Skip to main content
Top
Published in: Molecular Cancer 1/2017

Open Access 01-12-2017 | Research

Impact of FHIT loss on the translation of cancer-associated mRNAs

Authors: Daniel L. Kiss, William Baez, Kay Huebner, Ralf Bundschuh, Daniel R. Schoenberg

Published in: Molecular Cancer | Issue 1/2017

Login to get access

Abstract

Background

FHIT is a genome caretaker/tumor suppressor that is silenced in >50% of cancers. Although it was identified more than 20 years ago, questions remain as to how FHIT loss contributes to cancer, and conversely, how FHIT acts to maintain genome integrity and suppress malignancy. Fhit belongs to the histidine triad family of enzymes that catalyze the degradation of nucleoside 5′,5′-triphosphates, including the m7GpppN ‘caps’ that are generated when mRNAs undergo 3′-5′ decay. This raised the possibility that Fhit loss might affect changes in the translation of cancer-associated mRNAs, possibly as a consequence of increased intracellular concentrations of these molecules.

Results

Ribosome profiling identified several hundred mRNAs for which coding region ribosome occupancy changed as a function of Fhit expression. While many of these changes could be explained by changes in mRNA steady-state, a subset of these showed changes in translation efficiency as a function of Fhit expression. The onset of malignancy has been linked to changes in 5’-UTR ribosome occupancy and this analysis also identified ribosome binding to 5′-untranslated regions (UTRs) of a number of cancer-associated mRNAs. 5’-UTR ribosome occupancy of these mRNAs differed between Fhit-negative and Fhit-positive cells, and in some cases these differences correlated with differences in coding region ribosome occupancy.

