Skip to main content
Top
Published in: Cardiovascular Ultrasound 1/2015

Open Access 01-12-2015 | Research

Arterial adaptations to training among first time marathoners

Authors: Nicole M. Hafner, Christopher J. Womack, Nicholas D. Luden, Mikel K. Todd

Published in: Cardiovascular Ultrasound | Issue 1/2015

Login to get access

Abstract

Background

Exercise training favorably alters arterial anatomy in trained limbs, though the simultaneous effects on passively trained arteries are unclear. Thus, brachial (non-trained limb), popliteal (trained limb) and carotid total wall thickness (TWT), wall-to-lumen ratios (W:L), intima-media thickness (IMT) and lumen diameters (LD) were compared between experimental (n = 14) and control (n = 11) participants before and after the experimental participants participated in marathon training.

Methods

Arterial dimensions were measured with B-mode ultrasonography. Initial and final testing of VO2max and running speed at 3.5 mmol lactate were measured in the experimental group.

Results

VO2max was unchanged by training, but running speed at 3.5 mmol lactate increased by 5 % (p = .008). Time by group interactions were observed for the brachial and popliteal measures (p < 0.05), but not the carotid. No changes were observed in the control group. Prior to the intervention the experimental group had larger LD in the brachial (p = .002) and popliteal arteries (p = .007) than controls; no other pre-testing differences were found. Following training, TWT declined in the brachial (pre = .99 ± .16 mm; post = .84 ± .10 mm; p = .007) and popliteal (pre = .96 ± .09 mm; post = .86 ± .11 mm; p = .005) arteries, characterized by a 0.07 mm decrease in brachial IMT (p = .032) and a non-significant 0.03 mm reduction in popliteal IMT. LD increased in the brachial (pre = 3.38 ± .35 mm; post = 3.57 ± .41 mm; p = .015) and popliteal (pre = 4.73 ± .48 mm; post = 5.11 ± .72 mm; p = .002) arteries.

