Skip to main content
Top
Published in: Cardiovascular Ultrasound 1/2015

Open Access 01-12-2015 | Research

Comparison of left ventricular mechanics in runners versus bodybuilders using speckle tracking echocardiography

Authors: Ipoly Szauder, Attila Kovács, Gábor Pavlik

Published in: Cardiovascular Ultrasound | Issue 1/2015

Login to get access

Abstract

Background

Athlete’s heart is a common definition for a broad spectrum of adaptations induced by intense exercise. We intended to compare left ventricular (LV) mechanics in two sports disciplines with different exercise nature: marathon runners (endurance) and bodybuilders (power).

Methods

24 marathon or ultramarathon runners (R), 14 bodybuilders (B) and 15 healthy, sedentary male volunteers (N) were investigated. Beyond standard echocardiographic protocol, parasternal short-axis and apical recordings optimized for speckle tracking analysis were acquired (Esaote MyLab 25). Using dedicated software (TomTec 2D Performance Analysis), global longitudinal (GLS), circumferential (GCS) and radial strain (GRS) were calculated by averaging the corresponding 16 LV segments. Data are presented as mean ± SD.

Results

Calculated LV mass was higher in bodybuilders compared to normal controls (R vs. B vs. N: 198 ± 52 vs. 224 ± 69 vs. 186 ± 30 g, p < 0.05). We found no difference regarding conventional systolic function parameters among the groups (ejection fraction: 55 ± 9 vs. 60 ± 6 vs. 59 ± 5%; mitral lateral S’ velocity: 10.7 ± 0.6 vs. 10.6 ± 0.4 vs. 11.0 ± 0.8 cm/s). However, speckle tracking analysis showed a different pattern of myocardial deformation in our groups: while GRS was similar, GLS was decreased in runners, GCS was decreased in bodybuilders compared to the other two groups (GLS: -19.4 ± 3.4 vs. -23.3 ± 2.1 vs. -24.1 ± 3.0; GCS: -26.6 ± 3.8 vs. -22.4 ± 4.3 vs. -26.4 ± 2.7%, p < 0.05). Significant correlations were found in runners between GLS and end-diastolic volume (r = 0.46; p < 0.05), and body surface area (r = 0.49; p < 0.05). In bodybuilders, GCS was closely related to LV mass (r = 0.61; p < 0.01) and systolic blood pressure (r = 0.42; p < 0.05).

Conclusions

While conventional morphological and functional echocardiographic parameters failed to distinguish between the athlete’s heart of the two different sport disciplines, deformation parameters showed a different pattern of LV mechanics in runners versus bodybuilders.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pavlik G, Major Z, Varga-Pinter B, Jeserich M, Kneffel Z. The athlete's heart Part I (Review). Acta Physiol Hung. 2010;97:337–53.CrossRefPubMed Pavlik G, Major Z, Varga-Pinter B, Jeserich M, Kneffel Z. The athlete's heart Part I (Review). Acta Physiol Hung. 2010;97:337–53.CrossRefPubMed
2.
go back to reference Pelliccia A, Maron BJ. Outer limits of the athlete's heart, the effect of gender, and relevance to the differential diagnosis with primary cardiac diseases. Cardiol Clin. 1997;15:381–96.CrossRefPubMed Pelliccia A, Maron BJ. Outer limits of the athlete's heart, the effect of gender, and relevance to the differential diagnosis with primary cardiac diseases. Cardiol Clin. 1997;15:381–96.CrossRefPubMed
3.
go back to reference Utomi V, Oxborough D, Whyte GP, Somauroo J, Sharma S, Shave R, et al. Systematic review and meta-analysis of training mode, imaging modality and body size influences on the morphology and function of the male athlete's heart. Heart. 2013;99:1727–33.CrossRefPubMed Utomi V, Oxborough D, Whyte GP, Somauroo J, Sharma S, Shave R, et al. Systematic review and meta-analysis of training mode, imaging modality and body size influences on the morphology and function of the male athlete's heart. Heart. 2013;99:1727–33.CrossRefPubMed
4.
go back to reference Pluim BM, Zwinderman AH, van der Laarse A, van der Wall EE. The athlete's heart. A meta-analysis of cardiac structure and function. Circulation. 2000;101:336–44.CrossRefPubMed Pluim BM, Zwinderman AH, van der Laarse A, van der Wall EE. The athlete's heart. A meta-analysis of cardiac structure and function. Circulation. 2000;101:336–44.CrossRefPubMed
5.
go back to reference Kovacs A, Olah A, Lux A, Matyas C, Nemeth BT, Kellermayer D, et al. Strain and strain rate by speckle tracking echocardiography correlate with pressure-volume loop derived contractility indices in a rat model of athlete's heart. Am J Physiol Heart Circ Physiol 2015:ajpheart 00828 02014. http://www.ncbi.nlm.nih.gov/pubmed/25617359 Kovacs A, Olah A, Lux A, Matyas C, Nemeth BT, Kellermayer D, et al. Strain and strain rate by speckle tracking echocardiography correlate with pressure-volume loop derived contractility indices in a rat model of athlete's heart. Am J Physiol Heart Circ Physiol 2015:ajpheart 00828 02014. http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​25617359
6.
go back to reference Pavlik G, Major Z, Csajagi E, Jeserich M, Kneffel Z. The athlete's heart. Part II: influencing factors on the athlete's heart: types of sports and age (review). Acta Physiol Hung. 2013;100:1–27.CrossRefPubMed Pavlik G, Major Z, Csajagi E, Jeserich M, Kneffel Z. The athlete's heart. Part II: influencing factors on the athlete's heart: types of sports and age (review). Acta Physiol Hung. 2013;100:1–27.CrossRefPubMed
7.
go back to reference Morganroth J, Maron BJ, Henry WL, Epstein SE. Comparative left ventricular dimensions in trained athletes. Ann Intern Med. 1975;82:521–4.CrossRefPubMed Morganroth J, Maron BJ, Henry WL, Epstein SE. Comparative left ventricular dimensions in trained athletes. Ann Intern Med. 1975;82:521–4.CrossRefPubMed
8.
go back to reference Predel HG. Marathon run: cardiovascular adaptation and cardiovascular risk. Eur Heart J. 2014;35:3091–8.CrossRefPubMed Predel HG. Marathon run: cardiovascular adaptation and cardiovascular risk. Eur Heart J. 2014;35:3091–8.CrossRefPubMed
9.
go back to reference Ahlgrim C, Guglin M. Anabolics and cardiomyopathy in a bodybuilder: case report and literature review. J Card Fail. 2009;15:496–500.CrossRefPubMed Ahlgrim C, Guglin M. Anabolics and cardiomyopathy in a bodybuilder: case report and literature review. J Card Fail. 2009;15:496–500.CrossRefPubMed
10.
go back to reference Mondillo S, Galderisi M, Mele D, Cameli M, Lomoriello VS, Zaca V, et al. Speckle-tracking echocardiography: a new technique for assessing myocardial function. J Ultrasound Med. 2011;30:71–83.PubMed Mondillo S, Galderisi M, Mele D, Cameli M, Lomoriello VS, Zaca V, et al. Speckle-tracking echocardiography: a new technique for assessing myocardial function. J Ultrasound Med. 2011;30:71–83.PubMed
11.
go back to reference Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;2013(34):2159–219. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;2013(34):2159–219.
12.
go back to reference Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18:1440–63.CrossRefPubMed Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18:1440–63.CrossRefPubMed
13.
go back to reference Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr. 2009;10:165–93.CrossRefPubMed Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr. 2009;10:165–93.CrossRefPubMed
14.
go back to reference Devereux RB, Reichek N. Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation. 1977;55:613–8.CrossRefPubMed Devereux RB, Reichek N. Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation. 1977;55:613–8.CrossRefPubMed
15.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539–42.CrossRefPubMed Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539–42.CrossRefPubMed
16.
go back to reference Mosteller RD. Simplified calculation of body-surface area. N Engl J Med. 1987;317:1098.PubMed Mosteller RD. Simplified calculation of body-surface area. N Engl J Med. 1987;317:1098.PubMed
17.
go back to reference George KP, Gates PE, Whyte G, Fenoglio RA, Lea R. Echocardiographic examination of cardiac structure and function in elite cross trained male and female Alpine skiers. Br J Sports Med. 1999;33:93–8. discussion 99.CrossRefPubMedPubMedCentral George KP, Gates PE, Whyte G, Fenoglio RA, Lea R. Echocardiographic examination of cardiac structure and function in elite cross trained male and female Alpine skiers. Br J Sports Med. 1999;33:93–8. discussion 99.CrossRefPubMedPubMedCentral
18.
go back to reference Pavlik G, Olexo Z, Frenkl R. Echocardiographic estimates related to various body size measures in athletes. Acta Physiol Hung. 1996;84:171–81. Pavlik G, Olexo Z, Frenkl R. Echocardiographic estimates related to various body size measures in athletes. Acta Physiol Hung. 1996;84:171–81.
19.
go back to reference Sengupta PP, Korinek J, Belohlavek M, Narula J, Vannan MA, Jahangir A, et al. Left ventricular structure and function: basic science for cardiac imaging. J Am Coll Cardiol. 2006;48:1988–2001.CrossRefPubMed Sengupta PP, Korinek J, Belohlavek M, Narula J, Vannan MA, Jahangir A, et al. Left ventricular structure and function: basic science for cardiac imaging. J Am Coll Cardiol. 2006;48:1988–2001.CrossRefPubMed
20.
go back to reference Feigenbaum H, Mastouri R, Sawada S. A practical approach to using strain echocardiography to evaluate the left ventricle. Circ J. 2012;76:1550–5.CrossRefPubMed Feigenbaum H, Mastouri R, Sawada S. A practical approach to using strain echocardiography to evaluate the left ventricle. Circ J. 2012;76:1550–5.CrossRefPubMed
21.
go back to reference Altekin RE, Kucuk M, Yanikoglu A, Karakas MS, Er A, Ozel D, et al. Evaluation of the left ventricular regional function using two-dimensional speckle tracking echocardiography in patients with end-stage renal disease with preserved left ventricular ejection fraction. Acta Cardiol. 2012;67:681–91.PubMed Altekin RE, Kucuk M, Yanikoglu A, Karakas MS, Er A, Ozel D, et al. Evaluation of the left ventricular regional function using two-dimensional speckle tracking echocardiography in patients with end-stage renal disease with preserved left ventricular ejection fraction. Acta Cardiol. 2012;67:681–91.PubMed
22.
go back to reference Kovacs A, Tapolyai M, Celeng C, Gara E, Faludi M, Berta K, et al. Impact of hemodialysis, left ventricular mass and FGF-23 on myocardial mechanics in end-stage renal disease: a three-dimensional speckle tracking study. Int J Cardiovasc Imaging. 2014;30:1331–7.CrossRefPubMed Kovacs A, Tapolyai M, Celeng C, Gara E, Faludi M, Berta K, et al. Impact of hemodialysis, left ventricular mass and FGF-23 on myocardial mechanics in end-stage renal disease: a three-dimensional speckle tracking study. Int J Cardiovasc Imaging. 2014;30:1331–7.CrossRefPubMed
23.
go back to reference Ernande L, Bergerot C, Girerd N, Thibault H, Davidsen ES, Gautier Pignon-Blanc P, et al. Longitudinal myocardial strain alteration is associated with left ventricular remodeling in asymptomatic patients with type 2 diabetes mellitus. J Am Soc Echocardiogr. 2014;27:479–88.CrossRefPubMed Ernande L, Bergerot C, Girerd N, Thibault H, Davidsen ES, Gautier Pignon-Blanc P, et al. Longitudinal myocardial strain alteration is associated with left ventricular remodeling in asymptomatic patients with type 2 diabetes mellitus. J Am Soc Echocardiogr. 2014;27:479–88.CrossRefPubMed
24.
go back to reference Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M, et al. Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr. 2004;17:1021–9.CrossRefPubMed Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M, et al. Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr. 2004;17:1021–9.CrossRefPubMed
25.
go back to reference Simsek Z, Hakan Tas M, Degirmenci H, Gokhan Yazici A, Ipek E, Duman H, et al. Speckle tracking echocardiographic analysis of left ventricular systolic and diastolic functions of young elite athletes with eccentric and concentric type of cardiac remodeling. Echocardiography. 2013;30:1202–8.CrossRefPubMed Simsek Z, Hakan Tas M, Degirmenci H, Gokhan Yazici A, Ipek E, Duman H, et al. Speckle tracking echocardiographic analysis of left ventricular systolic and diastolic functions of young elite athletes with eccentric and concentric type of cardiac remodeling. Echocardiography. 2013;30:1202–8.CrossRefPubMed
26.
go back to reference Kaku K, Takeuchi M, Tsang W, Takigiku K, Yasukochi S, Patel AR, et al. Age-related normal range of left ventricular strain and torsion using three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2014;27:55–64.CrossRefPubMed Kaku K, Takeuchi M, Tsang W, Takigiku K, Yasukochi S, Patel AR, et al. Age-related normal range of left ventricular strain and torsion using three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2014;27:55–64.CrossRefPubMed
27.
go back to reference Schattke S, Xing Y, Lock J, Brechtel L, Schroeckh S, Spethmann S, et al. Increased longitudinal contractility and diastolic function at rest in well-trained amateur Marathon runners: a speckle tracking echocardiography study. Cardiovasc Ultrasound. 2014;12:11.CrossRefPubMedPubMedCentral Schattke S, Xing Y, Lock J, Brechtel L, Schroeckh S, Spethmann S, et al. Increased longitudinal contractility and diastolic function at rest in well-trained amateur Marathon runners: a speckle tracking echocardiography study. Cardiovasc Ultrasound. 2014;12:11.CrossRefPubMedPubMedCentral
29.
go back to reference Sengupta SP, Caracciolo G, Thompson C, Abe H, Sengupta PP. Early impairment of left ventricular function in patients with systemic hypertension: new insights with 2-dimensional speckle tracking echocardiography. Indian Heart J. 2013;65:48–52.CrossRefPubMedPubMedCentral Sengupta SP, Caracciolo G, Thompson C, Abe H, Sengupta PP. Early impairment of left ventricular function in patients with systemic hypertension: new insights with 2-dimensional speckle tracking echocardiography. Indian Heart J. 2013;65:48–52.CrossRefPubMedPubMedCentral
30.
go back to reference Galderisi M, Esposito R, Schiano-Lomoriello V, Santoro A, Ippolito R, Schiattarella P, et al. Correlates of global area strain in native hypertensive patients: a three-dimensional speckle-tracking echocardiography study. Eur Heart J Cardiovasc Imaging. 2012;13:730–8.CrossRefPubMed Galderisi M, Esposito R, Schiano-Lomoriello V, Santoro A, Ippolito R, Schiattarella P, et al. Correlates of global area strain in native hypertensive patients: a three-dimensional speckle-tracking echocardiography study. Eur Heart J Cardiovasc Imaging. 2012;13:730–8.CrossRefPubMed
31.
go back to reference Urbano-Moral JA, Rowin EJ, Maron MS, Crean A, Pandian NG. Investigation of global and regional myocardial mechanics with 3-dimensional speckle tracking echocardiography and relations to hypertrophy and fibrosis in hypertrophic cardiomyopathy. Circulation Cardiovascular imaging. 2014;7:11–9.CrossRefPubMed Urbano-Moral JA, Rowin EJ, Maron MS, Crean A, Pandian NG. Investigation of global and regional myocardial mechanics with 3-dimensional speckle tracking echocardiography and relations to hypertrophy and fibrosis in hypertrophic cardiomyopathy. Circulation Cardiovascular imaging. 2014;7:11–9.CrossRefPubMed
32.
go back to reference Staron A, Bansal M, Kalakoti P, Nakabo A, Gasior Z, Pysz P, et al. Speckle tracking echocardiography derived 2-dimensional myocardial strain predicts left ventricular function and mass regression in aortic stenosis patients undergoing aortic valve replacement. Int J Cardiovasc Imaging. 2013;29:797–808.CrossRefPubMed Staron A, Bansal M, Kalakoti P, Nakabo A, Gasior Z, Pysz P, et al. Speckle tracking echocardiography derived 2-dimensional myocardial strain predicts left ventricular function and mass regression in aortic stenosis patients undergoing aortic valve replacement. Int J Cardiovasc Imaging. 2013;29:797–808.CrossRefPubMed
33.
go back to reference Kovacs A, Apor A, Nagy A, Vago H, Toth A, Nagy AI, et al. Left ventricular untwisting in athlete's heart: key role in early diastolic filling? Int J Sports Med. 2014;35:259–64.PubMed Kovacs A, Apor A, Nagy A, Vago H, Toth A, Nagy AI, et al. Left ventricular untwisting in athlete's heart: key role in early diastolic filling? Int J Sports Med. 2014;35:259–64.PubMed
34.
go back to reference Butz T, van Buuren F, Mellwig KP, Langer C, Plehn G, Meissner A, et al. Two-dimensional strain analysis of the global and regional myocardial function for the differentiation of pathologic and physiologic left ventricular hypertrophy: a study in athletes and in patients with hypertrophic cardiomyopathy. Int J Cardiovasc Imaging. 2011;27:91–100.CrossRefPubMed Butz T, van Buuren F, Mellwig KP, Langer C, Plehn G, Meissner A, et al. Two-dimensional strain analysis of the global and regional myocardial function for the differentiation of pathologic and physiologic left ventricular hypertrophy: a study in athletes and in patients with hypertrophic cardiomyopathy. Int J Cardiovasc Imaging. 2011;27:91–100.CrossRefPubMed
35.
go back to reference Stefani L, De Luca A, Toncelli L, Pedrizzetti G, Galanti G. 3D Strain helps relating LV function to LV and structure in athletes. Cardiovasc Ultrasound. 2014;12:33.CrossRefPubMedPubMedCentral Stefani L, De Luca A, Toncelli L, Pedrizzetti G, Galanti G. 3D Strain helps relating LV function to LV and structure in athletes. Cardiovasc Ultrasound. 2014;12:33.CrossRefPubMedPubMedCentral
Metadata
Title
Comparison of left ventricular mechanics in runners versus bodybuilders using speckle tracking echocardiography
Authors
Ipoly Szauder
Attila Kovács
Gábor Pavlik
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Cardiovascular Ultrasound / Issue 1/2015
Electronic ISSN: 1476-7120
DOI
https://doi.org/10.1186/s12947-015-0002-y

Other articles of this Issue 1/2015

Cardiovascular Ultrasound 1/2015 Go to the issue

Reviewer acknowledgement

Reviewer acknowledgement 2014