Skip to main content
Top
Published in: Cardiovascular Ultrasound 1/2015

Open Access 01-12-2015 | Research

Severity of aortic regurgitation assessed by area of vena contracta: a clinical two-dimensional and three-dimensional color Doppler imaging study

Authors: Hirotomo Sato, Tetsuro Ohta, Kimiko Hiroe, Seiji Okada, Koji Shimizu, Rinji Murakami, Kazuaki Tanabe

Published in: Cardiovascular Ultrasound | Issue 1/2015

Login to get access

Abstract

Background

Quantitation of aortic regurgitation (AR) using two-dimensional (2D) echocardiography, including vena contracta width (VCW) measurement, is still challenging. Three-dimensional (3D) echocardiography can directly measure the vena contracta area (VCA), regardless of the rheological characteristics. We intended to assess the possibility of 3D vena contracta area (3DVCA) as well as 2D vena contracta area (2DVCA) in the assessment of AR severity.

Methods

Sixty-one patients with AR [17 female (32.7%); mean age: 74.0 ± 10.1 years] underwent 2D and 3D color Doppler echocardiography. Using conventional 2D color Doppler imaging, we measured VCW, 2DVCA, regurgitant volume (RV), and effective regurgitant orifice area (EROA). We also measured 3DVCA manually off-line from 3D full-volume color Doppler datasets for reference. Comprehensive 2D and 3D data on AR severity were successfully obtained from 52 of the 61 (85.2%) patients.

Results

Significant correlations existed between 2DVCA and EROA (r = 0.89; p < 0.001). The cut-off 2DVCA for grading severe AR was 34 mm2 (area under curve: 0.95; sensitivity: 78%; specificity: 95%). Significant correlations existed between 3DVCA and EROA (r = 0.89; p < 0.001). The cut-off 3DVCA for grading severe AR was 32 mm2 (area under curve: 0.96; sensitivity: 89%; specificity: 98%). Significant correlations existed between 2DVCA and 3DVCA (r = 0.97; p < 0.001).

Conclusion

Two-dimensional, as well as three dimensional, vena contracta area measurement is a simple technique suitable for clinical use during comprehensive Doppler echocardiographic AR assessment.
Literature
1.
go back to reference Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Barón-Esquivias G, Baumgartner H, et al. Guidelines on the management of valvular heart disease (version 2012): The Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2012;33:2451–96.CrossRefPubMed Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Barón-Esquivias G, Baumgartner H, et al. Guidelines on the management of valvular heart disease (version 2012): The Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2012;33:2451–96.CrossRefPubMed
2.
go back to reference Bonow RO, Carabello BA, Chatterjee K, de Leon Jr AC, Faxon DP, Freed MD, et al. American College of Cardiology/American Heart Association Task Force on Practice Guidelines, 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;52(13):e1–142.CrossRefPubMed Bonow RO, Carabello BA, Chatterjee K, de Leon Jr AC, Faxon DP, Freed MD, et al. American College of Cardiology/American Heart Association Task Force on Practice Guidelines, 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;52(13):e1–142.CrossRefPubMed
3.
go back to reference Lancellotti P, Tribouilloy C, Hagendorff A, Moura L, Popescu BA, Agricola E, et al. European Association of Echocardiography. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 1: aortic and pulmonary regurgitation (native valve disease). Eur J Echocardiogr. 2010;11:223–44.CrossRefPubMed Lancellotti P, Tribouilloy C, Hagendorff A, Moura L, Popescu BA, Agricola E, et al. European Association of Echocardiography. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 1: aortic and pulmonary regurgitation (native valve disease). Eur J Echocardiogr. 2010;11:223–44.CrossRefPubMed
4.
go back to reference Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA, et al. American Society of Echocardiography. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr. 2003;16:777–802.CrossRefPubMed Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA, et al. American Society of Echocardiography. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr. 2003;16:777–802.CrossRefPubMed
5.
go back to reference Chin CH, Chen CH, Chen CC, Chen TH, Chang ML, Chiou HC. Prediction of severity of isolated aortic regurgitation by echocardiography: an aortic regurgitation index study. J Am Soc Echocardiogr. 2005;18:1007–13.CrossRefPubMed Chin CH, Chen CH, Chen CC, Chen TH, Chang ML, Chiou HC. Prediction of severity of isolated aortic regurgitation by echocardiography: an aortic regurgitation index study. J Am Soc Echocardiogr. 2005;18:1007–13.CrossRefPubMed
6.
go back to reference Tribouilloy CM, Enriquez-Sarano M, Bailey KR, Seward JB, Tajik AJ. Assessment of severity of aortic regurgitation using the width of the vena contracta: A clinical color Doppler imaging study. Circulation. 2000;102:558–64.CrossRefPubMed Tribouilloy CM, Enriquez-Sarano M, Bailey KR, Seward JB, Tajik AJ. Assessment of severity of aortic regurgitation using the width of the vena contracta: A clinical color Doppler imaging study. Circulation. 2000;102:558–64.CrossRefPubMed
7.
go back to reference Willett DL, Hall SA, Jessen ME, Wait MA, Grayburn PA. Assessment of aortic regurgitation by transesophageal color Doppler imaging of the vena contracta: validation against an intraoperative aortic flow probe. J Am Coll Cardiol. 2001;37:1450–5.CrossRefPubMed Willett DL, Hall SA, Jessen ME, Wait MA, Grayburn PA. Assessment of aortic regurgitation by transesophageal color Doppler imaging of the vena contracta: validation against an intraoperative aortic flow probe. J Am Coll Cardiol. 2001;37:1450–5.CrossRefPubMed
8.
go back to reference Messika-Zeitoun D, Detaint D, Leye M, Tribouilloy C, Michelena HI, Pislaru S, et al. Comparison of semiquantitative and quantitative assessment of severity of aortic regurgitation: clinical implications. J Am Soc Echocardiogr. 2011;24:1246–52.CrossRefPubMed Messika-Zeitoun D, Detaint D, Leye M, Tribouilloy C, Michelena HI, Pislaru S, et al. Comparison of semiquantitative and quantitative assessment of severity of aortic regurgitation: clinical implications. J Am Soc Echocardiogr. 2011;24:1246–52.CrossRefPubMed
9.
go back to reference Mori Y, Shiota T, Jones M, Wanitkun S, Irvine T, Li X, et al. Three-dimensional reconstruction of the color Doppler-imaged vena contracta for quantifying aortic regurgitation: studies in a chronic animal model. Circulation. 1999;99:1611–7.CrossRefPubMed Mori Y, Shiota T, Jones M, Wanitkun S, Irvine T, Li X, et al. Three-dimensional reconstruction of the color Doppler-imaged vena contracta for quantifying aortic regurgitation: studies in a chronic animal model. Circulation. 1999;99:1611–7.CrossRefPubMed
10.
go back to reference Shiota T, Jones M, Tsujino H, Qin JX, Zetts AD, Greenberg NL, et al. Quantitative analysis of aortic regurgitation: real-time 3-dimensional and 2-dimensional color Doppler echocardiographic method–a clinical and a chronic animal study. J Am Soc Echocardiogr. 2002;15:966–71.CrossRefPubMed Shiota T, Jones M, Tsujino H, Qin JX, Zetts AD, Greenberg NL, et al. Quantitative analysis of aortic regurgitation: real-time 3-dimensional and 2-dimensional color Doppler echocardiographic method–a clinical and a chronic animal study. J Am Soc Echocardiogr. 2002;15:966–71.CrossRefPubMed
11.
go back to reference Fang L, Hsiung MC, Miller AP, Nanda NC, Yin WH, Young MS, et al. Assessment of aortic regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area: usefulness and validation. Echocardiography. 2005;22:775–81.CrossRefPubMed Fang L, Hsiung MC, Miller AP, Nanda NC, Yin WH, Young MS, et al. Assessment of aortic regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area: usefulness and validation. Echocardiography. 2005;22:775–81.CrossRefPubMed
12.
go back to reference Chin CH, Chen CH, Lo HS. The correlation between three-dimensional vena contracta area and aortic regurgitation index in patients with aortic regurgitation. Echocardiography. 2010;27:161–6.CrossRefPubMed Chin CH, Chen CH, Lo HS. The correlation between three-dimensional vena contracta area and aortic regurgitation index in patients with aortic regurgitation. Echocardiography. 2010;27:161–6.CrossRefPubMed
13.
go back to reference Perez De Isla L, Zamorano J, Fernandez-Golfin C, Ciocarelli S, Corros C, Sanchez T, et al. 3D color-Doppler echocardiography and chronic aortic regurgitation: A novel approach for severity assessment. Int J Cardiol. 2011;166:640–5.CrossRefPubMed Perez De Isla L, Zamorano J, Fernandez-Golfin C, Ciocarelli S, Corros C, Sanchez T, et al. 3D color-Doppler echocardiography and chronic aortic regurgitation: A novel approach for severity assessment. Int J Cardiol. 2011;166:640–5.CrossRefPubMed
14.
go back to reference Gonçalves A, Almeria C, Marcos-Alberca P, Feltes G, Hernández-Antolín R, Rodríguez E, et al. Three-dimensional echocardiography in paravalvular aortic regurgitation assessment after transcatheter aortic valve implantation. J Am Soc Echocardiogr. 2012;25:47–55.CrossRefPubMed Gonçalves A, Almeria C, Marcos-Alberca P, Feltes G, Hernández-Antolín R, Rodríguez E, et al. Three-dimensional echocardiography in paravalvular aortic regurgitation assessment after transcatheter aortic valve implantation. J Am Soc Echocardiogr. 2012;25:47–55.CrossRefPubMed
15.
go back to reference Nozaki S, Mizushige K, Taminato T, Obayashi N, Matsuo H. New Index for Grading the Severity of Aortic Regurgitation Based on the Cross-Sectional Area of Vena Contracta Measured by Color Doppler Flow Mapping. Circ J. 2003;67:243–7.CrossRefPubMed Nozaki S, Mizushige K, Taminato T, Obayashi N, Matsuo H. New Index for Grading the Severity of Aortic Regurgitation Based on the Cross-Sectional Area of Vena Contracta Measured by Color Doppler Flow Mapping. Circ J. 2003;67:243–7.CrossRefPubMed
Metadata
Title
Severity of aortic regurgitation assessed by area of vena contracta: a clinical two-dimensional and three-dimensional color Doppler imaging study
Authors
Hirotomo Sato
Tetsuro Ohta
Kimiko Hiroe
Seiji Okada
Koji Shimizu
Rinji Murakami
Kazuaki Tanabe
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Cardiovascular Ultrasound / Issue 1/2015
Electronic ISSN: 1476-7120
DOI
https://doi.org/10.1186/s12947-015-0016-5

Other articles of this Issue 1/2015

Cardiovascular Ultrasound 1/2015 Go to the issue