Conclusions

These data suggest that exercise-induced alterations in arterial dimensions occur in trained and non-trained limbs, and that adaptations may be dose dependent.
Literature
1.
go back to reference Ahlborg G, Hagenfeldt L, Wahren J. Substrate utilization by the inactive leg during one-leg or arm exercise. J Appl Physiol. 1975;39(5):718–23.PubMed Ahlborg G, Hagenfeldt L, Wahren J. Substrate utilization by the inactive leg during one-leg or arm exercise. J Appl Physiol. 1975;39(5):718–23.PubMed
2.
go back to reference Bangsbo J, Aagaard T, Olsen M, Kiens B, Turcotte LP, Richter EA. Lactate and H+ uptake in inactive muscles during intense exercise in man. J Physiol. 1995;488(Pt 1):219–29.CrossRefPubMedPubMedCentral Bangsbo J, Aagaard T, Olsen M, Kiens B, Turcotte LP, Richter EA. Lactate and H+ uptake in inactive muscles during intense exercise in man. J Physiol. 1995;488(Pt 1):219–29.CrossRefPubMedPubMedCentral
3.
go back to reference Calbet JA, Jensen-Urstad M, van Hall G, Holmberg HC, Rosdahl H, Saltin B. Maximal muscular vascular conductances during whole body upright exercise in humans. J Physiol. 2004;558(Pt 1):319–31.CrossRefPubMedPubMedCentral Calbet JA, Jensen-Urstad M, van Hall G, Holmberg HC, Rosdahl H, Saltin B. Maximal muscular vascular conductances during whole body upright exercise in humans. J Physiol. 2004;558(Pt 1):319–31.CrossRefPubMedPubMedCentral
4.
go back to reference Dinenno FA, Tanaka H, Monahan KD, et al. Regular endurance exercise induces expansive arterial remodelling in the trained limbs of healthy men. J Physiol. 2001;534:287–95.CrossRefPubMedPubMedCentral Dinenno FA, Tanaka H, Monahan KD, et al. Regular endurance exercise induces expansive arterial remodelling in the trained limbs of healthy men. J Physiol. 2001;534:287–95.CrossRefPubMedPubMedCentral
5.
go back to reference Folkow B, Grimby G, Thulesius O. Adaptive structural changes of the vascular walls in hypertension and their relation to the control of the peripheral resistance. Acta Physiol Scand. 1958;44(3–4):255–72.CrossRefPubMed Folkow B, Grimby G, Thulesius O. Adaptive structural changes of the vascular walls in hypertension and their relation to the control of the peripheral resistance. Acta Physiol Scand. 1958;44(3–4):255–72.CrossRefPubMed
6.
go back to reference Gomez-Cabrera MC, Domenech E, Vina J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med. 2008;44(2):126–31.CrossRefPubMed Gomez-Cabrera MC, Domenech E, Vina J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med. 2008;44(2):126–31.CrossRefPubMed
7.
go back to reference Goto C, Higashi Y, Kimura M, et al. Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation. 2003;108(5):530–5.CrossRefPubMed Goto C, Higashi Y, Kimura M, et al. Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation. 2003;108(5):530–5.CrossRefPubMed
8.
go back to reference Green D, Swart A, Exterkate A, et al. Impact of age, sex and exercise on brachial and popliteal artery remodelling in humans. Atherosclerosis. 2010;210(2):525–30.CrossRefPubMed Green D, Swart A, Exterkate A, et al. Impact of age, sex and exercise on brachial and popliteal artery remodelling in humans. Atherosclerosis. 2010;210(2):525–30.CrossRefPubMed
9.
go back to reference Green D, Cheetham C, Mavaddat L, et al. Effect of lower limb exercise on forearm vascular function: contribution of nitric oxide. Am J Physiol Heart Circ Physiol. 2002;283(3):H899–907.CrossRefPubMed Green D, Cheetham C, Mavaddat L, et al. Effect of lower limb exercise on forearm vascular function: contribution of nitric oxide. Am J Physiol Heart Circ Physiol. 2002;283(3):H899–907.CrossRefPubMed
10.
go back to reference Hellstrom G, Fischer-Colbrie W, Wahlgren NG, Jogestrand T. Carotid artery blood flow and middle cerebral artery blood flow velocity during physical exercise. J Appl Physiol. 1996;81(1):413–8.PubMed Hellstrom G, Fischer-Colbrie W, Wahlgren NG, Jogestrand T. Carotid artery blood flow and middle cerebral artery blood flow velocity during physical exercise. J Appl Physiol. 1996;81(1):413–8.PubMed
12.
go back to reference Kanters SD, Algra A, van Leeuwen MS, Banga JD. Reproducibility of in vivo carotid intima-media thickness measurements: a review. Stroke. 1997;28(3):665–71.CrossRefPubMed Kanters SD, Algra A, van Leeuwen MS, Banga JD. Reproducibility of in vivo carotid intima-media thickness measurements: a review. Stroke. 1997;28(3):665–71.CrossRefPubMed