Conclusions

In summary, these findings show Fhit expression impacts the translation of a number of cancer associated genes, and they support the hypothesis that Fhit’s genome protective/tumor suppressor function is associated with post-transcriptional changes in expression of genes whose dysregulation contributes to malignancy.
Appendix
Available only for authorised users
Literature
2.
go back to reference Ohta M, Inoue H, Cotticelli MG, et al. The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell. 1996;84:587–97.CrossRefPubMed Ohta M, Inoue H, Cotticelli MG, et al. The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell. 1996;84:587–97.CrossRefPubMed
4.
go back to reference Waters CE, Saldivar JC, Hosseini SA, Huebner K. The FHIT gene product: tumor suppressor and genome “caretaker”. Cell Mol Life Sci. 2014;71:4577–87.CrossRefPubMedPubMedCentral Waters CE, Saldivar JC, Hosseini SA, Huebner K. The FHIT gene product: tumor suppressor and genome “caretaker”. Cell Mol Life Sci. 2014;71:4577–87.CrossRefPubMedPubMedCentral
5.
go back to reference Gorgoulis VG, Vassiliou LV, Karakaidos P, et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature. 2005;434:907–13.CrossRefPubMed Gorgoulis VG, Vassiliou LV, Karakaidos P, et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature. 2005;434:907–13.CrossRefPubMed
6.
go back to reference Bartkova J, Horejsí Z, Koed K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434:864–70.CrossRefPubMed Bartkova J, Horejsí Z, Koed K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434:864–70.CrossRefPubMed
7.
go back to reference Sard L, Accornero P, Tornielli S, et al. The tumor-suppressor gene FHIT is involved in the regulation of apoptosis and in cell cycle control. Proc Natl Acad Sci U S A. 1999;96:8489–92.CrossRefPubMedPubMedCentral Sard L, Accornero P, Tornielli S, et al. The tumor-suppressor gene FHIT is involved in the regulation of apoptosis and in cell cycle control. Proc Natl Acad Sci U S A. 1999;96:8489–92.CrossRefPubMedPubMedCentral
8.
go back to reference Joannes A, Grelet S, Duca L, et al. Fhit regulates EMT targets through an EGFR/Src/ERK/slug signaling axis in human bronchial cells. Mol Cancer Res. 2014;12:775–83.CrossRefPubMed Joannes A, Grelet S, Duca L, et al. Fhit regulates EMT targets through an EGFR/Src/ERK/slug signaling axis in human bronchial cells. Mol Cancer Res. 2014;12:775–83.CrossRefPubMed
9.
go back to reference Suh SS, Yoo JY, Cui R, et al. FHIT suppresses epithelial-mesenchymal transition (EMT) and metastasis in lung cancer through modulation of microRNAs. PLoS Genet. 2014;10:e1004652.CrossRefPubMedPubMedCentral Suh SS, Yoo JY, Cui R, et al. FHIT suppresses epithelial-mesenchymal transition (EMT) and metastasis in lung cancer through modulation of microRNAs. PLoS Genet. 2014;10:e1004652.CrossRefPubMedPubMedCentral
11.
go back to reference Okumura H, Ishii H, Pichiorri F, Croce CM, Mori M, Huebner K. Fragile gene product, Fhit, in oxidative and replicative stress responses. Cancer Sci. 2009;100:1145–50.CrossRefPubMed Okumura H, Ishii H, Pichiorri F, Croce CM, Mori M, Huebner K. Fragile gene product, Fhit, in oxidative and replicative stress responses. Cancer Sci. 2009;100:1145–50.CrossRefPubMed
12.
go back to reference Barnes LD, Garrison PN, Siprashvili Z, et al. Fhit, a putative tumor suppressor in humans, is a dinucleoside 5′,5″’-P1, P3-triphosphate hydrolase. Biochemistry. 1996;35:11529–35.CrossRefPubMed Barnes LD, Garrison PN, Siprashvili Z, et al. Fhit, a putative tumor suppressor in humans, is a dinucleoside 5′,5″’-P1, P3-triphosphate hydrolase. Biochemistry. 1996;35:11529–35.CrossRefPubMed
13.
go back to reference Murphy GA, Halliday D, McLennan AG. The Fhit tumor suppressor protein regulates the intracellular concentration of diadenosine triphosphate but not diadenosine tetraphosphate. Cancer Res. 2000;60:2342–4.PubMed Murphy GA, Halliday D, McLennan AG. The Fhit tumor suppressor protein regulates the intracellular concentration of diadenosine triphosphate but not diadenosine tetraphosphate. Cancer Res. 2000;60:2342–4.PubMed
14.
go back to reference Taverniti V, Seraphin B. Elimination of cap structures generated by mRNA decay involves the new scavenger mRNA decapping enzyme Aph1/FHIT together with DcpS. Nucleic Acids Res. 2014;43:482–92.CrossRefPubMedPubMedCentral Taverniti V, Seraphin B. Elimination of cap structures generated by mRNA decay involves the new scavenger mRNA decapping enzyme Aph1/FHIT together with DcpS. Nucleic Acids Res. 2014;43:482–92.CrossRefPubMedPubMedCentral
15.
16.
go back to reference Draganescu A, Hodawadekar SC, Gee KR, Brenner C. Fhit-nucleotide specificity probed with novel fluorescent and fluorogenic substrates. J Biol Chem. 2000;275:4555–60.CrossRefPubMedPubMedCentral Draganescu A, Hodawadekar SC, Gee KR, Brenner C. Fhit-nucleotide specificity probed with novel fluorescent and fluorogenic substrates. J Biol Chem. 2000;275:4555–60.CrossRefPubMedPubMedCentral
17.
go back to reference Pelletier J, Graff J, Ruggero D, Sonenberg N. Targeting the eIF4F translation initiation complex: a critical nexus for cancer development. Cancer Res. 2015;75:250–63.CrossRefPubMedPubMedCentral Pelletier J, Graff J, Ruggero D, Sonenberg N. Targeting the eIF4F translation initiation complex: a critical nexus for cancer development. Cancer Res. 2015;75:250–63.CrossRefPubMedPubMedCentral
18.
19.
go back to reference Sozzi G, Pastorino U, Moiraghi L, et al. Loss of FHIT function in lung cancer and preinvasive bronchial lesions. Cancer Res. 1998;58:5032–7.PubMed Sozzi G, Pastorino U, Moiraghi L, et al. Loss of FHIT function in lung cancer and preinvasive bronchial lesions. Cancer Res. 1998;58:5032–7.PubMed
20.
go back to reference Saldivar JC, Miuma S, Bene J, et al. Initiation of genome instability and preneoplastic processes through loss of Fhit expression. PLoS Genet. 2012;8:e1003077.CrossRefPubMedPubMedCentral Saldivar JC, Miuma S, Bene J, et al. Initiation of genome instability and preneoplastic processes through loss of Fhit expression. PLoS Genet. 2012;8:e1003077.CrossRefPubMedPubMedCentral
21.
go back to reference Kiss DL, Waters CE, Ouda IM, et al. Identification of Fhit as a post-transcriptional effector of thymidine kinase 1 expression. Biochim Biophys Acta. 2017;1860:374–82.CrossRefPubMed Kiss DL, Waters CE, Ouda IM, et al. Identification of Fhit as a post-transcriptional effector of thymidine kinase 1 expression. Biochim Biophys Acta. 2017;1860:374–82.CrossRefPubMed
22.
go back to reference Druck T, Hadaczek P, TB F, et al. Structure and expression of the human FHIT gene in normal and tumor cells. Cancer Res. 1997;57:504–12.PubMed Druck T, Hadaczek P, TB F, et al. Structure and expression of the human FHIT gene in normal and tumor cells. Cancer Res. 1997;57:504–12.PubMed
23.
go back to reference Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc. 2012;7:1534–50.CrossRefPubMedPubMedCentral Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc. 2012;7:1534–50.CrossRefPubMedPubMedCentral
24.
go back to reference Zhong Y, Karaletsos T, Drewe P, et al. RiboDiff: detecting changes of mRNA translation efficiency from ribosome footprints. Bioinformatics. 2017;33:139–41.CrossRefPubMed Zhong Y, Karaletsos T, Drewe P, et al. RiboDiff: detecting changes of mRNA translation efficiency from ribosome footprints. Bioinformatics. 2017;33:139–41.CrossRefPubMed
25.
go back to reference Balakrishnan R, Oman K, Shoji S, Bundschuh R, Fredrick K. The conserved GTPase LepA contributes mainly to translation initiation in Escherichia Coli. Nucleic Acids Res. 2014;42:13370–83.CrossRefPubMedPubMedCentral Balakrishnan R, Oman K, Shoji S, Bundschuh R, Fredrick K. The conserved GTPase LepA contributes mainly to translation initiation in Escherichia Coli. Nucleic Acids Res. 2014;42:13370–83.CrossRefPubMedPubMedCentral
26.
go back to reference Song Y, Sun B, Hao L, et al. Elevated eukaryotic elongation factor 2 expression is involved in proliferation and invasion of lung squamous cell carcinoma. Oncotarget. 2016;7:58470–82.CrossRefPubMedPubMedCentral Song Y, Sun B, Hao L, et al. Elevated eukaryotic elongation factor 2 expression is involved in proliferation and invasion of lung squamous cell carcinoma. Oncotarget. 2016;7:58470–82.CrossRefPubMedPubMedCentral
28.
go back to reference Uhlén M, Björling E, Agaton C, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics. 2005;4:1920–32.CrossRefPubMed Uhlén M, Björling E, Agaton C, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics. 2005;4:1920–32.CrossRefPubMed
29.
go back to reference Tillotson R, Selfridge J, Koerner MV, et al. Radically truncated MeCP2 rescues Rett syndrome-like neurological defects. Nature. 2017;550:398–401.CrossRefPubMed Tillotson R, Selfridge J, Koerner MV, et al. Radically truncated MeCP2 rescues Rett syndrome-like neurological defects. Nature. 2017;550:398–401.CrossRefPubMed
30.
go back to reference Oji Y, Tatsumi N, Fukuda M, et al. The translation elongation factor eEF2 is a novel tumor-associated antigen overexpressed in various types of cancers. Int J Oncol. 2014;44:1461–9.CrossRefPubMedPubMedCentral Oji Y, Tatsumi N, Fukuda M, et al. The translation elongation factor eEF2 is a novel tumor-associated antigen overexpressed in various types of cancers. Int J Oncol. 2014;44:1461–9.CrossRefPubMedPubMedCentral
31.
go back to reference Palam LR, Baird TD, Wek RC. Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. J Biol Chem. 2011;286:10939–49.CrossRefPubMedPubMedCentral Palam LR, Baird TD, Wek RC. Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. J Biol Chem. 2011;286:10939–49.CrossRefPubMedPubMedCentral
32.
go back to reference Barbosa C, Romão L. Translation of the human erythropoietin transcript is regulated by an upstream open reading frame in response to hypoxia. RNA. 2014;20:594–608.CrossRefPubMedPubMedCentral Barbosa C, Romão L. Translation of the human erythropoietin transcript is regulated by an upstream open reading frame in response to hypoxia. RNA. 2014;20:594–608.CrossRefPubMedPubMedCentral
33.
go back to reference Domaschenz R, Kurscheid S, Nekrasov M, Han S, Tremethick DJ. The Histone variant H2A.Z is a master regulator of the epithelial-Mesenchymal transition. Cell Rep. 2017;21:943–52.CrossRefPubMed Domaschenz R, Kurscheid S, Nekrasov M, Han S, Tremethick DJ. The Histone variant H2A.Z is a master regulator of the epithelial-Mesenchymal transition. Cell Rep. 2017;21:943–52.CrossRefPubMed
34.
go back to reference Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science. 2016;352:1413–6.CrossRefPubMed Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science. 2016;352:1413–6.CrossRefPubMed
35.
go back to reference Kwon SC, Yi H, Eichelbaum K, et al. The RNA-binding protein repertoire of embryonic stem cells. Nat Struct Mol Biolf. 2013;20:1122–30.CrossRef Kwon SC, Yi H, Eichelbaum K, et al. The RNA-binding protein repertoire of embryonic stem cells. Nat Struct Mol Biolf. 2013;20:1122–30.CrossRef
36.
go back to reference Castello A, Fischer B, Eichelbaum K, et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell. 2012;149:1393–406.CrossRefPubMed Castello A, Fischer B, Eichelbaum K, et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell. 2012;149:1393–406.CrossRefPubMed
37.
go back to reference Castello A, Fischer B, Frese CK et al. Comprehensive identification of RNA-binding domains in human cells. Mol cell. 2016. Castello A, Fischer B, Frese CK et al. Comprehensive identification of RNA-binding domains in human cells. Mol cell. 2016.
38.
39.
go back to reference Pace HC, Garrison PN, Robinson AK, et al. Genetic, biochemical, and crystallographic characterization of Fhit-substrate complexes as the active signaling form of Fhit. Proc Natl Acad Sci U S A. 1998;95:5484–9.CrossRefPubMedPubMedCentral Pace HC, Garrison PN, Robinson AK, et al. Genetic, biochemical, and crystallographic characterization of Fhit-substrate complexes as the active signaling form of Fhit. Proc Natl Acad Sci U S A. 1998;95:5484–9.CrossRefPubMedPubMedCentral
Metadata
Title
Impact of FHIT loss on the translation of cancer-associated mRNAs
Authors
Daniel L. Kiss
William Baez
Kay Huebner
Ralf Bundschuh
Daniel R. Schoenberg
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2017
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-017-0749-x

Other articles of this Issue 1/2017

Molecular Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine