Skip to main content
Top
Published in: Malaria Journal 1/2021

Open Access 01-12-2021 | Malaria | Research

Concomitant experimental coinfection by Plasmodium berghei NK65-NY and Ascaris suum downregulates the Ascaris-specific immune response and potentiates Ascaris-associated lung pathology

Authors: Flaviane Vieira-Santos, Thaís Leal-Silva, Luiza de Lima Silva Padrão, Ana Cristina Loiola Ruas, Denise Silva Nogueira, Lucas Kraemer, Fabrício Marcus Silva Oliveira, Marcelo Vidigal Caliari, Remo Castro Russo, Ricardo Toshio Fujiwara, Lilian Lacerda Bueno

Published in: Malaria Journal | Issue 1/2021

Login to get access

Abstract

Background

Ascariasis and malaria are highly prevalent parasitic diseases in tropical regions and often have overlapping endemic areas, contributing to high morbidity and mortality rates in areas with poor sanitary conditions. Several studies have previously aimed to correlate the effects of Ascaris-Plasmodium coinfections but have obtained contradictory and inconclusive results. Therefore, the present study aimed to investigate parasitological and immunopathological aspects of the lung during murine experimental concomitant coinfection by Plasmodium berghei and Ascaris suum during larvae ascariasis.

Methods

C57BL/6J mice were inoculated with 1 × 104 P. berghei strain NK65-NY-infected red blood cells (iRBCs) intraperitoneally and/or 2500 embryonated eggs of A. suum by oral gavage. P. berghei parasitaemia, morbidity and the survival rate were assessed. On the seventh day postinfection (dpi), A. suum lung burden analysis; bronchoalveolar lavage (BAL); histopathology; NAG, MPO and EPO activity measurements; haematological analysis; and respiratory mechanics analysis were performed. The concentrations of interleukin (IL)-1β, IL-12/IL-23p40, IL-6, IL-4, IL-33, IL-13, IL-5, IL-10, IL-17A, IFN-γ, TNF and TGF-β were assayed by sandwich ELISA.

Results

Animals coinfected with P. berghei and A. suum show decreased production of type 1, 2, and 17 and regulatory cytokines; low leukocyte recruitment in the tissue; increased cellularity in the circulation; and low levels of NAG, MPO and EPO activity that lead to an increase in larvae migration, as shown by the decrease in larvae recovered in the lung parenchyma and increase in larvae recovered in the airway. This situation leads to severe airway haemorrhage and, consequently, an impairment respiratory function that leads to high morbidity and early mortality.

Conclusions

This study demonstrates that the Ascaris-Plasmodium interaction is harmful to the host and suggests that this coinfection may potentiate Ascaris-associated pathology by dampening the Ascaris-specific immune response, resulting in the early death of affected animals.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet. 2006;367:1521–32.PubMedCrossRef Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet. 2006;367:1521–32.PubMedCrossRef
2.
go back to reference Brooker S. Estimating the global distribution and disease burden of intestinal nematode infections: adding up the numbers – A review. Int J Parasitol. 2011;40:1137–44.CrossRef Brooker S. Estimating the global distribution and disease burden of intestinal nematode infections: adding up the numbers – A review. Int J Parasitol. 2011;40:1137–44.CrossRef
3.
go back to reference Mwangi TW, Bethony JM, Brooker S. Malaria and helminth interactions in humans: an epidemiological viewpoint. Ann Trop Med Parasitol. 2006;100:551–70.PubMedCrossRef Mwangi TW, Bethony JM, Brooker S. Malaria and helminth interactions in humans: an epidemiological viewpoint. Ann Trop Med Parasitol. 2006;100:551–70.PubMedCrossRef
6.
go back to reference Osakunor DNM, Sengeh DM, Mutapi F. Coinfections and comorbidities in African health systems: at the interface of infectious and noninfectious diseases. PLoS Negl Trop Dis. 2018;12:e0006711.PubMedPubMedCentralCrossRef Osakunor DNM, Sengeh DM, Mutapi F. Coinfections and comorbidities in African health systems: at the interface of infectious and noninfectious diseases. PLoS Negl Trop Dis. 2018;12:e0006711.PubMedPubMedCentralCrossRef
7.
go back to reference Hotez PJ, Kamath A. Neglected tropical diseases in sub-Saharan Africa: review of their prevalence, distribution, and disease burden. PLoS Negl Trop Dis. 2009;3:e412.PubMedPubMedCentralCrossRef Hotez PJ, Kamath A. Neglected tropical diseases in sub-Saharan Africa: review of their prevalence, distribution, and disease burden. PLoS Negl Trop Dis. 2009;3:e412.PubMedPubMedCentralCrossRef
8.
go back to reference Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit Vectors. 2014;7:37.PubMedPubMedCentralCrossRef Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit Vectors. 2014;7:37.PubMedPubMedCentralCrossRef
9.
go back to reference Hotez P. Enlarging the “Audacious Goal”: elimination of the world’s high prevalence neglected tropical diseases. Vaccine. 2011;29:D104–10.PubMedCrossRef Hotez P. Enlarging the “Audacious Goal”: elimination of the world’s high prevalence neglected tropical diseases. Vaccine. 2011;29:D104–10.PubMedCrossRef
10.
go back to reference Hotez PJ, Alvarado M, Basáñez MG, Bolliger I, Bourne R, Boussinesq M, et al. The Global Burden of Disease Study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl Trop Dis. 2014;8:e2865.PubMedPubMedCentralCrossRef Hotez PJ, Alvarado M, Basáñez MG, Bolliger I, Bourne R, Boussinesq M, et al. The Global Burden of Disease Study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl Trop Dis. 2014;8:e2865.PubMedPubMedCentralCrossRef
14.
go back to reference King CL, Kumaraswami V, Poindexter RW, Kumari S, Jayaraman K, Alling DW, et al. Immunologic tolerance in lymphatic filariasis diminished parasite-specific T and B lymphocyte precursor frequency in the microfilaremic state. J Clin Invest. 1992;89:1403–10.PubMedPubMedCentralCrossRef King CL, Kumaraswami V, Poindexter RW, Kumari S, Jayaraman K, Alling DW, et al. Immunologic tolerance in lymphatic filariasis diminished parasite-specific T and B lymphocyte precursor frequency in the microfilaremic state. J Clin Invest. 1992;89:1403–10.PubMedPubMedCentralCrossRef
15.
go back to reference Gazzinelli-Guimarães PH, de Freitas LFD, Gazzinelli-Guimarães AC, Coelho F, Barbosa FS, Nogueira D, et al. Concomitant helminth infection downmodulates the Vaccinia virus-specific immune response and potentiates virus-associated pathology. Int J Parasitol. 2017;47:1–10.PubMedCrossRef Gazzinelli-Guimarães PH, de Freitas LFD, Gazzinelli-Guimarães AC, Coelho F, Barbosa FS, Nogueira D, et al. Concomitant helminth infection downmodulates the Vaccinia virus-specific immune response and potentiates virus-associated pathology. Int J Parasitol. 2017;47:1–10.PubMedCrossRef
16.
go back to reference Daniłowicz-Luebert E, O’Regan NL, Steinfelder S, Hartmann S. Modulation of specific and allergy-related immune responses by helminths. J Biomed Biotechnol. 2011;2011:821578.PubMedPubMedCentralCrossRef Daniłowicz-Luebert E, O’Regan NL, Steinfelder S, Hartmann S. Modulation of specific and allergy-related immune responses by helminths. J Biomed Biotechnol. 2011;2011:821578.PubMedPubMedCentralCrossRef
17.
go back to reference Smits HH, Yazdanbakhsh M. Chronic helminth infections modulate allergen-specific immune responses: protection against development of allergic disorders? Ann Med. 2007;39:428–39.PubMedCrossRef Smits HH, Yazdanbakhsh M. Chronic helminth infections modulate allergen-specific immune responses: protection against development of allergic disorders? Ann Med. 2007;39:428–39.PubMedCrossRef
18.
go back to reference Sabin EA, Araujo MI, Carvalho EM, Pearce EJ. Impairment of tetanus toxoid-specific Th1-like immune responses in humans infected with Schistosoma mansoni. J Infect Dis. 1996;173:269–72.PubMedCrossRef Sabin EA, Araujo MI, Carvalho EM, Pearce EJ. Impairment of tetanus toxoid-specific Th1-like immune responses in humans infected with Schistosoma mansoni. J Infect Dis. 1996;173:269–72.PubMedCrossRef
19.
go back to reference Cooper PJ, Espinel I, Paredes W, Guderian RH, Nutman TB. Impaired tetanus-specific cellular and humoral responses following tetanus vaccination in human onchocerciasis: a possible role for interleukin-10. J Infect Dis. 1998;178:1133–8.PubMedCrossRef Cooper PJ, Espinel I, Paredes W, Guderian RH, Nutman TB. Impaired tetanus-specific cellular and humoral responses following tetanus vaccination in human onchocerciasis: a possible role for interleukin-10. J Infect Dis. 1998;178:1133–8.PubMedCrossRef
20.
go back to reference Palmer DR, Hall A, Haque R, Anwar KS. Antibody isotype responses to antigens of Ascaris lumbricoides in a case-control study of persistently heavily infected Bangladeshi children. Parasitology. 1995;111:385–93.PubMedCrossRef Palmer DR, Hall A, Haque R, Anwar KS. Antibody isotype responses to antigens of Ascaris lumbricoides in a case-control study of persistently heavily infected Bangladeshi children. Parasitology. 1995;111:385–93.PubMedCrossRef
21.
go back to reference Cooper PJ, Chico ME, Sandoval C, Espinel I, Guevara A, Kennedy MW, et al. Human infection with Ascaris lumbricoides is associated with a polarized cytokine response. J Infect Dis. 2000;182:1207–13.PubMedCrossRef Cooper PJ, Chico ME, Sandoval C, Espinel I, Guevara A, Kennedy MW, et al. Human infection with Ascaris lumbricoides is associated with a polarized cytokine response. J Infect Dis. 2000;182:1207–13.PubMedCrossRef
22.
go back to reference Geiger SM, Massara CL, Bethony J, Soboslay PT, Carvalho OS, Corrêa-Oliveira R. Cellular responses and cytokine profiles in Ascaris lumbricoides and Trichuris trichiura infected patients. Parasite Immunol. 2002;24:499–509.PubMedCrossRef Geiger SM, Massara CL, Bethony J, Soboslay PT, Carvalho OS, Corrêa-Oliveira R. Cellular responses and cytokine profiles in Ascaris lumbricoides and Trichuris trichiura infected patients. Parasite Immunol. 2002;24:499–509.PubMedCrossRef
23.
go back to reference Bradley JE, Jackson JA. Immunity, immunoregulation and the ecology of trichuriasis and ascariasis. Parasite Immunol. 2004;26:429–41.PubMedCrossRef Bradley JE, Jackson JA. Immunity, immunoregulation and the ecology of trichuriasis and ascariasis. Parasite Immunol. 2004;26:429–41.PubMedCrossRef
24.
go back to reference Cortés A, Muñoz-Antoli C, Esteban JG, Toledo R. Th2 and Th1 responses: clear and hidden sides of immunity against intestinal helminths. Trends Parasitol. 2017;33:678–93.PubMedCrossRef Cortés A, Muñoz-Antoli C, Esteban JG, Toledo R. Th2 and Th1 responses: clear and hidden sides of immunity against intestinal helminths. Trends Parasitol. 2017;33:678–93.PubMedCrossRef
25.
go back to reference Geiger SM, Caldas IR, Mc Glone BE, Campi-Azevedo AC, De Oliveira LM, Brooker S, et al. Stage-specific immune responses in human Necator americanus infection. Parasite Immunol. 2007;29:347–58.PubMedPubMedCentralCrossRef Geiger SM, Caldas IR, Mc Glone BE, Campi-Azevedo AC, De Oliveira LM, Brooker S, et al. Stage-specific immune responses in human Necator americanus infection. Parasite Immunol. 2007;29:347–58.PubMedPubMedCentralCrossRef
26.
go back to reference Gazzinelli-Guimarães PH, Gazzinelli-Guimarães AC, Silva FN, Mati VLT, de Dhom-Lemos LC, Barbosa FS, et al. Parasitological and immunological aspects of early Ascaris spp. infection in mice. Int J Parasitol. 2013;43:697–706.PubMedCrossRef Gazzinelli-Guimarães PH, Gazzinelli-Guimarães AC, Silva FN, Mati VLT, de Dhom-Lemos LC, Barbosa FS, et al. Parasitological and immunological aspects of early Ascaris spp. infection in mice. Int J Parasitol. 2013;43:697–706.PubMedCrossRef
27.
go back to reference Artavanis-Tsakonas K, Riley EM. Innate immune response to malaria: rapid induction of IFN-γ from human NK cells by live Plasmodium falciparum-infected erythrocytes. J Immunol. 2002;169:2956–63.PubMedCrossRef Artavanis-Tsakonas K, Riley EM. Innate immune response to malaria: rapid induction of IFN-γ from human NK cells by live Plasmodium falciparum-infected erythrocytes. J Immunol. 2002;169:2956–63.PubMedCrossRef
28.
go back to reference Phillips MA, Burrows JN, Manyando C, Van Huijsduijnen RH, Van Voorhis WC, Wells TNC. Malaria. Nat Rev Dis Prim. 2017;3:17050.PubMedCrossRef Phillips MA, Burrows JN, Manyando C, Van Huijsduijnen RH, Van Voorhis WC, Wells TNC. Malaria. Nat Rev Dis Prim. 2017;3:17050.PubMedCrossRef
29.
go back to reference WHO Global Malaria Programme. World malaria report 2019. Geneva: World Health Organization; 2019. WHO Global Malaria Programme. World malaria report 2019. Geneva: World Health Organization; 2019.
30.
go back to reference Van den Steen PE, Deroost K, Deckers J, Van Herck E, Struyf S, Opdenakker G. Pathogenesis of malaria-associated acute respiratory distress syndrome. Trends Parasitol. 2013;29:346–58.PubMedCrossRef Van den Steen PE, Deroost K, Deckers J, Van Herck E, Struyf S, Opdenakker G. Pathogenesis of malaria-associated acute respiratory distress syndrome. Trends Parasitol. 2013;29:346–58.PubMedCrossRef
31.
go back to reference Deroost K, Tyberghein A, Lays N, Noppen S, Schwarzer E, Vanstreels E, et al. Hemozoin induces lung inflammation and correlates with malaria-associated acute respiratory distress syndrome. Am J Respir Cell Mol Biol. 2013;48:589–600.PubMedCrossRef Deroost K, Tyberghein A, Lays N, Noppen S, Schwarzer E, Vanstreels E, et al. Hemozoin induces lung inflammation and correlates with malaria-associated acute respiratory distress syndrome. Am J Respir Cell Mol Biol. 2013;48:589–600.PubMedCrossRef
32.
go back to reference Taylor WRJ, Hanson J, Turner GDH, White NJ, Dondorp AM. Respiratory manifestations of malaria. Chest. 2012;142:492–505.PubMedCrossRef Taylor WRJ, Hanson J, Turner GDH, White NJ, Dondorp AM. Respiratory manifestations of malaria. Chest. 2012;142:492–505.PubMedCrossRef
33.
go back to reference Matthay MA, Zemans RL. The acute respiratory distress syndrome: pathogenesis and treatment. Annu Rev Pathol Mech Dis. 2011;6:147–63.CrossRef Matthay MA, Zemans RL. The acute respiratory distress syndrome: pathogenesis and treatment. Annu Rev Pathol Mech Dis. 2011;6:147–63.CrossRef
34.
35.
go back to reference Brooker S, Akhwale W, Pullan R, Estambale B, Clarke SE, Snow RW, et al. Epidemiology of Plasmodium-helminth co-infection in Africa: populations at risk, potential impact on anemia, and prospects for combining control. Am J Trop Med Hyg. 2007;77:88–98.PubMedCrossRef Brooker S, Akhwale W, Pullan R, Estambale B, Clarke SE, Snow RW, et al. Epidemiology of Plasmodium-helminth co-infection in Africa: populations at risk, potential impact on anemia, and prospects for combining control. Am J Trop Med Hyg. 2007;77:88–98.PubMedCrossRef
36.
go back to reference Nogueira DS, Gazzinelli-Guimarães PH, Barbosa FS, Resende NM, Silva CC, de Oliveira LM, et al. Multiple exposures to Ascaris suum induce tissue injury and mixed Th2/Th17 immune response in mice. PLoS Negl Trop Dis. 2016;10:e0004382.PubMedPubMedCentralCrossRef Nogueira DS, Gazzinelli-Guimarães PH, Barbosa FS, Resende NM, Silva CC, de Oliveira LM, et al. Multiple exposures to Ascaris suum induce tissue injury and mixed Th2/Th17 immune response in mice. PLoS Negl Trop Dis. 2016;10:e0004382.PubMedPubMedCentralCrossRef
37.
go back to reference Craig AG, Grau GE, Janse C, Kazura JW, Milner D, Barnwell JW, et al. The role of animal models for research on severe malaria. PLoS Pathog. 2012;8:e1002401.PubMedPubMedCentralCrossRef Craig AG, Grau GE, Janse C, Kazura JW, Milner D, Barnwell JW, et al. The role of animal models for research on severe malaria. PLoS Pathog. 2012;8:e1002401.PubMedPubMedCentralCrossRef
38.
go back to reference Scaccabarozzi D, Deroost K, Lays N, Salè FO, Van Den Steen PE, Taramelli D. Altered lipid composition of surfactant and lung tissue in murine experimental malaria-associated acute respiratory distress syndrome. PLoS ONE. 2015;10:e0143195.PubMedPubMedCentralCrossRef Scaccabarozzi D, Deroost K, Lays N, Salè FO, Van Den Steen PE, Taramelli D. Altered lipid composition of surfactant and lung tissue in murine experimental malaria-associated acute respiratory distress syndrome. PLoS ONE. 2015;10:e0143195.PubMedPubMedCentralCrossRef
39.
go back to reference Lacerda-Queiroz N, Lima OCO, Carneiro CM, Vilela MC, Teixeira AL, Carvalho AT, et al. Plasmodium berghei NK65 induces cerebral leukocyte recruitment in vivo: an intravital microscopic study. Acta Trop. 2011;120:31–9.PubMedCrossRef Lacerda-Queiroz N, Lima OCO, Carneiro CM, Vilela MC, Teixeira AL, Carvalho AT, et al. Plasmodium berghei NK65 induces cerebral leukocyte recruitment in vivo: an intravital microscopic study. Acta Trop. 2011;120:31–9.PubMedCrossRef
40.
go back to reference Lewis R, Behnke JM, Stafford P, Holland CV. The development of a mouse model to explore resistance and susceptibility to early Ascaris suum infection. Parasitology. 2006;132:289–300.PubMedCrossRef Lewis R, Behnke JM, Stafford P, Holland CV. The development of a mouse model to explore resistance and susceptibility to early Ascaris suum infection. Parasitology. 2006;132:289–300.PubMedCrossRef
41.
go back to reference Oliveira FMS, da Paixão Matias PH, Kraemer L, Gazzinelli-Guimarães AC, Santos FV, Amorim CCO, et al. Comorbidity associated to Ascaris suum infection during pulmonary fibrosis exacerbates chronic lung and liver inflammation and dysfunction but not affect the parasite cycle in mice. PLoS Negl Trop Dis. 2019;13:e0007896.PubMedPubMedCentralCrossRef Oliveira FMS, da Paixão Matias PH, Kraemer L, Gazzinelli-Guimarães AC, Santos FV, Amorim CCO, et al. Comorbidity associated to Ascaris suum infection during pulmonary fibrosis exacerbates chronic lung and liver inflammation and dysfunction but not affect the parasite cycle in mice. PLoS Negl Trop Dis. 2019;13:e0007896.PubMedPubMedCentralCrossRef
42.
go back to reference Barcelos LS, Talvani A, Teixeira AS, Vieira LQ. Impaired inflammatory angiogenesis, but not leukocyte influx, in mice lacking TNFR1. J Leukoc Biol. 2005;78:352–8.PubMedCrossRef Barcelos LS, Talvani A, Teixeira AS, Vieira LQ. Impaired inflammatory angiogenesis, but not leukocyte influx, in mice lacking TNFR1. J Leukoc Biol. 2005;78:352–8.PubMedCrossRef
43.
go back to reference Horvat JC, Beagley KW, Wade MA, Preston JA, Hansbro NG, Hickey DK, et al. Neonatal chlamydial infection induces mixed T-cell responses that drive allergic airway disease. Am J Respir Crit Care Med. 2007;176:556–64.PubMedCrossRef Horvat JC, Beagley KW, Wade MA, Preston JA, Hansbro NG, Hickey DK, et al. Neonatal chlamydial infection induces mixed T-cell responses that drive allergic airway disease. Am J Respir Crit Care Med. 2007;176:556–64.PubMedCrossRef
44.
go back to reference Gazzinelli-Guimarães AC, Gazzinelli-Guimarães PH, Nogueira DS, Oliveira FMS, Barbosa FS, Amorim CCO, et al. IgG induced by vaccination with Ascaris suum extracts is protective against infection. Front Immunol. 2018;9:2535.PubMedPubMedCentralCrossRef Gazzinelli-Guimarães AC, Gazzinelli-Guimarães PH, Nogueira DS, Oliveira FMS, Barbosa FS, Amorim CCO, et al. IgG induced by vaccination with Ascaris suum extracts is protective against infection. Front Immunol. 2018;9:2535.PubMedPubMedCentralCrossRef
45.
go back to reference Gazzinelli-Guimaraes PH, De Queiroz PR, Ricciardi A, Bonne-Année S, Sciurba J, Karmele EP, et al. Allergen presensitization drives an eosinophil-dependent arrest in lung-specific helminth development. J Clin Invest. 2019;129:3686–701.PubMedPubMedCentralCrossRef Gazzinelli-Guimaraes PH, De Queiroz PR, Ricciardi A, Bonne-Année S, Sciurba J, Karmele EP, et al. Allergen presensitization drives an eosinophil-dependent arrest in lung-specific helminth development. J Clin Invest. 2019;129:3686–701.PubMedPubMedCentralCrossRef
46.
go back to reference Hartgers FC, Yazdanbakhsh M. Co-infection of helminths and malaria: modulation of the immune responses to malaria. Parasite Immunol. 2006;28:497–506.PubMedCrossRef Hartgers FC, Yazdanbakhsh M. Co-infection of helminths and malaria: modulation of the immune responses to malaria. Parasite Immunol. 2006;28:497–506.PubMedCrossRef
47.
go back to reference Marsh K, Snow RW. Host-parasite interaction and morbidity in malaria endemic areas. Philos Trans R Soc B Biol Sci. 1997;352:1385–94.CrossRef Marsh K, Snow RW. Host-parasite interaction and morbidity in malaria endemic areas. Philos Trans R Soc B Biol Sci. 1997;352:1385–94.CrossRef
49.
go back to reference Herrera IA, Meneses LT. Síndrome de Loeffler: Presentación de un caso. Cuad Del Hosp Clin. 2005;50:69–73. Herrera IA, Meneses LT. Síndrome de Loeffler: Presentación de un caso. Cuad Del Hosp Clin. 2005;50:69–73.
50.
go back to reference Chitkara RK, Krishna G. Parasitic pulmonary eosinophilia. Semin Respir Crit Care Med. 2006;27:171–84.PubMedCrossRef Chitkara RK, Krishna G. Parasitic pulmonary eosinophilia. Semin Respir Crit Care Med. 2006;27:171–84.PubMedCrossRef
52.
go back to reference Hoenigl M, Valentin T, Zollner-Schwetz I, Salzer HJF, Raggam RB, Strenger V, et al. Pulmonary ascariasis: two cases in Austria and review of the literature. Wien Klin Wochenschr. 2010;122:94–6.PubMedCrossRef Hoenigl M, Valentin T, Zollner-Schwetz I, Salzer HJF, Raggam RB, Strenger V, et al. Pulmonary ascariasis: two cases in Austria and review of the literature. Wien Klin Wochenschr. 2010;122:94–6.PubMedCrossRef
53.
go back to reference Slotved AH, Eriksen L, Murrell KD, Nansen P. In mice as a model for pigs. J Parasitol. 2015;84:16–8.CrossRef Slotved AH, Eriksen L, Murrell KD, Nansen P. In mice as a model for pigs. J Parasitol. 2015;84:16–8.CrossRef
54.
go back to reference Enobe CS, Araújo CA, Perini A, Martins MA, Macedo MS, Macedo-Soares MF. Early stages of Ascaris suum induce airway inflammation and hyperreactivity in a mouse model. Parasite Immunol. 2006;28:453–61.PubMedCrossRef Enobe CS, Araújo CA, Perini A, Martins MA, Macedo MS, Macedo-Soares MF. Early stages of Ascaris suum induce airway inflammation and hyperreactivity in a mouse model. Parasite Immunol. 2006;28:453–61.PubMedCrossRef
55.
go back to reference Lewis R, Behnke JM, Cassidy JP, Stafford P, Murray N, Holland CV. The migration of Ascaris suum larvae, and the associated pulmonary inflammatory response in susceptible C57BL/6j and resistant CBA/Ca mice. Parasitology. 2007;134:1301–14.PubMedCrossRef Lewis R, Behnke JM, Cassidy JP, Stafford P, Murray N, Holland CV. The migration of Ascaris suum larvae, and the associated pulmonary inflammatory response in susceptible C57BL/6j and resistant CBA/Ca mice. Parasitology. 2007;134:1301–14.PubMedCrossRef
56.
go back to reference Wang ML, Feng YH, Pang W, Qi ZM, Zhang Y, Guo YJ, et al. Parasite densities modulate susceptibility of mice to cerebral malaria during co-infection with Schistosoma japonicum and Plasmodium berghei. Malar J. 2014;13:116.PubMedPubMedCentralCrossRef Wang ML, Feng YH, Pang W, Qi ZM, Zhang Y, Guo YJ, et al. Parasite densities modulate susceptibility of mice to cerebral malaria during co-infection with Schistosoma japonicum and Plasmodium berghei. Malar J. 2014;13:116.PubMedPubMedCentralCrossRef
57.
go back to reference Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol. 2015;16:448–57.PubMedCrossRef Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol. 2015;16:448–57.PubMedCrossRef
59.
go back to reference Schwartz C, Hams E, Fallon PG. Helminth modulation of lung inflammation. Trends Parasitol. 2018;34:388–403.PubMedCrossRef Schwartz C, Hams E, Fallon PG. Helminth modulation of lung inflammation. Trends Parasitol. 2018;34:388–403.PubMedCrossRef
60.
62.
go back to reference Zainal-Abidin BAH, Robiah Y, Ismail G. Plasmodium berghei: Eosinophilic depression of infection in mice. Exp Parasitol. 1984;57:20–4.PubMedCrossRef Zainal-Abidin BAH, Robiah Y, Ismail G. Plasmodium berghei: Eosinophilic depression of infection in mice. Exp Parasitol. 1984;57:20–4.PubMedCrossRef
63.
go back to reference Hübner MP, Layland LE, Hoerauf A. Helminths and their implication in sepsis - a new branch of their immunomodulatory behaviour? Pathog Dis. 2013;69:127–41.PubMedCrossRef Hübner MP, Layland LE, Hoerauf A. Helminths and their implication in sepsis - a new branch of their immunomodulatory behaviour? Pathog Dis. 2013;69:127–41.PubMedCrossRef
64.
go back to reference Good MF, Xu H, Wykes M, Engwerda CR. Development and regulation of cell-mediated immune responses to the blood stages of malaria: implications for vaccine research. Annu Rev Immunol. 2005;23:69–99.PubMedCrossRef Good MF, Xu H, Wykes M, Engwerda CR. Development and regulation of cell-mediated immune responses to the blood stages of malaria: implications for vaccine research. Annu Rev Immunol. 2005;23:69–99.PubMedCrossRef
65.
go back to reference Pattanapanyasat K, Sratongno P, Chimma P, Chitjamnongchai S, Polsrila K, Chotivanich K. Febrile temperature but not proinflammatory cytokines promotes phosphatidylserine expression on Plasmodium falciparum malaria-infected red blood cells during parasite maturation. Cytom Part A. 2010;77:515–23.CrossRef Pattanapanyasat K, Sratongno P, Chimma P, Chitjamnongchai S, Polsrila K, Chotivanich K. Febrile temperature but not proinflammatory cytokines promotes phosphatidylserine expression on Plasmodium falciparum malaria-infected red blood cells during parasite maturation. Cytom Part A. 2010;77:515–23.CrossRef
66.
go back to reference Lacerda MVG, Mourão MPG, Coelho HC, Santos JB. Thrombocytopenia in malaria: who cares? Mem Inst Oswaldo Cruz. 2011;106:52–63.PubMedCrossRef Lacerda MVG, Mourão MPG, Coelho HC, Santos JB. Thrombocytopenia in malaria: who cares? Mem Inst Oswaldo Cruz. 2011;106:52–63.PubMedCrossRef
67.
go back to reference Libregts SF, Gutiérrez L, De Bruin AM, Wensveen FM, Papadopoulos P, Van Ijcken W, et al. Chronic IFN-γ production in mice induces anemia by reducing erythrocyte life span and inhibiting erythropoiesis through an IRF-1/PU.1 axis. Blood. 2011;118:2578–88.PubMedCrossRef Libregts SF, Gutiérrez L, De Bruin AM, Wensveen FM, Papadopoulos P, Van Ijcken W, et al. Chronic IFN-γ production in mice induces anemia by reducing erythrocyte life span and inhibiting erythropoiesis through an IRF-1/PU.1 axis. Blood. 2011;118:2578–88.PubMedCrossRef
68.
go back to reference del Portillo HA, Ferrer M, Brugat T, Martin-Jaular L, Langhorne J, Lacerda MVG. The role of the spleen in malaria. Cell Microbiol. 2012;14:343–55.PubMedCrossRef del Portillo HA, Ferrer M, Brugat T, Martin-Jaular L, Langhorne J, Lacerda MVG. The role of the spleen in malaria. Cell Microbiol. 2012;14:343–55.PubMedCrossRef
69.
go back to reference Rénia L, Goh YS. Malaria parasites: The great escape. Front Immunol. 2016;7:1–14.CrossRef Rénia L, Goh YS. Malaria parasites: The great escape. Front Immunol. 2016;7:1–14.CrossRef
70.
go back to reference Helmby H. Gastro-intestinal nematode infection exacerbates malaria-induced liver pathology. J Immunol. 2009;182:5663–71.PubMedCrossRef Helmby H. Gastro-intestinal nematode infection exacerbates malaria-induced liver pathology. J Immunol. 2009;182:5663–71.PubMedCrossRef
71.
go back to reference Moriyasu T, Nakamura R, Deloer S, Senba M, Kubo M, Inoue M, et al. Schistosoma mansoni infection suppresses the growth of Plasmodium yoelii parasites in the liver and reduces gametocyte infectivity to mosquitoes. PLoS Negl Trop Dis. 2018;12:e0006197.PubMedPubMedCentralCrossRef Moriyasu T, Nakamura R, Deloer S, Senba M, Kubo M, Inoue M, et al. Schistosoma mansoni infection suppresses the growth of Plasmodium yoelii parasites in the liver and reduces gametocyte infectivity to mosquitoes. PLoS Negl Trop Dis. 2018;12:e0006197.PubMedPubMedCentralCrossRef
72.
go back to reference Christensen N, Furu P, Kurtzhals J, Odaibo A. Heterologous synergistic interactions in concurrent experimental infection in the mouse with Schistosoma mansoni, Echinostoma revolutum, Plasmodium yoelii, Babesia microti, and Trypanosoma brucei. Parasitol Res. 1988;74:544–51.PubMedCrossRef Christensen N, Furu P, Kurtzhals J, Odaibo A. Heterologous synergistic interactions in concurrent experimental infection in the mouse with Schistosoma mansoni, Echinostoma revolutum, Plasmodium yoelii, Babesia microti, and Trypanosoma brucei. Parasitol Res. 1988;74:544–51.PubMedCrossRef
73.
go back to reference Knowles SCL. The effect of helminth co-infection on malaria in mice: a meta-analysis. Int J Parasitol. 2011;41:1041–51.PubMedCrossRef Knowles SCL. The effect of helminth co-infection on malaria in mice: a meta-analysis. Int J Parasitol. 2011;41:1041–51.PubMedCrossRef
74.
go back to reference Griffiths EC, Fairlie-Clarke K, Allen JE, Metcalf CJE, Graham AL. Bottom-up regulation of malaria population dynamics in mice co-infected with lung-migratory nematodes. Ecol Lett. 2015;18:1387–96.PubMedCrossRef Griffiths EC, Fairlie-Clarke K, Allen JE, Metcalf CJE, Graham AL. Bottom-up regulation of malaria population dynamics in mice co-infected with lung-migratory nematodes. Ecol Lett. 2015;18:1387–96.PubMedCrossRef
Metadata
Title
Concomitant experimental coinfection by Plasmodium berghei NK65-NY and Ascaris suum downregulates the Ascaris-specific immune response and potentiates Ascaris-associated lung pathology
Authors
Flaviane Vieira-Santos
Thaís Leal-Silva
Luiza de Lima Silva Padrão
Ana Cristina Loiola Ruas
Denise Silva Nogueira
Lucas Kraemer
Fabrício Marcus Silva Oliveira
Marcelo Vidigal Caliari
Remo Castro Russo
Ricardo Toshio Fujiwara
Lilian Lacerda Bueno
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2021
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-021-03824-w

Other articles of this Issue 1/2021

Malaria Journal 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.