13.
go back to reference Lipsey MW. Design Sensitivity: Statistical Power for Experimental Research. Newbury Park, CA: Sage Publications; 1990. p. 1333–6. Lipsey MW. Design Sensitivity: Statistical Power for Experimental Research. Newbury Park, CA: Sage Publications; 1990. p. 1333–6.
14.
go back to reference Lorenz MW, Karbstein P, Markus HS, Sitzer M. High-sensitivity C-reactive protein is not associated with carotid intima-media progression: the carotid atherosclerosis progression study. Stroke. 2007;38(6):1774–9.CrossRefPubMed Lorenz MW, Karbstein P, Markus HS, Sitzer M. High-sensitivity C-reactive protein is not associated with carotid intima-media progression: the carotid atherosclerosis progression study. Stroke. 2007;38(6):1774–9.CrossRefPubMed
15.
go back to reference Maiorana AJ, Naylor LH, Exterkate A, et al. The impact of exercise training on conduit artery wall thickness and remodeling in chronic heart failure patients. Hypertension. 2011;57(1):56–62.CrossRefPubMed Maiorana AJ, Naylor LH, Exterkate A, et al. The impact of exercise training on conduit artery wall thickness and remodeling in chronic heart failure patients. Hypertension. 2011;57(1):56–62.CrossRefPubMed
16.
go back to reference Maiorana A, O’Driscoll G, Taylor R, Green D. Exercise and the nitric oxide vasodilator system. Sports Med. 2003;33(14):1013–35.CrossRefPubMed Maiorana A, O’Driscoll G, Taylor R, Green D. Exercise and the nitric oxide vasodilator system. Sports Med. 2003;33(14):1013–35.CrossRefPubMed
17.
go back to reference Miyachi M, Tanaka H, Yamamoto K, Yoshioka A, Takahashi K, Onodera S. Effects of one-legged endurance training on femoral arterial and venous size in healthy humans. J Appl Physiol. 2001;90(6):2439–44.PubMed Miyachi M, Tanaka H, Yamamoto K, Yoshioka A, Takahashi K, Onodera S. Effects of one-legged endurance training on femoral arterial and venous size in healthy humans. J Appl Physiol. 2001;90(6):2439–44.PubMed
18.
go back to reference Moreau KL, Silver AE, Dinenno FA, Seals DR. Habitual aerobic exercise is associated with smaller femoral artery intima-media thickness with age in healthy men and women. Eur J Cardiovasc Prev Rehabil. 2006;13(5):805–11.CrossRefPubMed Moreau KL, Silver AE, Dinenno FA, Seals DR. Habitual aerobic exercise is associated with smaller femoral artery intima-media thickness with age in healthy men and women. Eur J Cardiovasc Prev Rehabil. 2006;13(5):805–11.CrossRefPubMed
19.
go back to reference Nemet D, Hong S, Mills PJ, Ziegler MG, Hill M, Cooper DM. Systemic vs. local cytokine and leukocyte responses to unilateral wrist flexion exercise. J Appl Physiol. 2002;93(2):546–54.CrossRefPubMed Nemet D, Hong S, Mills PJ, Ziegler MG, Hill M, Cooper DM. Systemic vs. local cytokine and leukocyte responses to unilateral wrist flexion exercise. J Appl Physiol. 2002;93(2):546–54.CrossRefPubMed
20.
go back to reference Newcomer SC, Thijssen DH, Green DJ. Effects of exercise on endothelium and endothelium/smooth muscle cross talk: role of exercise-induced hemodynamics. J Appl Physiol. 2011;111(1):311–20.CrossRefPubMed Newcomer SC, Thijssen DH, Green DJ. Effects of exercise on endothelium and endothelium/smooth muscle cross talk: role of exercise-induced hemodynamics. J Appl Physiol. 2011;111(1):311–20.CrossRefPubMed
21.
go back to reference O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson Jr SK. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med. 1999;340(1):14–22.CrossRefPubMed O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson Jr SK. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med. 1999;340(1):14–22.CrossRefPubMed
22.
go back to reference Rowley NJ, Dawson EA, Birk GK, et al. Exercise and arterial adaptation in humans: uncoupling localized and systemic effects. J Appl Physiol. 2011;110(5):1190–5.CrossRefPubMed Rowley NJ, Dawson EA, Birk GK, et al. Exercise and arterial adaptation in humans: uncoupling localized and systemic effects. J Appl Physiol. 2011;110(5):1190–5.CrossRefPubMed
23.
go back to reference Rowley NJ, Dawson EA, Hopman MT, et al. Conduit diameter and wall remodeling in elite athletes and spinal cord injury. Med Sci Sports Exerc. 2012;44(5):844–9.CrossRefPubMed Rowley NJ, Dawson EA, Hopman MT, et al. Conduit diameter and wall remodeling in elite athletes and spinal cord injury. Med Sci Sports Exerc. 2012;44(5):844–9.CrossRefPubMed
24.
go back to reference Schmidt-Trucksäss A, Schmid A, Brunner C, et al. Arterial properties of the carotid and femoral artery in endurance-trained and paraplegic subjects. J Appl Physiol. 2000;89(5):1956–63.PubMed Schmidt-Trucksäss A, Schmid A, Brunner C, et al. Arterial properties of the carotid and femoral artery in endurance-trained and paraplegic subjects. J Appl Physiol. 2000;89(5):1956–63.PubMed
25.
go back to reference Spence AL, Carter HH, Naylor LH, Green D. A prospective randomised longitudinal study involving 6-months of endurance or resistance exercise on conduit artery adaptation in humans. J Physiol. 2012. Spence AL, Carter HH, Naylor LH, Green D. A prospective randomised longitudinal study involving 6-months of endurance or resistance exercise on conduit artery adaptation in humans. J Physiol. 2012.
26.
go back to reference Tanaka H, Shimizu S, Ohmori F, et al. Increases in blood flow and shear stress to nonworking limbs during incremental exercise. Med Sci Sports Exerc. 2006;38(1):81–5.CrossRefPubMed Tanaka H, Shimizu S, Ohmori F, et al. Increases in blood flow and shear stress to nonworking limbs during incremental exercise. Med Sci Sports Exerc. 2006;38(1):81–5.CrossRefPubMed
27.
go back to reference Thijssen DH, Dawson EA, van den Munckhof IC, et al. Exercise-mediated changes in conduit artery wall thickness in humans: role of shear stress. Am J Physiol Heart Circ Physiol. 2011;301(1):H241–6.CrossRefPubMed Thijssen DH, Dawson EA, van den Munckhof IC, et al. Exercise-mediated changes in conduit artery wall thickness in humans: role of shear stress. Am J Physiol Heart Circ Physiol. 2011;301(1):H241–6.CrossRefPubMed
28.
go back to reference Thijssen DH, de Groot PC, Smits P, Hopman MT. Vascular adaptations to 8-week cycling training in older men. Acta Physiol (Oxf). 2007;190(3):221–8.CrossRef Thijssen DH, de Groot PC, Smits P, Hopman MT. Vascular adaptations to 8-week cycling training in older men. Acta Physiol (Oxf). 2007;190(3):221–8.CrossRef
29.
go back to reference Thijssen D, De Groot P, van den Bogerd A, et al. Time course of arterial remodelling in diameter and wall thickness above and below the lesion after a spinal cord injury. Eur J Appl Physiol. 2012;112(12):4103–9.CrossRefPubMedPubMedCentral Thijssen D, De Groot P, van den Bogerd A, et al. Time course of arterial remodelling in diameter and wall thickness above and below the lesion after a spinal cord injury. Eur J Appl Physiol. 2012;112(12):4103–9.CrossRefPubMedPubMedCentral
30.
go back to reference Thijssen DH, Cable NT, Green DJ. Impact of exercise training on arterial wall thickness in humans. Clin Sci (Lond). 2012;122(7):311–22.CrossRef Thijssen DH, Cable NT, Green DJ. Impact of exercise training on arterial wall thickness in humans. Clin Sci (Lond). 2012;122(7):311–22.CrossRef
31.
go back to reference Thijssen DH, Dawson EA, Tinken TM, Cable NT, Green DJ. Retrograde flow and shear rate acutely impair endothelial function in humans. Hypertension. 2009;53(6):986–92.CrossRefPubMed Thijssen DH, Dawson EA, Tinken TM, Cable NT, Green DJ. Retrograde flow and shear rate acutely impair endothelial function in humans. Hypertension. 2009;53(6):986–92.CrossRefPubMed
32.
33.
go back to reference van den Munckhof I, Scholten R, Cable NT, Hopman MT, Green DJ, Thijssen DH. Impact of age and sex on carotid and peripheral arterial wall thickness in humans. Acta Physiol (Oxf). 2012;206(4):220–8.CrossRef van den Munckhof I, Scholten R, Cable NT, Hopman MT, Green DJ, Thijssen DH. Impact of age and sex on carotid and peripheral arterial wall thickness in humans. Acta Physiol (Oxf). 2012;206(4):220–8.CrossRef
34.
go back to reference Veller MG, Fisher CM, Nicolaides AN, et al. Measurement of the ultrasonic intima-media complex thickness in normal subjects. J Vasc Surg. 1993;17(4):719–25.CrossRefPubMed Veller MG, Fisher CM, Nicolaides AN, et al. Measurement of the ultrasonic intima-media complex thickness in normal subjects. J Vasc Surg. 1993;17(4):719–25.CrossRefPubMed
Metadata
Title
Arterial adaptations to training among first time marathoners
Authors
Nicole M. Hafner
Christopher J. Womack
Nicholas D. Luden
Mikel K. Todd
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Cardiovascular Ultrasound / Issue 1/2015
Electronic ISSN: 1476-7120
DOI
https://doi.org/10.1186/s12947-016-0063-6

Other articles of this Issue 1/2015

Cardiovascular Ultrasound 1/2015 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.