubMedCentral
6.
go back to reference Reeves ST, Finley AC, Skubas NJ, et al. Basic perioperative transesophageal echocardiography examination: a consensus statement of the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. J Am Soc Echocardiogr. 2013;26(5):443–56.CrossRefPubMed Reeves ST, Finley AC, Skubas NJ, et al. Basic perioperative transesophageal echocardiography examination: a consensus statement of the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. J Am Soc Echocardiogr. 2013;26(5):443–56.CrossRefPubMed
7.
go back to reference Bartel TMS, Caspari G, Erbel R. Intracardiac and intraluminal echocardiography: indications and standard approaches. Ultrasound Med Biol. 2002;28:997–1003.CrossRefPubMed Bartel TMS, Caspari G, Erbel R. Intracardiac and intraluminal echocardiography: indications and standard approaches. Ultrasound Med Biol. 2002;28:997–1003.CrossRefPubMed
8.
go back to reference Sündermann SHCN, Falk V, Bettex D. Two- and three-dimensional transoesophageal echocardiography in large swine used as model for transcatheter heart valve therapies: standard planes and values. Interact Cardiovasc Thorac Surg. 2016;22:580–6.CrossRefPubMed Sündermann SHCN, Falk V, Bettex D. Two- and three-dimensional transoesophageal echocardiography in large swine used as model for transcatheter heart valve therapies: standard planes and values. Interact Cardiovasc Thorac Surg. 2016;22:580–6.CrossRefPubMed
9.
go back to reference Ellenbroek GH vHG, Timmers L, Doevendans PA, Pasterkamp G, Hoefer IE. Primary outcome assessment in a pig model of acute myocardial infarction. J Vis Exp. 2016;(116):1–9. Ellenbroek GH vHG, Timmers L, Doevendans PA, Pasterkamp G, Hoefer IE. Primary outcome assessment in a pig model of acute myocardial infarction. J Vis Exp. 2016;(116):1–9.
10.
go back to reference Meybohm PGM, Renner J, Maracke M, Rossee S, Höcker J, Hagelstein SZK, Bein B. Assessment of left ventricular systolic function during acute myocardial ischemia: a comparison of transpulmonary thermodilution and transesophageal echocardiography. Minerva Anestesiol. 2011;77:132–41.PubMed Meybohm PGM, Renner J, Maracke M, Rossee S, Höcker J, Hagelstein SZK, Bein B. Assessment of left ventricular systolic function during acute myocardial ischemia: a comparison of transpulmonary thermodilution and transesophageal echocardiography. Minerva Anestesiol. 2011;77:132–41.PubMed
11.
go back to reference Anderson KLCM, Boudreau SM, Sharon DJ, Bebarta VS. Left ventricular compressions improve hemodynamics in a swine model of out-of-hospital cardiac arrest. Prehosp Emerg Care. 2017;21:272–80.CrossRefPubMed Anderson KLCM, Boudreau SM, Sharon DJ, Bebarta VS. Left ventricular compressions improve hemodynamics in a swine model of out-of-hospital cardiac arrest. Prehosp Emerg Care. 2017;21:272–80.CrossRefPubMed
12.
go back to reference Kerut EKVC, Luka T, Pinkernell K, Delafontaine P, Alt EU. Technique and imaging for transthoracic echocardiography of the laboratory pig. Echocardiography. 2004;21:439–42.CrossRefPubMed Kerut EKVC, Luka T, Pinkernell K, Delafontaine P, Alt EU. Technique and imaging for transthoracic echocardiography of the laboratory pig. Echocardiography. 2004;21:439–42.CrossRefPubMed
13.
go back to reference Sridhar S, Gumbert SD, Stephens C, Moore LJ, Pivalizza EG. Resuscitative endovascular balloon occlusion of the aorta: principles, initial clinical experience, and considerations for the anesthesiologist. Anesth Analg. 2017;125:884–90.CrossRefPubMed Sridhar S, Gumbert SD, Stephens C, Moore LJ, Pivalizza EG. Resuscitative endovascular balloon occlusion of the aorta: principles, initial clinical experience, and considerations for the anesthesiologist. Anesth Analg. 2017;125:884–90.CrossRefPubMed
14.
go back to reference Russo RM, Williams TK, Grayson JK, et al. Extending the golden hour: partial resuscitative endovascular balloon occlusion of the aorta in a highly lethal swine liver injury model. J Trauma Acute Care Surg. 2016;80:372–8. discussion 8–80CrossRefPubMed Russo RM, Williams TK, Grayson JK, et al. Extending the golden hour: partial resuscitative endovascular balloon occlusion of the aorta in a highly lethal swine liver injury model. J Trauma Acute Care Surg. 2016;80:372–8. discussion 8–80CrossRefPubMed
15.
go back to reference Sadek S, Lockey DJ, Lendrum RA, Perkins Z, Price J, Davies GE. Resuscitative endovascular balloon occlusion of the aorta (REBOA) in the pre-hospital setting: an additional resuscitation option for uncontrolled catastrophic haemorrhage. Resuscitation. 2016;107:135–8.CrossRefPubMed Sadek S, Lockey DJ, Lendrum RA, Perkins Z, Price J, Davies GE. Resuscitative endovascular balloon occlusion of the aorta (REBOA) in the pre-hospital setting: an additional resuscitation option for uncontrolled catastrophic haemorrhage. Resuscitation. 2016;107:135–8.CrossRefPubMed
16.
go back to reference Manley JD, Mitchell BJ, DuBose JJ, Rasmussen TEA. Modern Case Series of Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) in an Out-of-Hospital, Combat casualty care setting. J Spec Oper Med. 2017;17:1–8.PubMed Manley JD, Mitchell BJ, DuBose JJ, Rasmussen TEA. Modern Case Series of Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) in an Out-of-Hospital, Combat casualty care setting. J Spec Oper Med. 2017;17:1–8.PubMed
18.
go back to reference Teichholz LE, Kruelen T, Herman MV, Gorlin R. Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in teh presence of absence of asynergy. Am J Cardiol. 1976;37:7–11.CrossRefPubMed Teichholz LE, Kruelen T, Herman MV, Gorlin R. Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in teh presence of absence of asynergy. Am J Cardiol. 1976;37:7–11.CrossRefPubMed
19.
go back to reference Arora G, Morss AM, Piazza G, et al. Differences in left ventricular ejection fraction using teichholz formula and volumetric methods by cmr: implications for patient stratification and selection of therapy. J Carrdiovasc Magn Reson. 2010;12:P202.CrossRef Arora G, Morss AM, Piazza G, et al. Differences in left ventricular ejection fraction using teichholz formula and volumetric methods by cmr: implications for patient stratification and selection of therapy. J Carrdiovasc Magn Reson. 2010;12:P202.CrossRef
20.
go back to reference Orde S, Slama M, Hilton A, Yastrebov K, McLean A. Pearls and pitfalls in comprehensive critical care echocardiography. Crit Care. 2017;21:1–10.CrossRef Orde S, Slama M, Hilton A, Yastrebov K, McLean A. Pearls and pitfalls in comprehensive critical care echocardiography. Crit Care. 2017;21:1–10.CrossRef
21.
go back to reference Guliani S, Amendola M, Strife B, et al. Central aortic wire confirmation for emergent endovascular procedurs: as fast as surgeon-performed ultrasound. J Trauma Acute Care Surg. 2015;79:549–54.CrossRefPubMed Guliani S, Amendola M, Strife B, et al. Central aortic wire confirmation for emergent endovascular procedurs: as fast as surgeon-performed ultrasound. J Trauma Acute Care Surg. 2015;79:549–54.CrossRefPubMed
22.
go back to reference Lai CH, Wu HY. Resuscitation for an octogenarian with ruptured abdominal aortic aneurysm using endovascular balloon. Am J Emerg Med. 2008;26:967e1–3. Lai CH, Wu HY. Resuscitation for an octogenarian with ruptured abdominal aortic aneurysm using endovascular balloon. Am J Emerg Med. 2008;26:967e1–3.
Metadata
Title
Feasibility of basic transesophageal echocardiography in hemorrhagic shock: potential applications during resuscitative endovascular balloon occlusion of the aorta (REBOA)
Authors
William A. Teeter
Bianca M. Conti
Phil J. Wasicek
Jonathan J. Morrison
Dawn Parsell
Bryan Gamble
Melanie R. Hoehn
Thomas M. Scalea
Samuel M. Galvagno Jr
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Cardiovascular Ultrasound / Issue 1/2018
Electronic ISSN: 1476-7120
DOI
https://doi.org/10.1186/s12947-018-0129-8

Other articles of this Issue 1/2018

Cardiovascular Ultrasound 1/2018 Go to the issue