Skip to main content
Top
Published in: Molecular Cancer 1/2018

Open Access 01-12-2018 | Letter to the Editor

RUNX1 upregulation via disruption of long-range transcriptional control by a novel t(5;21)(q13;q22) translocation in acute myeloid leukemia

Authors: Chi-Keung Cheng, Terry H. Y. Wong, Thomas S. K. Wan, Angela Z. Wang, Natalie P. H. Chan, Nelson C. N. Chan, Chi-Kong Li, Margaret H. L. Ng

Published in: Molecular Cancer | Issue 1/2018

Login to get access

Abstract

RUNX1 encodes a Runt-related transcription factor that is critical for hematopoiesis. In this study, through a combinatorial molecular approach, we characterized a novel t(5;21)(q13;q22) translocation involving RUNX1 that was acquired during the progression of myelodysplastic syndrome to acute myeloid leukemia (AML) in a pediatric patient. We found that this translocation did not generate RUNX1 fusion but aberrantly upregulated RUNX1. This upregulation was attributed to the disruption of long-range chromatin interactions between the RUNX1 P2 promoter and a silencer in the first intron of the gene. Characterization of the silencer revealed a role of SNAG repressors and their corepressor LSD1/KDM1A in mediating the effect. Our findings suggest that chromosomal rearrangements may activate RUNX1 by perturbing its transcriptional control to contribute to AML pathogenesis, in keeping with an emerging oncogenic role of RUNX1 in leukemia.
Appendix
Available only for authorised users
Literature
1.
go back to reference Markova EN, Kantidze OL, Razin SV. Transcriptional regulation and spatial organisation of the human AML1/RUNX1 gene. J Cell Biochem. 2011;112:1997–2005.CrossRefPubMed Markova EN, Kantidze OL, Razin SV. Transcriptional regulation and spatial organisation of the human AML1/RUNX1 gene. J Cell Biochem. 2011;112:1997–2005.CrossRefPubMed
2.
go back to reference Nottingham WT, Jarratt A, Burgess M, Speck CL, Cheng JF, Prabhakar S, et al. Runx1-mediated hematopoietic stem-cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer. Blood. 2007;110:4188–97.CrossRefPubMedPubMedCentral Nottingham WT, Jarratt A, Burgess M, Speck CL, Cheng JF, Prabhakar S, et al. Runx1-mediated hematopoietic stem-cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer. Blood. 2007;110:4188–97.CrossRefPubMedPubMedCentral
3.
go back to reference Buijs A, Poot M, van der Crabben S, van der Zwaag B, van Binsbergen E, van Roosmalen MJ, et al. Elucidation of a novel pathogenomic mechanism using genome-wide long mate-pair sequencing of a congenital t(16;21) in a series of three RUNX1-mutated FPD/AML pedigrees. Leukemia. 2012;26:2151–4.CrossRefPubMed Buijs A, Poot M, van der Crabben S, van der Zwaag B, van Binsbergen E, van Roosmalen MJ, et al. Elucidation of a novel pathogenomic mechanism using genome-wide long mate-pair sequencing of a congenital t(16;21) in a series of three RUNX1-mutated FPD/AML pedigrees. Leukemia. 2012;26:2151–4.CrossRefPubMed
5.
go back to reference De Braekeleer E, Douet-Guilbert N, Morel F, Le Bris MJ, Férec C, De Braekeleer M. RUNX1 translocations and fusion genes in malignant hemopathies. Future Oncol. 2011;7:77–91. ReviewCrossRefPubMed De Braekeleer E, Douet-Guilbert N, Morel F, Le Bris MJ, Férec C, De Braekeleer M. RUNX1 translocations and fusion genes in malignant hemopathies. Future Oncol. 2011;7:77–91. ReviewCrossRefPubMed
6.
go back to reference Gandemer V, Rio AG, de Tayrac M, Sibut V, Mottier S, Ly Sunnaram B, et al. Five distinct biological processes and 14 differentially expressed genes characterize TEL/AML1-positive leukemia. BMC Genomics. 2007;8:385.CrossRefPubMedPubMedCentral Gandemer V, Rio AG, de Tayrac M, Sibut V, Mottier S, Ly Sunnaram B, et al. Five distinct biological processes and 14 differentially expressed genes characterize TEL/AML1-positive leukemia. BMC Genomics. 2007;8:385.CrossRefPubMedPubMedCentral
7.
8.
go back to reference Xu F, Wu LY, He Q, Wu D, Zhang Z, Song LX, et al. Exploration of the role of gene mutations in myelodysplastic syndromes through a sequencing design involving a small number of target genes. Sci Rep. 2017;7:43113.CrossRefPubMedPubMedCentral Xu F, Wu LY, He Q, Wu D, Zhang Z, Song LX, et al. Exploration of the role of gene mutations in myelodysplastic syndromes through a sequencing design involving a small number of target genes. Sci Rep. 2017;7:43113.CrossRefPubMedPubMedCentral
9.
go back to reference Sakurai H, Harada Y, Ogata Y, Kagiyama Y, Shingai N, Doki N, et al. Overexpression of RUNX1 short isoform has an important role in the development of myelodysplastic/myeloproliferative neoplasms. Blood Adv. 2017;1:1382–6.CrossRefPubMedPubMedCentral Sakurai H, Harada Y, Ogata Y, Kagiyama Y, Shingai N, Doki N, et al. Overexpression of RUNX1 short isoform has an important role in the development of myelodysplastic/myeloproliferative neoplasms. Blood Adv. 2017;1:1382–6.CrossRefPubMedPubMedCentral
Metadata
Title
RUNX1 upregulation via disruption of long-range transcriptional control by a novel t(5;21)(q13;q22) translocation in acute myeloid leukemia
Authors
Chi-Keung Cheng
Terry H. Y. Wong
Thomas S. K. Wan
Angela Z. Wang
Natalie P. H. Chan
Nelson C. N. Chan
Chi-Kong Li
Margaret H. L. Ng
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2018
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-018-0881-2

Other articles of this Issue 1/2018

Molecular Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine