Skip to main content
Top
Published in: Molecular Cancer 1/2016

Open Access 01-12-2016 | Research

Esculetin induces antiproliferative and apoptotic response in pancreatic cancer cells by directly binding to KEAP1

Authors: Rashi Arora, Sharad Sawney, Vikas Saini, Chris Steffi, Manisha Tiwari, Daman Saluja

Published in: Molecular Cancer | Issue 1/2016

Login to get access

Abstract

Background

A handful of studies have exploited antitumor potential of esculetin, a dihydroxy coumarine derivative; the targets to which it binds and the possible downstream mechanism for its cytotoxicity in cancer cells remain to be elucidated. Using pancreatic cancer cell lines as a model system, herein the study was initiated to check the efficacy of esculetin in inhibiting growth of these cancer cells, to decipher mechanism of its action and to predict its direct binding target protein.

Methods

The cytotoxicity of esculetin was determined in PANC-1, MIA PaCa-2 and AsPC-1 cell lines; followed by an inspection of intracellular levels of ROS and its associated transcription factor, p65-NF-κB. The interaction between transcription factor, Nrf2 and its regulator KEAP1 was studied in the presence and absence of esculetin. The effect of Nrf2 on gene expression of antioxidant response element pathway was monitored by real time PCR. Thereafter, potential binding target of esculetin was predicted through molecular docking and then confirmed in vitro.

Results

Esculetin treatment in all three pancreatic cancer cell lines resulted in significant growth inhibition with G1-phase cell cycle arrest and induction of mitochondrial dependent apoptosis through activation of caspases 3, 8 and 9. A notable decrease was observed in intracellular ROS and protein levels of p65-NF-κB in PANC-1 cells on esculetin treatment. Antioxidant response regulator Nrf2 has been reportedly involved in crosstalk with NF-κB. Interaction between Nrf2 and KEAP1 was found to be lost upon esculetin treatment in PANC-1 and MIA Paca-2 cells. Nuclear accumulation of Nrf2 and an upregulation of expression of Nrf2 regulated gene NQO1, observed on esculetin treatment in PANC-1 further supported the activation of Nrf2. To account for the loss of Nrf2-KEAP1 interaction on esculetin treatment, direct binding potential between esculetin and KEAP1 was depicted in silico using molecular docking studies. Pull down assay using esculetin conjugated sepharose beads confirmed the binding between esculetin and KEAP1.

Conclusions

We propose that esculetin binds to KEAP1 and inhibits its interaction with Nrf2 in pancreatic cancer cells. This thereby promotes nuclear accumulation of Nrf2 in PANC-1 cells that induces antiproliferative and apoptotic response possibly by attenuating NF-κB.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bhanot A, Sharma R, Noolvi MN. Natural sources as potential anti-cancer agents: a review. Int J Phytomedicine. 2011;3:09–26. Bhanot A, Sharma R, Noolvi MN. Natural sources as potential anti-cancer agents: a review. Int J Phytomedicine. 2011;3:09–26.
2.
go back to reference Kinghorn AD, Chin Y-W, Swanson SM. Discovery of natural product anticancer agents from biodiverse organisms. Curr Opin Drug Discov Devel. 2009;12:189–96.PubMedPubMedCentral Kinghorn AD, Chin Y-W, Swanson SM. Discovery of natural product anticancer agents from biodiverse organisms. Curr Opin Drug Discov Devel. 2009;12:189–96.PubMedPubMedCentral
3.
go back to reference Kawaii S, Tomono Y, Ogawa K, Sugiura M, Yano M, Yoshizawa Y. The antiproliferative effect of coumarins on several cancer cell lines. Anticancer Res. 2001;21:917–23.PubMed Kawaii S, Tomono Y, Ogawa K, Sugiura M, Yano M, Yoshizawa Y. The antiproliferative effect of coumarins on several cancer cell lines. Anticancer Res. 2001;21:917–23.PubMed
4.
go back to reference Chang WS, Lin CC, Chuang SC, Chiang HC. Superoxide anion scavenging effect of coumarins. Am J Chin Med. 1996;24:11–7.CrossRefPubMed Chang WS, Lin CC, Chuang SC, Chiang HC. Superoxide anion scavenging effect of coumarins. Am J Chin Med. 1996;24:11–7.CrossRefPubMed
5.
go back to reference Yue J-M, Xu J, Zhao Y, Sun H-D, Lin Z-W. Chemical components from ceratostigma willmottianum. J Nat Prod. 1997;60:1031–3.CrossRef Yue J-M, Xu J, Zhao Y, Sun H-D, Lin Z-W. Chemical components from ceratostigma willmottianum. J Nat Prod. 1997;60:1031–3.CrossRef
6.
go back to reference Chu CY, Tsai YY, Wang CJ, Lin WL, Tseng TH. Induction of apoptosis by esculetin in human leukemia cells. Eur J Pharmacol. 2001;416:25–32.CrossRefPubMed Chu CY, Tsai YY, Wang CJ, Lin WL, Tseng TH. Induction of apoptosis by esculetin in human leukemia cells. Eur J Pharmacol. 2001;416:25–32.CrossRefPubMed
7.
go back to reference Park C, Jin C-Y, Kim G-Y, Choi I-W, Kwon TK, Choi BT, Lee SJ, Lee WH, Choi YH. Induction of apoptosis by esculetin in human leukemia U937 cells through activation of JNK and ERK. Toxicol Appl Pharmacol. 2008;227:219–28.CrossRefPubMed Park C, Jin C-Y, Kim G-Y, Choi I-W, Kwon TK, Choi BT, Lee SJ, Lee WH, Choi YH. Induction of apoptosis by esculetin in human leukemia U937 cells through activation of JNK and ERK. Toxicol Appl Pharmacol. 2008;227:219–28.CrossRefPubMed
8.
go back to reference Park C, Jin CY, Kwon HJ, Hwang HJ, Kim GY, Choi IW, Kwon TK, Kim BW, Kim WJ, Choi YH. Induction of apoptosis by esculetin in human leukemia U937 cells: Roles of Bcl-2 and extracellular-regulated kinase signaling. Toxicol in Vitro. 2010;24:486–94.CrossRefPubMed Park C, Jin CY, Kwon HJ, Hwang HJ, Kim GY, Choi IW, Kwon TK, Kim BW, Kim WJ, Choi YH. Induction of apoptosis by esculetin in human leukemia U937 cells: Roles of Bcl-2 and extracellular-regulated kinase signaling. Toxicol in Vitro. 2010;24:486–94.CrossRefPubMed
9.
go back to reference Yang J, Xiao Y-L, He X-R, Qiu G-F, Hu X-M. Aesculetin-induced apoptosis through a ROS-mediated mitochondrial dysfunction pathway in human cervical cancer cells. J Asian Nat Prod Res. 2010;12:185–93.CrossRefPubMed Yang J, Xiao Y-L, He X-R, Qiu G-F, Hu X-M. Aesculetin-induced apoptosis through a ROS-mediated mitochondrial dysfunction pathway in human cervical cancer cells. J Asian Nat Prod Res. 2010;12:185–93.CrossRefPubMed
10.
go back to reference Rubio V, Calviño E, García-Pérez A, Herráez A, Diez JC. Human acute promyelocytic leukemia NB4 cells are sensitive to esculetin through induction of an apoptotic mechanism. Chem Biol Interact. 2014;220:129–39.CrossRefPubMed Rubio V, Calviño E, García-Pérez A, Herráez A, Diez JC. Human acute promyelocytic leukemia NB4 cells are sensitive to esculetin through induction of an apoptotic mechanism. Chem Biol Interact. 2014;220:129–39.CrossRefPubMed
11.
go back to reference Kim AD, Han X, Piao MJ, Hewage SRKM, Hyun CL, Cho SJ, Hyun JW. Esculetin induces death of human colon cancer cells via the reactive oxygen species-mediated mitochondrial apoptosis pathway. Environ Toxicol Pharmacol. 2015;39:982–9.CrossRefPubMed Kim AD, Han X, Piao MJ, Hewage SRKM, Hyun CL, Cho SJ, Hyun JW. Esculetin induces death of human colon cancer cells via the reactive oxygen species-mediated mitochondrial apoptosis pathway. Environ Toxicol Pharmacol. 2015;39:982–9.CrossRefPubMed
12.
go back to reference Wang J, Lu ML, Dai HL, Zhang SP, Wang HX, Wei N. Esculetin, a coumarin derivative, exerts in vitro and in vivo antiproliferative activity against hepatocellular carcinoma by initiating a mitochondrial-dependent apoptosis pathway. Braz J Med Biol Res. 2015;48:245–53.CrossRefPubMed Wang J, Lu ML, Dai HL, Zhang SP, Wang HX, Wei N. Esculetin, a coumarin derivative, exerts in vitro and in vivo antiproliferative activity against hepatocellular carcinoma by initiating a mitochondrial-dependent apoptosis pathway. Braz J Med Biol Res. 2015;48:245–53.CrossRefPubMed
13.
go back to reference Sawney S, Arora R, Aggarwal KK, Saluja D. Esculetin downregulates the expression of AML1-ETO and C-Kit in Kasumi-1 cell line by decreasing half-life of mRNA. J Oncol. 2015;2015:781473.CrossRefPubMedPubMedCentral Sawney S, Arora R, Aggarwal KK, Saluja D. Esculetin downregulates the expression of AML1-ETO and C-Kit in Kasumi-1 cell line by decreasing half-life of mRNA. J Oncol. 2015;2015:781473.CrossRefPubMedPubMedCentral
14.
go back to reference Sawney S, Arora P, Steffi C, Chandra V, Ali M, Kamal K. Esculetin induces apoptosis in human leukemia Kasumi-1 cells through Caspase 3 activation. J Innov Pharm Biol Sci. 2015;2:273–89. Sawney S, Arora P, Steffi C, Chandra V, Ali M, Kamal K. Esculetin induces apoptosis in human leukemia Kasumi-1 cells through Caspase 3 activation. J Innov Pharm Biol Sci. 2015;2:273–89.
15.
go back to reference Payá M, Halliwell B, Hoult JRS. Interactions of a series of coumarins with reactive oxygen species. Biochem Pharmacol. 1992;44:205–14.CrossRefPubMed Payá M, Halliwell B, Hoult JRS. Interactions of a series of coumarins with reactive oxygen species. Biochem Pharmacol. 1992;44:205–14.CrossRefPubMed
17.
go back to reference Magesh S, Chen Y, Hu L. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents. Med Res Rev. 2012;32:687–726.CrossRefPubMedPubMedCentral Magesh S, Chen Y, Hu L. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents. Med Res Rev. 2012;32:687–726.CrossRefPubMedPubMedCentral
18.
go back to reference Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999;13:76–86.CrossRefPubMedPubMedCentral Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999;13:76–86.CrossRefPubMedPubMedCentral
19.
go back to reference McMahon M, Itoh K, Yamamoto M, Hayes JD. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem. 2003;278:21592–600.CrossRefPubMed McMahon M, Itoh K, Yamamoto M, Hayes JD. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem. 2003;278:21592–600.CrossRefPubMed
20.
go back to reference Zhang DD, Hannink M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol. 2003;23:8137–51.CrossRefPubMedPubMedCentral Zhang DD, Hannink M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol. 2003;23:8137–51.CrossRefPubMedPubMedCentral
21.
go back to reference Gupta SC, Hevia D, Patchva S, Park B, Koh W, Aggarwal BB. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal. 2012;16:1295–322.CrossRefPubMedPubMedCentral Gupta SC, Hevia D, Patchva S, Park B, Koh W, Aggarwal BB. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal. 2012;16:1295–322.CrossRefPubMedPubMedCentral
22.
go back to reference Jiang Z-Y, Lu M-C, Xu LL, Yang T-T, Xi M-Y, Xu X-L, Guo X-K, Zhang X-J, You Q-D, Sun H-P. Discovery of potent Keap1-Nrf2 protein-protein interaction inhibitor based on molecular binding determinants analysis. J Med Chem. 2014;57:2736–45.CrossRefPubMed Jiang Z-Y, Lu M-C, Xu LL, Yang T-T, Xi M-Y, Xu X-L, Guo X-K, Zhang X-J, You Q-D, Sun H-P. Discovery of potent Keap1-Nrf2 protein-protein interaction inhibitor based on molecular binding determinants analysis. J Med Chem. 2014;57:2736–45.CrossRefPubMed
23.
go back to reference Probst BL, Trevino I, McCauley L, Bumeister R, Dulubova I, Wigley WC, Ferguson DA. RTA 408, a novel synthetic triterpenoid with broad anticancer and anti-inflammatory activity. PLoS One. 2015;10:e0122942.CrossRefPubMedPubMedCentral Probst BL, Trevino I, McCauley L, Bumeister R, Dulubova I, Wigley WC, Ferguson DA. RTA 408, a novel synthetic triterpenoid with broad anticancer and anti-inflammatory activity. PLoS One. 2015;10:e0122942.CrossRefPubMedPubMedCentral
24.
go back to reference Lee S-Y, Lim T-G, Chen H, Jung SK, Lee H-J, Lee M-H, Kim DJ, Shin A, Lee KW, Bode AM, Surh Y-J, Dong Z. Esculetin suppresses proliferation of human colon cancer cells by directly targeting β-catenin. Cancer Prev Res (Phila). 2013;6:1356–64.CrossRef Lee S-Y, Lim T-G, Chen H, Jung SK, Lee H-J, Lee M-H, Kim DJ, Shin A, Lee KW, Bode AM, Surh Y-J, Dong Z. Esculetin suppresses proliferation of human colon cancer cells by directly targeting β-catenin. Cancer Prev Res (Phila). 2013;6:1356–64.CrossRef
25.
go back to reference Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.CrossRefPubMed Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.CrossRefPubMed
26.
go back to reference Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.CrossRefPubMed Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.CrossRefPubMed
27.
go back to reference Cohen R, Neuzillet C, Tijeras-Raballand A, Faivre S, de Gramont A, Raymond E. Targeting cancer cell metabolism in pancreatic adenocarcinoma. Oncotarget. 2015;19:16832–47.CrossRef Cohen R, Neuzillet C, Tijeras-Raballand A, Faivre S, de Gramont A, Raymond E. Targeting cancer cell metabolism in pancreatic adenocarcinoma. Oncotarget. 2015;19:16832–47.CrossRef
28.
go back to reference Park S-S, Park S-K, Lim J-H, Choi YH, Kim W-J, Moon S-K. Esculetin inhibits cell proliferation through the Ras/ERK1/2 pathway in human colon cancer cells. Oncol Rep. 2011;25:223–30.PubMed Park S-S, Park S-K, Lim J-H, Choi YH, Kim W-J, Moon S-K. Esculetin inhibits cell proliferation through the Ras/ERK1/2 pathway in human colon cancer cells. Oncol Rep. 2011;25:223–30.PubMed
29.
go back to reference Yun E-S, Park S-S, Shin H-C, Choi YH, Kim W-J, Moon S-K. p38 MAPK activation is required for esculetin-induced inhibition of vascular smooth muscle cells proliferation. Toxicol In Vitro. 2011;25:1335–42.CrossRefPubMed Yun E-S, Park S-S, Shin H-C, Choi YH, Kim W-J, Moon S-K. p38 MAPK activation is required for esculetin-induced inhibition of vascular smooth muscle cells proliferation. Toxicol In Vitro. 2011;25:1335–42.CrossRefPubMed
30.
go back to reference Lee JK, Edderkaoui M, Truong P, Ohno I, Jang K-T, Berti A, Pandol SJ, Gukovskaya AS. NADPH oxidase promotes pancreatic cancer cell survival via inhibiting JAK2 dephosphorylation by tyrosine phosphatases. Gastroenterology. 2007;133:1637–48.CrossRefPubMed Lee JK, Edderkaoui M, Truong P, Ohno I, Jang K-T, Berti A, Pandol SJ, Gukovskaya AS. NADPH oxidase promotes pancreatic cancer cell survival via inhibiting JAK2 dephosphorylation by tyrosine phosphatases. Gastroenterology. 2007;133:1637–48.CrossRefPubMed
31.
go back to reference Ruiz-Ramos R, Lopez-Carrillo L, Rios-Perez AD, De Vizcaya-Ruíz A, Cebrian ME. Sodium arsenite induces ROS generation, DNA oxidative damage, HO-1 and c-Myc proteins, NF-kappaB activation and cell proliferation in human breast cancer MCF-7 cells. Mutat Res. 2009;674:109–15.CrossRefPubMed Ruiz-Ramos R, Lopez-Carrillo L, Rios-Perez AD, De Vizcaya-Ruíz A, Cebrian ME. Sodium arsenite induces ROS generation, DNA oxidative damage, HO-1 and c-Myc proteins, NF-kappaB activation and cell proliferation in human breast cancer MCF-7 cells. Mutat Res. 2009;674:109–15.CrossRefPubMed
32.
go back to reference Shishodia S, Amin HM, Lai R, Aggarwal BB. Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem Pharmacol. 2005;70:700–13.CrossRefPubMed Shishodia S, Amin HM, Lai R, Aggarwal BB. Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem Pharmacol. 2005;70:700–13.CrossRefPubMed
33.
go back to reference Kaltschmidt B, Kaltschmidt C, Hehner SP, Dröge W, Schmitz ML. Repression of NF-kappaB impairs HeLa cell proliferation by functional interference with cell cycle checkpoint regulators. Oncogene. 1999;18:3213–25.CrossRefPubMed Kaltschmidt B, Kaltschmidt C, Hehner SP, Dröge W, Schmitz ML. Repression of NF-kappaB impairs HeLa cell proliferation by functional interference with cell cycle checkpoint regulators. Oncogene. 1999;18:3213–25.CrossRefPubMed
34.
go back to reference Das L, Vinayak M. Anti-carcinogenic action of curcumin by activation of antioxidant defence system and inhibition of NF-κB signalling in lymphoma-bearing mice. Biosci Rep. 2012;32:161–70.CrossRefPubMed Das L, Vinayak M. Anti-carcinogenic action of curcumin by activation of antioxidant defence system and inhibition of NF-κB signalling in lymphoma-bearing mice. Biosci Rep. 2012;32:161–70.CrossRefPubMed
35.
go back to reference Martín V, Herrera F, García-Santos G, Antolín I, Rodriguez-Blanco J, Rodriguez C. Signaling pathways involved in antioxidant control of glioma cell proliferation. Free Radic Biol Med. 2007;42:1715–22.CrossRefPubMed Martín V, Herrera F, García-Santos G, Antolín I, Rodriguez-Blanco J, Rodriguez C. Signaling pathways involved in antioxidant control of glioma cell proliferation. Free Radic Biol Med. 2007;42:1715–22.CrossRefPubMed
36.
go back to reference Ma Q, Kinneer K, Ye J, Chen BJ. Inhibition of nuclear factor kappaB by phenolic antioxidants: interplay between antioxidant signaling and inflammatory cytokine expression. Mol Pharmacol. 2003;64:211–9.CrossRefPubMed Ma Q, Kinneer K, Ye J, Chen BJ. Inhibition of nuclear factor kappaB by phenolic antioxidants: interplay between antioxidant signaling and inflammatory cytokine expression. Mol Pharmacol. 2003;64:211–9.CrossRefPubMed
37.
go back to reference Cuadrado A, Martín-Moldes Z, Ye J, Lastres-Becker I. Transcription factors NRF2 and NF-κB are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation. J Biol Chem. 2014;289:15244–58.CrossRefPubMedPubMedCentral Cuadrado A, Martín-Moldes Z, Ye J, Lastres-Becker I. Transcription factors NRF2 and NF-κB are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation. J Biol Chem. 2014;289:15244–58.CrossRefPubMedPubMedCentral
38.
go back to reference Hu M-L. Dietary polyphenols as antioxidants and anticancer agents: more questions than answers. Chang Gung Med J. 2011;34:449–60.PubMed Hu M-L. Dietary polyphenols as antioxidants and anticancer agents: more questions than answers. Chang Gung Med J. 2011;34:449–60.PubMed
39.
go back to reference Nair S, Doh ST, Chan JY, Kong A-N, Cai L. Regulatory potential for concerted modulation of Nrf2- and Nfkb1-mediated gene expression in inflammation and carcinogenesis. Br J Cancer. 2008;99:2070–82.CrossRefPubMedPubMedCentral Nair S, Doh ST, Chan JY, Kong A-N, Cai L. Regulatory potential for concerted modulation of Nrf2- and Nfkb1-mediated gene expression in inflammation and carcinogenesis. Br J Cancer. 2008;99:2070–82.CrossRefPubMedPubMedCentral
40.
go back to reference Li W, Khor TO, Xu C, Shen G, Jeong W-S, Yu S, Kong A-N. Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem Pharmacol. 2008;76:1485–9.CrossRefPubMedPubMedCentral Li W, Khor TO, Xu C, Shen G, Jeong W-S, Yu S, Kong A-N. Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem Pharmacol. 2008;76:1485–9.CrossRefPubMedPubMedCentral
41.
go back to reference Kwak MK, Kensler TW. Targeting NRF2 signaling for cancer chemoprevention. Toxicol Appl Pharmacol. 2010;244:66–76.CrossRefPubMed Kwak MK, Kensler TW. Targeting NRF2 signaling for cancer chemoprevention. Toxicol Appl Pharmacol. 2010;244:66–76.CrossRefPubMed
42.
go back to reference Keum YS, Choi BY. Molecular and chemical regulation of the keap1-Nrf2 signaling pathway. Molecules. 2014;19:10074–89.CrossRefPubMed Keum YS, Choi BY. Molecular and chemical regulation of the keap1-Nrf2 signaling pathway. Molecules. 2014;19:10074–89.CrossRefPubMed
43.
go back to reference Lister A, Nedjadi T, Kitteringham NR, Campbell F, Costello E, Lloyd B, Copple IM, Williams S, Owen A, Neoptolemos JP, Goldring CE, Park BK. Nrf2 is overexpressed in pancreatic cancer: implications for cell proliferation and therapy. Mol Cancer. 2011;10:37.CrossRefPubMedPubMedCentral Lister A, Nedjadi T, Kitteringham NR, Campbell F, Costello E, Lloyd B, Copple IM, Williams S, Owen A, Neoptolemos JP, Goldring CE, Park BK. Nrf2 is overexpressed in pancreatic cancer: implications for cell proliferation and therapy. Mol Cancer. 2011;10:37.CrossRefPubMedPubMedCentral
44.
go back to reference Kansanen E, Kuosmanen SM, Leinonen H, Levonenn AL. The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol. 2013;1:45–9.CrossRefPubMedPubMedCentral Kansanen E, Kuosmanen SM, Leinonen H, Levonenn AL. The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol. 2013;1:45–9.CrossRefPubMedPubMedCentral
45.
go back to reference Furfaro AL, Traverso N, Domenicotti C, Piras S, Moretta L, Marinari UM, Pronzato MA, Nitti M. The Nrf2 / HO-1 Axis in cancer cell growth and chemoresistance. Oxid Med Cell Longev. 2015;2016:1958174.PubMedPubMedCentral Furfaro AL, Traverso N, Domenicotti C, Piras S, Moretta L, Marinari UM, Pronzato MA, Nitti M. The Nrf2 / HO-1 Axis in cancer cell growth and chemoresistance. Oxid Med Cell Longev. 2015;2016:1958174.PubMedPubMedCentral
46.
go back to reference Hur W, Gray NS. Small molecule modulators of antioxidant response pathway. Curr Opin Chem Biol. 2011;15:162–73.CrossRefPubMed Hur W, Gray NS. Small molecule modulators of antioxidant response pathway. Curr Opin Chem Biol. 2011;15:162–73.CrossRefPubMed
47.
go back to reference Marcotte D, Zeng W, Hus JC, McKenzie A, Hession C, Jin P, Bergeron C, Lugovskoy A, Enyedy I, Cuervo H, Wang D, Atmanene C, Roecklin D, Vecchi M, Vivat V, Kraemer J, Winkler D, Hong V, Chao J, Lukashev M, Silvian L. Small molecules inhibit the interaction of Nrf2 and the Keap1 Kelch domain through a non-covalent mechanism. Bioorg Med Chem. 2013;21:4011–9.CrossRefPubMed Marcotte D, Zeng W, Hus JC, McKenzie A, Hession C, Jin P, Bergeron C, Lugovskoy A, Enyedy I, Cuervo H, Wang D, Atmanene C, Roecklin D, Vecchi M, Vivat V, Kraemer J, Winkler D, Hong V, Chao J, Lukashev M, Silvian L. Small molecules inhibit the interaction of Nrf2 and the Keap1 Kelch domain through a non-covalent mechanism. Bioorg Med Chem. 2013;21:4011–9.CrossRefPubMed
48.
go back to reference Loboda A, Rojczyk-Golebiewska E, Bednarczyk-Cwynar B, Zaprutko L, Jozkowicz A, Dulak J. Targeting Nrf2-mediated gene transcription by triterpenoids and their derivatives. Biomol Ther. 2012;20:499–505.CrossRef Loboda A, Rojczyk-Golebiewska E, Bednarczyk-Cwynar B, Zaprutko L, Jozkowicz A, Dulak J. Targeting Nrf2-mediated gene transcription by triterpenoids and their derivatives. Biomol Ther. 2012;20:499–505.CrossRef
49.
go back to reference Saw C, Wu Q, Kong A-NT, Gillis C, Yue P, Mak N, Cheng Y, Leung K, Ng T, Fan D, Yeung H, Wong R, Helms S, Saita T, Katano M, Matsunaga H, Kouno I, Fujito H, Mori M, Matsunaga H, Saita T, Nagumo F, Mori M, Katano M, Yun T, Li W, Kong A, Gum S, Jo S, Ahn S, et al. Anti-cancer and potential chemopreventive actions of ginseng by activating Nrf2 (NFE2L2) anti-oxidative stress/anti-inflammatory pathways. Chin Med. 2010;5:37.CrossRefPubMedPubMedCentral Saw C, Wu Q, Kong A-NT, Gillis C, Yue P, Mak N, Cheng Y, Leung K, Ng T, Fan D, Yeung H, Wong R, Helms S, Saita T, Katano M, Matsunaga H, Kouno I, Fujito H, Mori M, Matsunaga H, Saita T, Nagumo F, Mori M, Katano M, Yun T, Li W, Kong A, Gum S, Jo S, Ahn S, et al. Anti-cancer and potential chemopreventive actions of ginseng by activating Nrf2 (NFE2L2) anti-oxidative stress/anti-inflammatory pathways. Chin Med. 2010;5:37.CrossRefPubMedPubMedCentral
50.
go back to reference Wang Y-Y, Zhou G-B, Yin T, Chen B, Shi J-Y, Liang W-X, Jin X-L, You J-H, Yang G, Shen Z-X, Chen J, Xiong S-M, Chen G-Q, Xu F, Liu Y-W, Chen Z, Chen S-J. AML1-ETO and C-KIT mutation/overexpression in t(8;21) leukemia: implication in stepwise leukemogenesis and response to Gleevec. Proc Natl Acad Sci U S A. 2005;102:1104–9.CrossRefPubMedPubMedCentral Wang Y-Y, Zhou G-B, Yin T, Chen B, Shi J-Y, Liang W-X, Jin X-L, You J-H, Yang G, Shen Z-X, Chen J, Xiong S-M, Chen G-Q, Xu F, Liu Y-W, Chen Z, Chen S-J. AML1-ETO and C-KIT mutation/overexpression in t(8;21) leukemia: implication in stepwise leukemogenesis and response to Gleevec. Proc Natl Acad Sci U S A. 2005;102:1104–9.CrossRefPubMedPubMedCentral
51.
go back to reference Tong Y-H, Zhang B, Fan Y, Lin N-M. Keap1–Nrf2 pathway: A promising target towards lung cancer prevention and therapeutics. Chron Dis Transl Med. 2015;1:175–86. Tong Y-H, Zhang B, Fan Y, Lin N-M. Keap1–Nrf2 pathway: A promising target towards lung cancer prevention and therapeutics. Chron Dis Transl Med. 2015;1:175–86.
53.
go back to reference NAIR S, LI W, KONG A-NT. Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells. Acta Pharmacol Sin. 2007;28:459–72.CrossRefPubMed NAIR S, LI W, KONG A-NT. Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells. Acta Pharmacol Sin. 2007;28:459–72.CrossRefPubMed
54.
go back to reference Wang Y-Y, Zhe H, Zhao R, Hanahan D, Weinberg R, Hanahan D, Weinberg R, Patlolla J, Rao C, Petronelli A, Pannitteri G, Testa U, Liby K, Sporn M, Yadav V, Prasad S, Sung B, Kannappan R, Aggarwal B, Liby K, Yore M, Sporn M, Ovesná Z, Vachálková A, Horváthová K, Tóthová D, Bishayee A, Ahmed S, Brankov N, Perloff M, et al. Preclinical evidences toward the use of triterpenoid CDDO-Me for solid cancer prevention and treatment. Mol Cancer. 2014;13:30.CrossRefPubMedPubMedCentral Wang Y-Y, Zhe H, Zhao R, Hanahan D, Weinberg R, Hanahan D, Weinberg R, Patlolla J, Rao C, Petronelli A, Pannitteri G, Testa U, Liby K, Sporn M, Yadav V, Prasad S, Sung B, Kannappan R, Aggarwal B, Liby K, Yore M, Sporn M, Ovesná Z, Vachálková A, Horváthová K, Tóthová D, Bishayee A, Ahmed S, Brankov N, Perloff M, et al. Preclinical evidences toward the use of triterpenoid CDDO-Me for solid cancer prevention and treatment. Mol Cancer. 2014;13:30.CrossRefPubMedPubMedCentral
56.
go back to reference Tong KI, Katoh Y, Kusunoki H, Itoh K, Tanaka T, Yamamoto M. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol Cell Biol. 2006;26:2887–900.CrossRefPubMedPubMedCentral Tong KI, Katoh Y, Kusunoki H, Itoh K, Tanaka T, Yamamoto M. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol Cell Biol. 2006;26:2887–900.CrossRefPubMedPubMedCentral
57.
go back to reference Lo S-C, Li X, Henzl MT, Beamer LJ, Hannink M. Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling. EMBO J. 2006;25:3605–17.CrossRefPubMedPubMedCentral Lo S-C, Li X, Henzl MT, Beamer LJ, Hannink M. Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling. EMBO J. 2006;25:3605–17.CrossRefPubMedPubMedCentral
Metadata
Title
Esculetin induces antiproliferative and apoptotic response in pancreatic cancer cells by directly binding to KEAP1
Authors
Rashi Arora
Sharad Sawney
Vikas Saini
Chris Steffi
Manisha Tiwari
Daman Saluja
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2016
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-016-0550-2

Other articles of this Issue 1/2016

Molecular Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine