Skip to main content
Top
Published in: Malaria Journal 1/2021

Open Access 01-12-2021 | Malaria | Review

Mosquito‐repellent controlled‐release formulations for fighting infectious diseases

Authors: António B. Mapossa, Walter W. Focke, Robert K. Tewo, René Androsch, Taneshka Kruger

Published in: Malaria Journal | Issue 1/2021

Login to get access

Abstract

Malaria is a principal cause of illness and death in countries where the disease is endemic. Personal protection against mosquitoes using repellents could be a useful method that can reduce and/or prevent transmission of mosquito-borne diseases. The available repellent products, such as creams, roll-ons, and sprays for personal protection against mosquitoes, lack adequate long-term efficacy. In most cases, they need to be re-applied or replaced frequently. The encapsulation and release of the repellents from several matrices has risen as an alternative process for the development of invention of repellent based systems. The present work reviews various studies about the development and use of repellent controlled-release formulations such as polymer microcapsules, polymer microporous formulations, polymer micelles, nanoemulsions, solid-lipid nanoparticles, liposomes and cyclodextrins as new tools for mosquito-borne malaria control in the outdoor environment. Furthermore, investigation on the mathematical modelling used for the release rate of repellents is discussed in depth by exploring the Higuchi, Korsmeyer-Peppas, Weibull models, as well as the recently developed Mapossa model. Therefore, the studies searched suggest that the final repellents based-product should not only be effective against mosquito vectors of malaria parasites, but also reduce the biting frequency of other mosquitoes transmitting diseases, such as dengue fever, chikungunya, yellow fever and Zika virus. In this way, they will contribute to the improvement in overall public health and social well-being.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. Global strategy for dengue prevention and control, 2012–2020. Geneva, World Health Organization, 2012. WHO. Global strategy for dengue prevention and control, 2012–2020. Geneva, World Health Organization, 2012.
2.
go back to reference WHO. World Malaria Report 2018. Geneva, World Health Organization, 2018. WHO. World Malaria Report 2018. Geneva, World Health Organization, 2018.
3.
go back to reference Islam J, Zaman K, Duarah S, Raju PS, Chattopadhyay P. Mosquito repellents: an insight into the chronological perspectives and novel discoveries. Acta Trop. 2017;167:216–30.PubMedCrossRef Islam J, Zaman K, Duarah S, Raju PS, Chattopadhyay P. Mosquito repellents: an insight into the chronological perspectives and novel discoveries. Acta Trop. 2017;167:216–30.PubMedCrossRef
4.
go back to reference Gillij Y, Gleiser G, Zygadlo J. Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresour Technol. 2008;99:2507–15.PubMedCrossRef Gillij Y, Gleiser G, Zygadlo J. Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresour Technol. 2008;99:2507–15.PubMedCrossRef
5.
go back to reference Peng Z, Beckett AN, Engler RJ, Hoffman DR, Ott NL, Simons FER. Immune responses to mosquito saliva in 14 individuals with acute systemic allergic reactions to mosquito bites. J Allergy Clin Immunol. 2004;114:1189–94.PubMedCrossRef Peng Z, Beckett AN, Engler RJ, Hoffman DR, Ott NL, Simons FER. Immune responses to mosquito saliva in 14 individuals with acute systemic allergic reactions to mosquito bites. J Allergy Clin Immunol. 2004;114:1189–94.PubMedCrossRef
6.
go back to reference Braack L, Hunt R, Koekemoer LL, Gericke A, Munhenga G, Haddow AD, et al. Biting behaviour of African malaria vectors: 1. Where do the main vector species bite on the human body? Parasit Vectors. 2015;8:76.PubMedPubMedCentralCrossRef Braack L, Hunt R, Koekemoer LL, Gericke A, Munhenga G, Haddow AD, et al. Biting behaviour of African malaria vectors: 1. Where do the main vector species bite on the human body? Parasit Vectors. 2015;8:76.PubMedPubMedCentralCrossRef
7.
go back to reference Reddy MR, Overgaard HJ, Abaga S, Reddy VP, Caccone A, Kiszewski AE, et al. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea. Malar J. 2011;10:184.PubMedPubMedCentralCrossRef Reddy MR, Overgaard HJ, Abaga S, Reddy VP, Caccone A, Kiszewski AE, et al. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea. Malar J. 2011;10:184.PubMedPubMedCentralCrossRef
8.
go back to reference Diaz JH. Chemical and plant-based insect repellents: efficacy, safety, and toxicity. Wilderness Environ Med. 2016;27:153–63.PubMedCrossRef Diaz JH. Chemical and plant-based insect repellents: efficacy, safety, and toxicity. Wilderness Environ Med. 2016;27:153–63.PubMedCrossRef
9.
go back to reference Melo VD, Silva JS, La Corte R. 2019. Use of mosquito repellents to protect against Zika virus infection among pregnant women in Brazil. Public Health. 2019;171:89–96. Melo VD, Silva JS, La Corte R. 2019. Use of mosquito repellents to protect against Zika virus infection among pregnant women in Brazil. Public Health. 2019;171:89–96.
10.
go back to reference Izadi H, Focke WW, Asaadi E, Maharaj R, Pretorius J, Loots MT. 2017. A promising azeotrope-like mosquito repellent blend. Sci Rep. 2017;7:10273. Izadi H, Focke WW, Asaadi E, Maharaj R, Pretorius J, Loots MT. 2017. A promising azeotrope-like mosquito repellent blend. Sci Rep. 2017;7:10273.
11.
go back to reference N’guessan R, Knols BG, Pennetier C, Rowland M. DEET microencapsulation: a slow-release formulation enhancing the residual efficacy of bed nets against malaria vectors. Trans R Soc Trop Med Hyg. 2008;102:259–62.PubMedCrossRef N’guessan R, Knols BG, Pennetier C, Rowland M. DEET microencapsulation: a slow-release formulation enhancing the residual efficacy of bed nets against malaria vectors. Trans R Soc Trop Med Hyg. 2008;102:259–62.PubMedCrossRef
12.
go back to reference Akhtar MU. Towards controlled release of a natural mosquito repellent from polymer matrices. . Accessed 23 Feb 2021. Akhtar MU. Towards controlled release of a natural mosquito repellent from polymer matrices. . Accessed 23 Feb 2021.
13.
go back to reference Sibanda M, Focke W, Braack L, Leuteritz A, Brünig H, Tran NHA, et al. Bicomponent fibres for controlled release of volatile mosquito repellents. Mater Sci Eng C. 2018;91:754–61.CrossRef Sibanda M, Focke W, Braack L, Leuteritz A, Brünig H, Tran NHA, et al. Bicomponent fibres for controlled release of volatile mosquito repellents. Mater Sci Eng C. 2018;91:754–61.CrossRef
14.
go back to reference Mapossa AB, Sibanda MM, Sitoe A, Focke WW, Braack L, Ndonyane C, et al. Microporous polyolefin strands as controlled-release devices for mosquito repellents. Chem Eng J. 2019;360:435–44.CrossRef Mapossa AB, Sibanda MM, Sitoe A, Focke WW, Braack L, Ndonyane C, et al. Microporous polyolefin strands as controlled-release devices for mosquito repellents. Chem Eng J. 2019;360:435–44.CrossRef
15.
go back to reference Debboun M, Strickman D. Insect repellents and associated personal protection for a reduction in human disease. Med Vet Entomol. 2013;27:1–9.PubMedCrossRef Debboun M, Strickman D. Insect repellents and associated personal protection for a reduction in human disease. Med Vet Entomol. 2013;27:1–9.PubMedCrossRef
16.
go back to reference Schreck CE, Kline DL. Personal protection afforded by controlled-release topical repellents and permethrin-treated clothing against natural populations of Aedes taeniorhynchus. J Am Mosq Control Assoc. 1989;5:77–80.PubMed Schreck CE, Kline DL. Personal protection afforded by controlled-release topical repellents and permethrin-treated clothing against natural populations of Aedes taeniorhynchus. J Am Mosq Control Assoc. 1989;5:77–80.PubMed
17.
go back to reference Kroeger A, Gerhardus A, Kruger G, Mancheno M, Pesse K. The contribution of repellent soap to malaria control. Am J Trop Med Hyg. 1997;56:580–4.PubMedCrossRef Kroeger A, Gerhardus A, Kruger G, Mancheno M, Pesse K. The contribution of repellent soap to malaria control. Am J Trop Med Hyg. 1997;56:580–4.PubMedCrossRef
18.
go back to reference Kroeger A, González M, Ordóñez-González J. Insecticide-treated materials for malaria control in Latin America: to use or not to use? Trans R Soc Trop Med Hyg. 1999;93:565–70.PubMedCrossRef Kroeger A, González M, Ordóñez-González J. Insecticide-treated materials for malaria control in Latin America: to use or not to use? Trans R Soc Trop Med Hyg. 1999;93:565–70.PubMedCrossRef
19.
go back to reference Mitra S, Rodriguez SD, Vulcan J, Cordova J, Chung HN, Moore E, et al. Efficacy of active ingredients from the EPA 25 (B) list in reducing attraction of Aedes aegypti (Diptera: Culicidae) to humans. J Med Entomol. 2020;57:477–84.PubMed Mitra S, Rodriguez SD, Vulcan J, Cordova J, Chung HN, Moore E, et al. Efficacy of active ingredients from the EPA 25 (B) list in reducing attraction of Aedes aegypti (Diptera: Culicidae) to humans. J Med Entomol. 2020;57:477–84.PubMed
20.
go back to reference Rodriguez SD, Drake LL, Price DP, Hammond JI, Hansen IA. The efficacy of some commercially available insect repellents for Aedes aegypti (Diptera: Culicidae) and Aedes albopictus (Diptera: Culicidae). J Insect Sci. 2015;15:140.PubMedPubMedCentralCrossRef Rodriguez SD, Drake LL, Price DP, Hammond JI, Hansen IA. The efficacy of some commercially available insect repellents for Aedes aegypti (Diptera: Culicidae) and Aedes albopictus (Diptera: Culicidae). J Insect Sci. 2015;15:140.PubMedPubMedCentralCrossRef
21.
go back to reference Rodriguez SD, Chung HN, Gonzales KK, Vulcan J, Li Y, Ahumada JA, et al. Efficacy of some wearable devices compared with spray-on insect repellents for the yellow fever mosquito, Aedes aegypti (L.)(Diptera: Culicidae). J Insect Sci. 2017;17:24.PubMedCentralCrossRef Rodriguez SD, Chung HN, Gonzales KK, Vulcan J, Li Y, Ahumada JA, et al. Efficacy of some wearable devices compared with spray-on insect repellents for the yellow fever mosquito, Aedes aegypti (L.)(Diptera: Culicidae). J Insect Sci. 2017;17:24.PubMedCentralCrossRef
22.
go back to reference Céspedes FF, Sánchez MV, García SP, Pérez MF. Modifying sorbents in controlled release formulations to prevent herbicides pollution. Chemosphere. 2007;69:785–94.CrossRef Céspedes FF, Sánchez MV, García SP, Pérez MF. Modifying sorbents in controlled release formulations to prevent herbicides pollution. Chemosphere. 2007;69:785–94.CrossRef
23.
go back to reference Akelah A. Novel utilizations of conventional agrochemicals by controlled release formulations. Mater Sci Eng C. 1996;4:83–98.CrossRef Akelah A. Novel utilizations of conventional agrochemicals by controlled release formulations. Mater Sci Eng C. 1996;4:83–98.CrossRef
24.
go back to reference Kenawy ER, Sherrington DC, Akelah A. Controlled release of agrochemical molecules chemically bound to polymers. Eur Polym J. 1992;28:841–62.CrossRef Kenawy ER, Sherrington DC, Akelah A. Controlled release of agrochemical molecules chemically bound to polymers. Eur Polym J. 1992;28:841–62.CrossRef
25.
go back to reference Dubey S, Jhelum V, Patanjali PK. 2011. Controlled release agrochemicals formulations: a review. J Sci Ind Res. 2011;70:105 – 12. Dubey S, Jhelum V, Patanjali PK. 2011. Controlled release agrochemicals formulations: a review. J Sci Ind Res. 2011;70:105 – 12.
26.
go back to reference Bakry AM, Abbas S, Ali B, Majeed H, Abouelwafa MY, Mousa A, et al. Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Compr Rev Food Sci Food Saf. 2016;15:143–82.PubMedCrossRef Bakry AM, Abbas S, Ali B, Majeed H, Abouelwafa MY, Mousa A, et al. Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Compr Rev Food Sci Food Saf. 2016;15:143–82.PubMedCrossRef
27.
go back to reference Martins IM, Barreiro MF, Coelho M, Rodrigues AE. Microencapsulation of essential oils with biodegradable polymeric carriers for cosmetic applications. Chem Eng J. 2014;245:191–200.CrossRef Martins IM, Barreiro MF, Coelho M, Rodrigues AE. Microencapsulation of essential oils with biodegradable polymeric carriers for cosmetic applications. Chem Eng J. 2014;245:191–200.CrossRef
28.
go back to reference Sittipummongkol K, Pechyen C. Production, characterization and controlled release studies of biodegradable polymer microcapsules incorporating neem seed oil by spray drying. Food Packag Shelf Life. 2018;18:131–9.CrossRef Sittipummongkol K, Pechyen C. Production, characterization and controlled release studies of biodegradable polymer microcapsules incorporating neem seed oil by spray drying. Food Packag Shelf Life. 2018;18:131–9.CrossRef
29.
go back to reference Khounvilay K, Estevinho BN, Sittikijyothin W. Citronella oil microencapsulated in carboxymethylated tamarind gum and its controlled release. Eng J. 2019;23:217–27.CrossRef Khounvilay K, Estevinho BN, Sittikijyothin W. Citronella oil microencapsulated in carboxymethylated tamarind gum and its controlled release. Eng J. 2019;23:217–27.CrossRef
30.
go back to reference Ribeiro AD, Marques J, Forte M, Correia FC, Parpot P, Oliveira C, et al. Microencapsulation of citronella oil for solar-activated controlled release as an insect repellent. Appl Mater Today. 2016;5:90–7.CrossRef Ribeiro AD, Marques J, Forte M, Correia FC, Parpot P, Oliveira C, et al. Microencapsulation of citronella oil for solar-activated controlled release as an insect repellent. Appl Mater Today. 2016;5:90–7.CrossRef
31.
go back to reference Bezerra FM, Lis M, Carmona ÓG, Carmona CG, Moisés MP, Zanin GM, et al. Assessment of the delivery of citronella oil from microcapsules supported on wool fabrics. Powder Technol. 2019;343:775–82.CrossRef Bezerra FM, Lis M, Carmona ÓG, Carmona CG, Moisés MP, Zanin GM, et al. Assessment of the delivery of citronella oil from microcapsules supported on wool fabrics. Powder Technol. 2019;343:775–82.CrossRef
32.
go back to reference Specos MM, García JJ, Tornesello J, Marino P, Vecchia MD, Tesoriero MD, et al. Microencapsulated citronella oil for mosquito repellent finishing of cotton textiles. Trans R Soc Trop Med Hyg. 2010;104:653–8.PubMedCrossRef Specos MM, García JJ, Tornesello J, Marino P, Vecchia MD, Tesoriero MD, et al. Microencapsulated citronella oil for mosquito repellent finishing of cotton textiles. Trans R Soc Trop Med Hyg. 2010;104:653–8.PubMedCrossRef
33.
go back to reference Solomon B, Sahle FF, Gebre-Mariam T, Asres K, Neubert RHH. Microencapsulation of citronella oil for mosquito-repellent application: formulation and in vitro permeation studies. Eur J Pharm Biopharm. 2012;80:61–6.PubMedCrossRef Solomon B, Sahle FF, Gebre-Mariam T, Asres K, Neubert RHH. Microencapsulation of citronella oil for mosquito-repellent application: formulation and in vitro permeation studies. Eur J Pharm Biopharm. 2012;80:61–6.PubMedCrossRef
34.
go back to reference Türkoğlu GC, Sarıışık AM, Erkan G, Yıkılmaz MS, Kontart O. Micro-and nano-encapsulation of limonene and permethrin for mosquito repellent finishing of cotton textiles. Iran Polym J. 2020;29:321–9.CrossRef Türkoğlu GC, Sarıışık AM, Erkan G, Yıkılmaz MS, Kontart O. Micro-and nano-encapsulation of limonene and permethrin for mosquito repellent finishing of cotton textiles. Iran Polym J. 2020;29:321–9.CrossRef
35.
go back to reference Tavares M, da Silva MRM, de Siqueira LBDO, Rodrigues RAS, Bodjolle-d’Almeida L, Dos Santos EP, et al. Trends in insect repellent formulations: a review. Int J Pharm. 2018;539:190–209.PubMedCrossRef Tavares M, da Silva MRM, de Siqueira LBDO, Rodrigues RAS, Bodjolle-d’Almeida L, Dos Santos EP, et al. Trends in insect repellent formulations: a review. Int J Pharm. 2018;539:190–209.PubMedCrossRef
36.
go back to reference Ichiura H, Yamamoto KI, Ohtani Y. Low temperature-dependence of N, N-dimethyl-3-methylbenzamide (DEET) release from a functional paper containing paraffin–DEET composites prepared using interfacial polymerization. Chem Eng J. 2014;245:17–23.CrossRef Ichiura H, Yamamoto KI, Ohtani Y. Low temperature-dependence of N, N-dimethyl-3-methylbenzamide (DEET) release from a functional paper containing paraffin–DEET composites prepared using interfacial polymerization. Chem Eng J. 2014;245:17–23.CrossRef
37.
go back to reference Kasting GB, Bhatt VD, Speaker TJ. Microencapsulation decreases the skin absorption of N, N-diethyl-m-toluamide (DEET). Toxicol In Vitro. 2008;22:548–52.PubMedCrossRef Kasting GB, Bhatt VD, Speaker TJ. Microencapsulation decreases the skin absorption of N, N-diethyl-m-toluamide (DEET). Toxicol In Vitro. 2008;22:548–52.PubMedCrossRef
38.
go back to reference Karr JI, Speaker TJ, Kasting GB. A novel encapsulation of N, N-diethyl-3-methylbenzamide (DEET) favorably modifies skin absorption while maintaining effective evaporation rates. J Control Release. 2012;160:502–8.PubMedCrossRef Karr JI, Speaker TJ, Kasting GB. A novel encapsulation of N, N-diethyl-3-methylbenzamide (DEET) favorably modifies skin absorption while maintaining effective evaporation rates. J Control Release. 2012;160:502–8.PubMedCrossRef
39.
go back to reference Martins IM, Rodrigues SN, Barreiro F, Rodrigues AE. Microencapsulation of thyme oil by coacervation. J Microencapsul. 2009;26:667–75.PubMedCrossRef Martins IM, Rodrigues SN, Barreiro F, Rodrigues AE. Microencapsulation of thyme oil by coacervation. J Microencapsul. 2009;26:667–75.PubMedCrossRef
40.
go back to reference Miro Specos MM, Garcia JJ, Gutierrez AC, Hermida LG. Application of microencapsulated biopesticides to improve repellent finishing of cotton fabrics. J Text Inst. 2017;108:1454–60.CrossRef Miro Specos MM, Garcia JJ, Gutierrez AC, Hermida LG. Application of microencapsulated biopesticides to improve repellent finishing of cotton fabrics. J Text Inst. 2017;108:1454–60.CrossRef
41.
go back to reference Fei B, Xin JH. N, N-diethyl-m-toluamide–containing microcapsules for bio-cloth finishing. Am J Trop Med Hyg. 2007;77:52–7.PubMedCrossRef Fei B, Xin JH. N, N-diethyl-m-toluamide–containing microcapsules for bio-cloth finishing. Am J Trop Med Hyg. 2007;77:52–7.PubMedCrossRef
42.
go back to reference Rutz JK, Borges CD, Zambiazi RC, Crizel-Cardozo MM, Kuck LS, Noreña CP. Microencapsulation of palm oil by complex coacervation for application in food systems. Food Chem. 2017;220:59–66.PubMedCrossRef Rutz JK, Borges CD, Zambiazi RC, Crizel-Cardozo MM, Kuck LS, Noreña CP. Microencapsulation of palm oil by complex coacervation for application in food systems. Food Chem. 2017;220:59–66.PubMedCrossRef
43.
go back to reference Bezerra FM, Carmona OG, Carmona CG, Lis MJ, de Moraes FF. Controlled release of microencapsulated citronella essential oil on cotton and polyester matrices. Cellulose. 2016;23:1459–70.CrossRef Bezerra FM, Carmona OG, Carmona CG, Lis MJ, de Moraes FF. Controlled release of microencapsulated citronella essential oil on cotton and polyester matrices. Cellulose. 2016;23:1459–70.CrossRef
44.
go back to reference Kadam SL, Yadav P, Bhutkar S, Patil VD, Shukla PG, Shanmuganathan K. 2019. Sustained release insect repellent microcapsules using modified cellulose nanofibers (mCNF) as pickering emulsifier. Colloid Surf A Physicochem Eng Asp. 2019;582:123883. Kadam SL, Yadav P, Bhutkar S, Patil VD, Shukla PG, Shanmuganathan K. 2019. Sustained release insect repellent microcapsules using modified cellulose nanofibers (mCNF) as pickering emulsifier. Colloid Surf A Physicochem Eng Asp. 2019;582:123883.
45.
go back to reference Rai VK, Mishra N, Yadav KS, Yadav NP. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: formulation development, stability issues, basic considerations and applications. J Control Release. 2018;270:203–25.PubMedCrossRef Rai VK, Mishra N, Yadav KS, Yadav NP. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: formulation development, stability issues, basic considerations and applications. J Control Release. 2018;270:203–25.PubMedCrossRef
46.
go back to reference Nirmala MJ, Nagarajan R. Recent research trends in fabrication and applications of plant essential oil based nanoemulsions. J Nanomed Nanotechnol. 2017;8:434–44.CrossRef Nirmala MJ, Nagarajan R. Recent research trends in fabrication and applications of plant essential oil based nanoemulsions. J Nanomed Nanotechnol. 2017;8:434–44.CrossRef
47.
go back to reference Sood S, Jain K, Gowthamarajan K. Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment. Colloids Surf B: Biointerfaces. 2014;113:330–7.PubMedCrossRef Sood S, Jain K, Gowthamarajan K. Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment. Colloids Surf B: Biointerfaces. 2014;113:330–7.PubMedCrossRef
48.
go back to reference Nam YS, Kim JW, Shim J, Han SH, Kim HK. Nanosized emulsions stabilized by semisolid polymer interphase. Langmuir. 2010;26:13038–43.PubMedCrossRef Nam YS, Kim JW, Shim J, Han SH, Kim HK. Nanosized emulsions stabilized by semisolid polymer interphase. Langmuir. 2010;26:13038–43.PubMedCrossRef
49.
go back to reference Harwansh RK, Deshmukh R, Rahman MA. Nanoemulsion. Promising nanocarrier system for delivery of herbal bioactives. J Drug Deliv Sci Technol. 2019;51:224–33.CrossRef Harwansh RK, Deshmukh R, Rahman MA. Nanoemulsion. Promising nanocarrier system for delivery of herbal bioactives. J Drug Deliv Sci Technol. 2019;51:224–33.CrossRef
50.
go back to reference Anjali CH, Sharma Y, Mukherjee A, Chandrasekaran N. Neem oil (Azadirachta indica) nanoemulsion—a potent larvicidal agent against Culex quinquefasciatus. Pest Manag Sci. 2012;68:158–63.PubMedCrossRef Anjali CH, Sharma Y, Mukherjee A, Chandrasekaran N. Neem oil (Azadirachta indica) nanoemulsion—a potent larvicidal agent against Culex quinquefasciatus. Pest Manag Sci. 2012;68:158–63.PubMedCrossRef
51.
go back to reference Montenegro L, Lai F, Offerta A, Sarpietro MG, Micicche L, Maccioni AM, et al. From nanoemulsions to nanostructured lipid carriers: a relevant development in dermal delivery of drugs and cosmetics. J Drug Deliv Sci Technol. 2016;32:100–12.CrossRef Montenegro L, Lai F, Offerta A, Sarpietro MG, Micicche L, Maccioni AM, et al. From nanoemulsions to nanostructured lipid carriers: a relevant development in dermal delivery of drugs and cosmetics. J Drug Deliv Sci Technol. 2016;32:100–12.CrossRef
52.
go back to reference Klang V, Matsko NB, Valenta C, Hofer F. Electron microscopy of nanoemulsions: an essential tool for characterisation and stability assessment. Micron. 2012;43:85–103.PubMedCrossRef Klang V, Matsko NB, Valenta C, Hofer F. Electron microscopy of nanoemulsions: an essential tool for characterisation and stability assessment. Micron. 2012;43:85–103.PubMedCrossRef
53.
go back to reference Echeverría J, Albuquerque RDDGD. Nanoemulsions of essential oils: new tool for control of vector-borne diseases and in vitro effects on some parasitic agents. Medicines (Basel). 2019;6:42.CrossRef Echeverría J, Albuquerque RDDGD. Nanoemulsions of essential oils: new tool for control of vector-borne diseases and in vitro effects on some parasitic agents. Medicines (Basel). 2019;6:42.CrossRef
54.
go back to reference Sugumar S, Clarke SK, Nirmala MJ, Tyagi BK, Mukherjee A, Chandrasekaran N. Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bull Entomol Res. 2014;104:393–402.PubMedCrossRef Sugumar S, Clarke SK, Nirmala MJ, Tyagi BK, Mukherjee A, Chandrasekaran N. Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bull Entomol Res. 2014;104:393–402.PubMedCrossRef
55.
go back to reference Nuchuchua O, Sakulku U, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U. In vitro characterization and mosquito (Aedes aegypti) repellent activity of essential-oils-loaded nanoemulsions. Aaps Pharmscitech. 2009;10:1234–42.PubMedPubMedCentralCrossRef Nuchuchua O, Sakulku U, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U. In vitro characterization and mosquito (Aedes aegypti) repellent activity of essential-oils-loaded nanoemulsions. Aaps Pharmscitech. 2009;10:1234–42.PubMedPubMedCentralCrossRef
56.
go back to reference Sakulku U, Nuchuchua O, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U. Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int J Pharm. 2009;372:105–11.PubMedCrossRef Sakulku U, Nuchuchua O, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U. Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int J Pharm. 2009;372:105–11.PubMedCrossRef
57.
go back to reference Agrawal N, Maddikeri GL, Pandit AB. Sustained release formulations of citronella oil nanoemulsion using cavitational techniques. Ultrason Sonochem. 2017;36:367–74.PubMedCrossRef Agrawal N, Maddikeri GL, Pandit AB. Sustained release formulations of citronella oil nanoemulsion using cavitational techniques. Ultrason Sonochem. 2017;36:367–74.PubMedCrossRef
58.
go back to reference Feng J, Wang R, Chen Z, Zhang S, Yuan S, Cao H, et al. Formulation optimization of D-limonene-loaded nanoemulsions as a natural and efficient biopesticide. Colloids Surf A Physicochem Eng Asp. 2020;596:124746.CrossRef Feng J, Wang R, Chen Z, Zhang S, Yuan S, Cao H, et al. Formulation optimization of D-limonene-loaded nanoemulsions as a natural and efficient biopesticide. Colloids Surf A Physicochem Eng Asp. 2020;596:124746.CrossRef
59.
go back to reference de Oca-Ávalos JMM, Candal RJ, Herrera ML. Nanoemulsions: stability and physical properties. Curr Opin Food Sci. 2017;16:1–6.CrossRef de Oca-Ávalos JMM, Candal RJ, Herrera ML. Nanoemulsions: stability and physical properties. Curr Opin Food Sci. 2017;16:1–6.CrossRef
60.
go back to reference Li J, Fan T, Xu Y, Wu X. Ionic liquids as modulators of physicochemical properties and nanostructures of sodium dodecyl sulfate in aqueous solutions and potential application in pesticide microemulsions. Phys Chem Chem. 2016;18:29797–807.CrossRef Li J, Fan T, Xu Y, Wu X. Ionic liquids as modulators of physicochemical properties and nanostructures of sodium dodecyl sulfate in aqueous solutions and potential application in pesticide microemulsions. Phys Chem Chem. 2016;18:29797–807.CrossRef
61.
go back to reference Lucia A, Toloza AC, Fanucce M, Fernandez-Pena L, Ortega F, Rubio RG, et al. Nanoemulsions based on thymol-eugenol mixtures: characterization, stability and larvicidal activity against Aedes aegypti. Bull Insectology. 2020;73:153–60. Lucia A, Toloza AC, Fanucce M, Fernandez-Pena L, Ortega F, Rubio RG, et al. Nanoemulsions based on thymol-eugenol mixtures: characterization, stability and larvicidal activity against Aedes aegypti. Bull Insectology. 2020;73:153–60.
62.
go back to reference Sharma M, Gupta N, Soni R, Gautam A, Reddy KR, Sharma S, et al Recent advances in polymeric and solid lipid–based nanoparticles for controlled drug delivery. In: Kanchi S, Sharma D, Eds. Nanomaterials in Diagnostic Tools and Devices. Chenai, India; 2020. p. 131–158. Sharma M, Gupta N, Soni R, Gautam A, Reddy KR, Sharma S, et al Recent advances in polymeric and solid lipid–based nanoparticles for controlled drug delivery. In: Kanchi S, Sharma D, Eds. Nanomaterials in Diagnostic Tools and Devices. Chenai, India; 2020. p. 131–158.
63.
go back to reference Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2012;64:83–101.CrossRef Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2012;64:83–101.CrossRef
64.
go back to reference Üner M. Characterization and imaging of solid lipid nanoparticles and nanostructured lipid carriers. In: Aliofkhazraei M, editor. Handbook of nanoparticles. New York: Springer; 2015. pp. 117–41. Üner M. Characterization and imaging of solid lipid nanoparticles and nanostructured lipid carriers. In: Aliofkhazraei M, editor. Handbook of nanoparticles. New York: Springer; 2015. pp. 117–41.
65.
go back to reference Vijayan V, Aafreen S, Sakthivel S, Reddy KR. Formulation and characterization of solid lipid nanoparticles loaded Neem oil for topical treatment of acne. J Acute Dis. 2013;2:282–6.CrossRef Vijayan V, Aafreen S, Sakthivel S, Reddy KR. Formulation and characterization of solid lipid nanoparticles loaded Neem oil for topical treatment of acne. J Acute Dis. 2013;2:282–6.CrossRef
66.
go back to reference Adel MM, Atwa WA, Hassan ML, Salem NY, Farghaly DS, Ibrahim SS. Biological activity and field persistence of Pelargonium graveolens (Geraniales: Geraniaceae) loaded solid lipid nanoparticles (SLNs) on Phthorimaea operculella (Zeller)(PTM)(Lepidoptera: Gelechiidae). Int J Sci Res. 2015;4:514–20. Adel MM, Atwa WA, Hassan ML, Salem NY, Farghaly DS, Ibrahim SS. Biological activity and field persistence of Pelargonium graveolens (Geraniales: Geraniaceae) loaded solid lipid nanoparticles (SLNs) on Phthorimaea operculella (Zeller)(PTM)(Lepidoptera: Gelechiidae). Int J Sci Res. 2015;4:514–20.
67.
go back to reference Wissing SA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev. 2004;56:1257–72.PubMedCrossRef Wissing SA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev. 2004;56:1257–72.PubMedCrossRef
68.
go back to reference Adel MM, Salem NY, Abdel-Aziz NF, Ibrahim SS. Application of new nano pesticide Geranium oil loaded-solid lipid nanoparticles for control the black cutworm Agrotis ipsilon (Hub.)(Lepi., Noctuidae). EurAsian J Biosci. 2019;13:1453–61. Adel MM, Salem NY, Abdel-Aziz NF, Ibrahim SS. Application of new nano pesticide Geranium oil loaded-solid lipid nanoparticles for control the black cutworm Agrotis ipsilon (Hub.)(Lepi., Noctuidae). EurAsian J Biosci. 2019;13:1453–61.
69.
go back to reference Al-Haj NA, Shamsudin MN, Alipiah NM, Zamri HF, Ahmad B, Siddig I, et al. Characterization of Nigella sativa L. essential oil-loaded solid lipid nanoparticles. Am J Pharmacol Toxicol. 2010;5:52–7.CrossRef Al-Haj NA, Shamsudin MN, Alipiah NM, Zamri HF, Ahmad B, Siddig I, et al. Characterization of Nigella sativa L. essential oil-loaded solid lipid nanoparticles. Am J Pharmacol Toxicol. 2010;5:52–7.CrossRef
70.
go back to reference Iscan Y, Hekimoglu S, Sargon MF, Hincal AA. DEET-loaded solid lipid particles for skin delivery: in vitro release and skin permeation characteristics in different vehicles. J Microencapsul. 2006;23:315–27.PubMedCrossRef Iscan Y, Hekimoglu S, Sargon MF, Hincal AA. DEET-loaded solid lipid particles for skin delivery: in vitro release and skin permeation characteristics in different vehicles. J Microencapsul. 2006;23:315–27.PubMedCrossRef
71.
go back to reference Lai F, Wissing SA, Müller RH, Fadda AM. Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS PharmSciTech. 2006;7:E10.PubMedPubMedCentralCrossRef Lai F, Wissing SA, Müller RH, Fadda AM. Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS PharmSciTech. 2006;7:E10.PubMedPubMedCentralCrossRef
72.
go back to reference Yang FL, Li XG, Zhu F, Lei CL. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst)(Coleoptera: Tenebrionidae). J Agric Food Chem. 2009;57:10156–62.PubMedCrossRef Yang FL, Li XG, Zhu F, Lei CL. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst)(Coleoptera: Tenebrionidae). J Agric Food Chem. 2009;57:10156–62.PubMedCrossRef
73.
go back to reference Mishra V, Bansal KK, Verma A, Yadav N, Thakur S, Sudhakar K, et al. Solid lipid nanoparticles: emerging colloidal nano drug delivery systems. Pharmaceutics. 2018;10:191.PubMedCentralCrossRef Mishra V, Bansal KK, Verma A, Yadav N, Thakur S, Sudhakar K, et al. Solid lipid nanoparticles: emerging colloidal nano drug delivery systems. Pharmaceutics. 2018;10:191.PubMedCentralCrossRef
74.
go back to reference Tian H, Lu Z, Li D, Hu J. Preparation and characterization of citral-loaded solid lipid nanoparticles. Food chem. 2018;248:78–85.PubMedCrossRef Tian H, Lu Z, Li D, Hu J. Preparation and characterization of citral-loaded solid lipid nanoparticles. Food chem. 2018;248:78–85.PubMedCrossRef
75.
go back to reference Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine. 2010;6:714–29.PubMedCrossRef Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine. 2010;6:714–29.PubMedCrossRef
76.
go back to reference Batrakova EV, Bronich TK, Vetro JA, Kabanov AV. Polymer micelles as drug carriers. In: Torchilin VP. Ed Nanoparticulates as drug carriers. USA: Imperial College Press;: Northeastern University; 2006. pp. 57–93.CrossRef Batrakova EV, Bronich TK, Vetro JA, Kabanov AV. Polymer micelles as drug carriers. In: Torchilin VP. Ed Nanoparticulates as drug carriers. USA: Imperial College Press;: Northeastern University; 2006. pp. 57–93.CrossRef
77.
go back to reference Barradas TN, Lopes LMA, Ricci-Júnior E, Silva KGDH, Mansur CRE. Development and characterization of micellar systems for application as insect repellents. Int J Pharm. 2013;454:633–40.PubMedCrossRef Barradas TN, Lopes LMA, Ricci-Júnior E, Silva KGDH, Mansur CRE. Development and characterization of micellar systems for application as insect repellents. Int J Pharm. 2013;454:633–40.PubMedCrossRef
78.
go back to reference Balaji APB, Mishra P, Kumar RS, Mukherjee A, Chandrasekaran N. Nanoformulation of poly (ethylene glycol) polymerized organic insect repellent by PIT emulsification method and its application for Japanese encephalitis vector control. Colloids Surf B: Biointerfaces. 2015;128:370–8.PubMedCrossRef Balaji APB, Mishra P, Kumar RS, Mukherjee A, Chandrasekaran N. Nanoformulation of poly (ethylene glycol) polymerized organic insect repellent by PIT emulsification method and its application for Japanese encephalitis vector control. Colloids Surf B: Biointerfaces. 2015;128:370–8.PubMedCrossRef
79.
go back to reference Lucia A, Toloza AC, Guzmán E, Ortega F, Rubio RG. Novel polymeric micelles for insect pest control: encapsulation of essential oil monoterpenes inside a triblock copolymer shell for head lice control. PeerJ. 2017;5:3171.CrossRef Lucia A, Toloza AC, Guzmán E, Ortega F, Rubio RG. Novel polymeric micelles for insect pest control: encapsulation of essential oil monoterpenes inside a triblock copolymer shell for head lice control. PeerJ. 2017;5:3171.CrossRef
80.
go back to reference Hebeish A, Fouda MM, Hamdy IA, El-Sawy SM, Abdel-Mohdy FA. Preparation of durable insect repellent cotton fabric: limonene as insecticide. Carbohydr Polym. 2008;74:268–73.CrossRef Hebeish A, Fouda MM, Hamdy IA, El-Sawy SM, Abdel-Mohdy FA. Preparation of durable insect repellent cotton fabric: limonene as insecticide. Carbohydr Polym. 2008;74:268–73.CrossRef
81.
go back to reference Radu CD, Parteni O, Ochiuz L. Applications of cyclodextrins in medical textiles. J Control Release. 2016;224:146–57.PubMedCrossRef Radu CD, Parteni O, Ochiuz L. Applications of cyclodextrins in medical textiles. J Control Release. 2016;224:146–57.PubMedCrossRef
82.
go back to reference Szejtli J. Cyclodextrins. Encyclopedia of Supramolecular Chemistry. In: Atwood JL, Steed JW, editors. Marcel Dekker, New York, 2004. pp. 398–413.CrossRef Szejtli J. Cyclodextrins. Encyclopedia of Supramolecular Chemistry. In: Atwood JL, Steed JW, editors. Marcel Dekker, New York, 2004. pp. 398–413.CrossRef
83.
go back to reference Galvão JG, Silva VF, Ferreira SG, França FRM, Santos DA, Freitas LS, et al. β-cyclodextrin inclusion complexes containing Citrus sinensis (L.) Osbeck essential oil: an alternative to control Aedes aegypti larvae. Thermochim Acta. 2015;608:14–9.CrossRef Galvão JG, Silva VF, Ferreira SG, França FRM, Santos DA, Freitas LS, et al. β-cyclodextrin inclusion complexes containing Citrus sinensis (L.) Osbeck essential oil: an alternative to control Aedes aegypti larvae. Thermochim Acta. 2015;608:14–9.CrossRef
84.
go back to reference Weast R, Grasselli J. Handbook of Data on Organic Compounds. 2nd Edn. Boca Raton, Florida; 1989. Weast R, Grasselli J. Handbook of Data on Organic Compounds. 2nd Edn. Boca Raton, Florida; 1989.
85.
go back to reference Sherje AP, Dravyakar BR, Kadam D, Jadhav M. Cyclodextrin-based nanosponges: a critical review. Carbohydr Polym. 2017;173:37–49.PubMedCrossRef Sherje AP, Dravyakar BR, Kadam D, Jadhav M. Cyclodextrin-based nanosponges: a critical review. Carbohydr Polym. 2017;173:37–49.PubMedCrossRef
86.
go back to reference Songkro S, Hayook N, Jaisawang J, Maneenuan D, Chuchome T, Kaewnopparat N. Investigation of inclusion complexes of citronella oil, citronellal and citronellol with β-cyclodextrin for mosquito repellent. J Incl Phenom Macrocycl Chem. 2012;72:339–55.CrossRef Songkro S, Hayook N, Jaisawang J, Maneenuan D, Chuchome T, Kaewnopparat N. Investigation of inclusion complexes of citronella oil, citronellal and citronellol with β-cyclodextrin for mosquito repellent. J Incl Phenom Macrocycl Chem. 2012;72:339–55.CrossRef
87.
go back to reference Bajaj S, Singla D, Sakhuja N. Stability testing of pharmaceutical products. J Appl Pharm Sci. 2012;2:129–38. Bajaj S, Singla D, Sakhuja N. Stability testing of pharmaceutical products. J Appl Pharm Sci. 2012;2:129–38.
88.
go back to reference Bezerra FM, Carmona ÓG, Carmona CG, Plath AMS, Lis M. Biofunctional wool using β-cyclodextrins as vehiculizer of citronella oil. Process Biochem. 2019;77:151–8.CrossRef Bezerra FM, Carmona ÓG, Carmona CG, Plath AMS, Lis M. Biofunctional wool using β-cyclodextrins as vehiculizer of citronella oil. Process Biochem. 2019;77:151–8.CrossRef
89.
go back to reference Salafsky B, Ramaswamy K, He YX, Li J, Shibuya T. Development and evaluation of LIPODEET, a new long-acting formulation of N, N-diethyl-m-toluamide (DEET) for the prevention of schistosomiasis. Am J Trop Med Hyg. 1999;61:743–50.PubMedCrossRef Salafsky B, Ramaswamy K, He YX, Li J, Shibuya T. Development and evaluation of LIPODEET, a new long-acting formulation of N, N-diethyl-m-toluamide (DEET) for the prevention of schistosomiasis. Am J Trop Med Hyg. 1999;61:743–50.PubMedCrossRef
90.
go back to reference Valenti D, De Logu A, Loy G, Sinico C, Bonsignore L, Cottiglia F, et al. Liposome-incorporated Santolina insularis essential oil: preparation, characterization and in vitro antiviral activity. J Liposome Res. 2001;11:73–90.PubMedCrossRef Valenti D, De Logu A, Loy G, Sinico C, Bonsignore L, Cottiglia F, et al. Liposome-incorporated Santolina insularis essential oil: preparation, characterization and in vitro antiviral activity. J Liposome Res. 2001;11:73–90.PubMedCrossRef
91.
go back to reference Hazrati H, Jahanbakhshi N, Rostamizadeh M. Hydophilic polypropylene microporous membrane for using in a membrane bioreactor system and optimization of preparation conditions by response surface methodology. Polyolefins J. 2018;5:97–109. Hazrati H, Jahanbakhshi N, Rostamizadeh M. Hydophilic polypropylene microporous membrane for using in a membrane bioreactor system and optimization of preparation conditions by response surface methodology. Polyolefins J. 2018;5:97–109.
92.
go back to reference Moghimipour E, Aghel N, Mahmoudabadi AZ, Ramezani Z, Handali S. Preparation and characterization of liposomes containing essential oil of Eucalyptus camaldulensis leaf. Jundishapur J Nat Pharm Prod. 2012;7:117.PubMedPubMedCentralCrossRef Moghimipour E, Aghel N, Mahmoudabadi AZ, Ramezani Z, Handali S. Preparation and characterization of liposomes containing essential oil of Eucalyptus camaldulensis leaf. Jundishapur J Nat Pharm Prod. 2012;7:117.PubMedPubMedCentralCrossRef
93.
go back to reference Sinico C, De Logu A, Lai F, Valenti D, Manconi M, Loy G, et al. Liposomal incorporation of Artemisia arborescens L. essential oil and in vitro antiviral activity. Eur J Pharm Biopharm. 2005;59:161–8.PubMedCrossRef Sinico C, De Logu A, Lai F, Valenti D, Manconi M, Loy G, et al. Liposomal incorporation of Artemisia arborescens L. essential oil and in vitro antiviral activity. Eur J Pharm Biopharm. 2005;59:161–8.PubMedCrossRef
94.
go back to reference Ortan A, Campeanu GH, Dinu-Pirvu C, Popescu L. Studies concerning the entrapment of Anethum graveolens essential oil in liposomes. Roum Biotechnol Lett. 2009;14:4411–7. Ortan A, Campeanu GH, Dinu-Pirvu C, Popescu L. Studies concerning the entrapment of Anethum graveolens essential oil in liposomes. Roum Biotechnol Lett. 2009;14:4411–7.
95.
go back to reference Wen Z, Liu B, Zheng Z, You X, Pu Y, Li Q. Preparation of liposomes entrapping essential oil from Atractylodes macrocephala Koidz by modified RESS technique. Chem Eng Res Des. 2010;88:1102–7.CrossRef Wen Z, Liu B, Zheng Z, You X, Pu Y, Li Q. Preparation of liposomes entrapping essential oil from Atractylodes macrocephala Koidz by modified RESS technique. Chem Eng Res Des. 2010;88:1102–7.CrossRef
96.
go back to reference Varona S, Martin A, Cocero MJ. Liposomal incorporation of lavandin essential oil by a thin-film hydration method and by particles from gas-saturated solutions. Ind Eng Chem Res. 2011;50:2088–97.CrossRef Varona S, Martin A, Cocero MJ. Liposomal incorporation of lavandin essential oil by a thin-film hydration method and by particles from gas-saturated solutions. Ind Eng Chem Res. 2011;50:2088–97.CrossRef
97.
go back to reference Xin Y, Fujimoto T, Uyama H. Facile fabrication of polycarbonate monolith by non-solvent induced phase separation method. Polymer. 2012;53:2847–53.CrossRef Xin Y, Fujimoto T, Uyama H. Facile fabrication of polycarbonate monolith by non-solvent induced phase separation method. Polymer. 2012;53:2847–53.CrossRef
98.
go back to reference Chen LG, Shanks R. Thermoplastic polymer-dispersed liquid crystals prepared from solvent-induced phase separation with predictions using solubility parameters. Liq Cryst. 2007;34:1349–56.CrossRef Chen LG, Shanks R. Thermoplastic polymer-dispersed liquid crystals prepared from solvent-induced phase separation with predictions using solubility parameters. Liq Cryst. 2007;34:1349–56.CrossRef
99.
go back to reference Castro AJ. Methods for making microporous products. Akzona Inc. 1981;4:247–498. Castro AJ. Methods for making microporous products. Akzona Inc. 1981;4:247–498.
100.
go back to reference Hellman DJ, Greenberg AR, Krantz WB. A novel process for membrane fabrication: thermally assisted evaporative phase separation (TAEPS). J Membr Sci. 2004;230:99–109.CrossRef Hellman DJ, Greenberg AR, Krantz WB. A novel process for membrane fabrication: thermally assisted evaporative phase separation (TAEPS). J Membr Sci. 2004;230:99–109.CrossRef
101.
go back to reference Liu S, Zhou C, Yu W. Phase separation and structure control in ultra-high molecular weight polyethylene microporous membrane. J Membr Sci. 2011;379:268–78.CrossRef Liu S, Zhou C, Yu W. Phase separation and structure control in ultra-high molecular weight polyethylene microporous membrane. J Membr Sci. 2011;379:268–78.CrossRef
102.
go back to reference Lloyd DR, Kinzer KE, Tseng HS. Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation. J Membr Sci. 1990;52:239–61.CrossRef Lloyd DR, Kinzer KE, Tseng HS. Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation. J Membr Sci. 1990;52:239–61.CrossRef
103.
go back to reference Liang HQ, Wu QY, Wan LS, Huang XJ, Xu ZK. Polar polymer membranes via thermally induced phase separation using a universal crystallizable diluent. J Membr Sci. 2013;446:482–91.CrossRef Liang HQ, Wu QY, Wan LS, Huang XJ, Xu ZK. Polar polymer membranes via thermally induced phase separation using a universal crystallizable diluent. J Membr Sci. 2013;446:482–91.CrossRef
104.
go back to reference Cha BJ, Char K, Kim JJ, Kim SS, Kim CK. The effects of diluent molecular weight on the structure of thermally-induced phase separation membrane. J Membr Sci. 1995;108:219–29.CrossRef Cha BJ, Char K, Kim JJ, Kim SS, Kim CK. The effects of diluent molecular weight on the structure of thermally-induced phase separation membrane. J Membr Sci. 1995;108:219–29.CrossRef
105.
go back to reference Kim S, Lee YM. Rigid and microporous polymers for gas separation membranes. Prog Polym Sci. 2015;43:1–32.CrossRef Kim S, Lee YM. Rigid and microporous polymers for gas separation membranes. Prog Polym Sci. 2015;43:1–32.CrossRef
106.
go back to reference Yang Z, Li P, Xie L, Wang Z, Wang SC. Preparation of iPP hollow-fiber microporous membranes via thermally induced phase separation with co-solvents of DBP and DOP. Desalination. 2006;192:168–81.CrossRef Yang Z, Li P, Xie L, Wang Z, Wang SC. Preparation of iPP hollow-fiber microporous membranes via thermally induced phase separation with co-solvents of DBP and DOP. Desalination. 2006;192:168–81.CrossRef
107.
go back to reference Lim GB, Kim SS, Ye Q, Wang YF, Lloyd DR. Microporous membrane formation via thermally-induced phase separation. IV. Effect of isotactic polypropylene crystallization kinetics on membrane structure. J Membr Sci. 1991;64:31–40.CrossRef Lim GB, Kim SS, Ye Q, Wang YF, Lloyd DR. Microporous membrane formation via thermally-induced phase separation. IV. Effect of isotactic polypropylene crystallization kinetics on membrane structure. J Membr Sci. 1991;64:31–40.CrossRef
108.
go back to reference Kim SS, Lloyd DR. Microporous membrane formation via thermally-induced phase separation. III. Effect of thermodynamic interactions on the structure of isotactic polypropylene membranes. J Membr Sci. 1991;64:13–29.CrossRef Kim SS, Lloyd DR. Microporous membrane formation via thermally-induced phase separation. III. Effect of thermodynamic interactions on the structure of isotactic polypropylene membranes. J Membr Sci. 1991;64:13–29.CrossRef
109.
go back to reference Rajabzadeh S, Yoshimoto S, Teramoto M, Al-Marzouqi M, Matsuyama H. CO2 absorption by using PVDF hollow fiber membrane contactors with various membrane structures. Sep Purif Technol. 2009;69:210–20.CrossRef Rajabzadeh S, Yoshimoto S, Teramoto M, Al-Marzouqi M, Matsuyama H. CO2 absorption by using PVDF hollow fiber membrane contactors with various membrane structures. Sep Purif Technol. 2009;69:210–20.CrossRef
110.
go back to reference Lin Y, Tang Y, Ma H, Yang J, Tian Y, Ma W, et al. Formation of a bicontinuous structure membrane of polyvinylidene fluoride in diphenyl carbonate diluent via thermally induced phase separation. J Appl Polym Sci. 2009;114:1523–8.CrossRef Lin Y, Tang Y, Ma H, Yang J, Tian Y, Ma W, et al. Formation of a bicontinuous structure membrane of polyvinylidene fluoride in diphenyl carbonate diluent via thermally induced phase separation. J Appl Polym Sci. 2009;114:1523–8.CrossRef
111.
go back to reference Yang J, Li DW, Lin YK, Wang XL, Tian F, Wang Z. Formation of a bicontinuous structure membrane of polyvinylidene fluoride in diphenyl ketone diluent via thermally induced phase separation. J Appl Polym Sci. 2008;110:341–7.CrossRef Yang J, Li DW, Lin YK, Wang XL, Tian F, Wang Z. Formation of a bicontinuous structure membrane of polyvinylidene fluoride in diphenyl ketone diluent via thermally induced phase separation. J Appl Polym Sci. 2008;110:341–7.CrossRef
112.
go back to reference Li X, Wang Y, Lu X, Xiao C. Morphology changes of polyvinylidene fluoride membrane under different phase separation mechanisms. J Membr Sci. 2008;320:477–82.CrossRef Li X, Wang Y, Lu X, Xiao C. Morphology changes of polyvinylidene fluoride membrane under different phase separation mechanisms. J Membr Sci. 2008;320:477–82.CrossRef
113.
go back to reference Zhou J, Zhang H, Wang H, Du Q. Effect of cooling baths on EVOH microporous membrane structures in thermally induced phase separation. J Membr Sci. 2009;343:104–9.CrossRef Zhou J, Zhang H, Wang H, Du Q. Effect of cooling baths on EVOH microporous membrane structures in thermally induced phase separation. J Membr Sci. 2009;343:104–9.CrossRef
114.
go back to reference Shang M, Matsuyama H, Teramoto M, Lloyd DR, Kubota N. Preparation and membrane performance of poly (ethylene-co-vinyl alcohol) hollow fiber membrane via thermally induced phase separation. Polymer. 2003;44:7441–7.CrossRef Shang M, Matsuyama H, Teramoto M, Lloyd DR, Kubota N. Preparation and membrane performance of poly (ethylene-co-vinyl alcohol) hollow fiber membrane via thermally induced phase separation. Polymer. 2003;44:7441–7.CrossRef
115.
go back to reference Kim JK, Taki K, Ohshima M. Preparation of a unique microporous structure via two step phase separation in the course of drying a ternary polymer solution. Langmuir. 2007;23:12397–405.PubMedCrossRef Kim JK, Taki K, Ohshima M. Preparation of a unique microporous structure via two step phase separation in the course of drying a ternary polymer solution. Langmuir. 2007;23:12397–405.PubMedCrossRef
116.
go back to reference Matsuyama H, Yano H, Maki T, Teramoto M, Mishima K, Matsuyama K. 2001. Formation of porous flat membrane by phase separation with supercritical CO2. J Membr Sci. 2001;194:157–163. Matsuyama H, Yano H, Maki T, Teramoto M, Mishima K, Matsuyama K. 2001. Formation of porous flat membrane by phase separation with supercritical CO2. J Membr Sci. 2001;194:157–163.
117.
go back to reference Akhtar MU, Focke WW. Trapping citronellal in a microporous polyethylene matrix. Thermochim Acta. 2015;613:61–5.CrossRef Akhtar MU, Focke WW. Trapping citronellal in a microporous polyethylene matrix. Thermochim Acta. 2015;613:61–5.CrossRef
118.
go back to reference Wang Z, Yu W, Zhou C. Preparation of polyethylene microporous membranes with high water permeability from thermally induced multiple phase transitions. Polymer. 2015;56:535–44.CrossRef Wang Z, Yu W, Zhou C. Preparation of polyethylene microporous membranes with high water permeability from thermally induced multiple phase transitions. Polymer. 2015;56:535–44.CrossRef
119.
go back to reference Gong J, Yang L, Zhou X, Deng Z, Lei G, Wang W. Effects of low atmospheric pressure on combustion characteristics of polyethylene and polymethyl methacrylate. J Fire Sci. 2012;30:224–39.CrossRef Gong J, Yang L, Zhou X, Deng Z, Lei G, Wang W. Effects of low atmospheric pressure on combustion characteristics of polyethylene and polymethyl methacrylate. J Fire Sci. 2012;30:224–39.CrossRef
120.
go back to reference Shen L, Peng M, Qiao F, Zhang JL. Preparation of microporous ultra high molecular weight polyethylene (UHMWPE) by thermally induced phase separation of a UHMWPE/liquid paraffin mixture. Chinese J Polym Sci. 2008;26:653–7.CrossRef Shen L, Peng M, Qiao F, Zhang JL. Preparation of microporous ultra high molecular weight polyethylene (UHMWPE) by thermally induced phase separation of a UHMWPE/liquid paraffin mixture. Chinese J Polym Sci. 2008;26:653–7.CrossRef
121.
go back to reference Matsuyama H, Okafuji H, Maki T, Teramoto M, Kubota N. Preparation of polyethylene hollow fiber membrane via thermally induced phase separation. J Membr Sci. 2003;223:119–26.CrossRef Matsuyama H, Okafuji H, Maki T, Teramoto M, Kubota N. Preparation of polyethylene hollow fiber membrane via thermally induced phase separation. J Membr Sci. 2003;223:119–26.CrossRef
122.
go back to reference Wenjun LI, Youxin Y, Israel C. Formation and microstructure of polyethylene microporous membranes through thermally induced phase separation. Chinese J Polym Sci. 1995;13:7–19. Wenjun LI, Youxin Y, Israel C. Formation and microstructure of polyethylene microporous membranes through thermally induced phase separation. Chinese J Polym Sci. 1995;13:7–19.
123.
go back to reference Sungkapreecha C, Iqbal N, Gohn AM, Focke WW, Androsch R. Phase behavior of the polymer/drug system PLA/DEET. Polymer. 2017;126:116–25.CrossRef Sungkapreecha C, Iqbal N, Gohn AM, Focke WW, Androsch R. Phase behavior of the polymer/drug system PLA/DEET. Polymer. 2017;126:116–25.CrossRef
124.
go back to reference Burghardt W. Phase diagrams for binary polymer systems exhibiting both crystallization and limited liquid-liquid miscibility. Macromolecules. 1989;22:2482–6.CrossRef Burghardt W. Phase diagrams for binary polymer systems exhibiting both crystallization and limited liquid-liquid miscibility. Macromolecules. 1989;22:2482–6.CrossRef
125.
go back to reference Charlet G, Delmas G. Thermodynamic properties of polyolefin solutions at high temperature: 1. Lower critical solubility temperatures of polyethylene, polypropylene and ethylene-propylene copolymers in hydrocarbon solvents. Polymer. 1981;22:1181–9.CrossRef Charlet G, Delmas G. Thermodynamic properties of polyolefin solutions at high temperature: 1. Lower critical solubility temperatures of polyethylene, polypropylene and ethylene-propylene copolymers in hydrocarbon solvents. Polymer. 1981;22:1181–9.CrossRef
126.
go back to reference Nunes SP, Inoue T. Evidence for spinodal decomposition and nucleation and growth mechanisms during membrane formation. J Membr Sci. 1996;111:93–103.CrossRef Nunes SP, Inoue T. Evidence for spinodal decomposition and nucleation and growth mechanisms during membrane formation. J Membr Sci. 1996;111:93–103.CrossRef
127.
go back to reference Subramanian MN. Basics of polymer chemistry. 1st ed. India: River Publishers; 2017. Subramanian MN. Basics of polymer chemistry. 1st ed. India: River Publishers; 2017.
128.
go back to reference Sadiku R, Ibrahim D, Agboola O, Owonubi SJ, Fasiku VO, Kupolati WK, et al Automotive components composed of polyolefins. In: Jackson D, Ed. In Polyolefin Fibres. Cambridge:Woodhead Publishing; 2017. p. 449–496. Sadiku R, Ibrahim D, Agboola O, Owonubi SJ, Fasiku VO, Kupolati WK, et al Automotive components composed of polyolefins. In: Jackson D, Ed. In Polyolefin Fibres. Cambridge:Woodhead Publishing; 2017. p. 449–496.
129.
go back to reference Hammen CR. Product having a paper layer and a film layer and methods of forming such a product. US Patent Application. 2014;14/283:487. Hammen CR. Product having a paper layer and a film layer and methods of forming such a product. US Patent Application. 2014;14/283:487.
130.
go back to reference Chrissopoulou K, Anastasiadis SH. Polyolefin nanocomposites with functional compatibilizers. In: Mittal V, editor. Advances in polyolefin nanocomposites. London: CRC Press, Taylor & Francis Group; 2010. p. 365. Chrissopoulou K, Anastasiadis SH. Polyolefin nanocomposites with functional compatibilizers. In: Mittal V, editor. Advances in polyolefin nanocomposites. London: CRC Press, Taylor & Francis Group; 2010. p. 365.
131.
go back to reference Chrissopoulou K, Anastasiadis SH. Polyolefin/layered silicate nanocomposites with functional compatibilizers. Eur Polym J. 2011;47:600–13.CrossRef Chrissopoulou K, Anastasiadis SH. Polyolefin/layered silicate nanocomposites with functional compatibilizers. Eur Polym J. 2011;47:600–13.CrossRef
132.
go back to reference Marchante V, Beltrán M. Montmorillonite Polyethylene Nanocomposites. In: Visakh PM, Morlanes MJM, editors. Polyethyl based blends, compos nanocomposities. Hoboken: John Wiley & Sons, Inc.; 2015. pp. 257–80.CrossRef Marchante V, Beltrán M. Montmorillonite Polyethylene Nanocomposites. In: Visakh PM, Morlanes MJM, editors. Polyethyl based blends, compos nanocomposities. Hoboken: John Wiley & Sons, Inc.; 2015. pp. 257–80.CrossRef
133.
go back to reference Hong SI, Rhim JW. Preparation and properties of melt-intercalated linear low density polyethylene/clay nanocomposite films prepared by blow extrusion. Lwt-Food Sci Technol. 2012;48:43–51.CrossRef Hong SI, Rhim JW. Preparation and properties of melt-intercalated linear low density polyethylene/clay nanocomposite films prepared by blow extrusion. Lwt-Food Sci Technol. 2012;48:43–51.CrossRef
134.
go back to reference Xu B, Zheng Q, Song Y, Shangguan Y. Calculating barrier properties of polymer/clay nanocomposites: effects of clay layers. Polymer. 2006;47:2904–10.CrossRef Xu B, Zheng Q, Song Y, Shangguan Y. Calculating barrier properties of polymer/clay nanocomposites: effects of clay layers. Polymer. 2006;47:2904–10.CrossRef
135.
go back to reference Pavlidou S, Papaspyrides CD. A review on polymer–layered silicate nanocomposites. Prog Polym Sci. 2008;33:1119–8.CrossRef Pavlidou S, Papaspyrides CD. A review on polymer–layered silicate nanocomposites. Prog Polym Sci. 2008;33:1119–8.CrossRef
136.
go back to reference Rahnama MR, Barikani M, Barmar M, Honarkar H. An investigation into the effects of different nanoclays on polyurethane nanocomposites properties. Polym Plast Technol Eng. 2014;53:801–10.CrossRef Rahnama MR, Barikani M, Barmar M, Honarkar H. An investigation into the effects of different nanoclays on polyurethane nanocomposites properties. Polym Plast Technol Eng. 2014;53:801–10.CrossRef
137.
go back to reference Nikkahah SJ, Ramazani SAA, Baniasadi H, Tavakolzadeh F. Investigation of properties of polyethylene/clay nanocomposites prepared by new in situ Ziegler–Natta catalyst. Mater Des. 2009;30:2309–15.CrossRef Nikkahah SJ, Ramazani SAA, Baniasadi H, Tavakolzadeh F. Investigation of properties of polyethylene/clay nanocomposites prepared by new in situ Ziegler–Natta catalyst. Mater Des. 2009;30:2309–15.CrossRef
138.
go back to reference Golebiewski J, Rozanski A, Dzwonkowski J, Galeski A. Low density polyethylene–montmorillonite nanocomposites for film blowing. Eur Polym J. 2008;44:270–86.CrossRef Golebiewski J, Rozanski A, Dzwonkowski J, Galeski A. Low density polyethylene–montmorillonite nanocomposites for film blowing. Eur Polym J. 2008;44:270–86.CrossRef
139.
go back to reference Corcione CE, Prinari P, Cannoletta D, Mensitieri G, Maffezzoli A. Synthesis and characterization of clay-nanocomposite solvent-based polyurethane adhesives. Int J Adhesion Adhes. 2008;28:91–100.CrossRef Corcione CE, Prinari P, Cannoletta D, Mensitieri G, Maffezzoli A. Synthesis and characterization of clay-nanocomposite solvent-based polyurethane adhesives. Int J Adhesion Adhes. 2008;28:91–100.CrossRef
140.
go back to reference Durmuş A, Woo M, Kaşgöz A, Macosko CW, Tsapatsis M. Intercalated linear low density polyethylene (LLDPE)/clay nanocomposites prepared with oxidized polyethylene as a new type compatibilizer: structural, mechanical and barrier properties. Eur Polym J. 2007;43:3737–49.CrossRef Durmuş A, Woo M, Kaşgöz A, Macosko CW, Tsapatsis M. Intercalated linear low density polyethylene (LLDPE)/clay nanocomposites prepared with oxidized polyethylene as a new type compatibilizer: structural, mechanical and barrier properties. Eur Polym J. 2007;43:3737–49.CrossRef
141.
go back to reference Hotta S, Paul DR. Nanocomposites formed from linear low density polyethylene and organoclays. Polymer. 2004;45:7639–54.CrossRef Hotta S, Paul DR. Nanocomposites formed from linear low density polyethylene and organoclays. Polymer. 2004;45:7639–54.CrossRef
142.
go back to reference Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O. Synthesis and properties of polyimide–clay hybrid. J Polym Sci A Polym Chem. 1993;31:2493–8.CrossRef Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O. Synthesis and properties of polyimide–clay hybrid. J Polym Sci A Polym Chem. 1993;31:2493–8.CrossRef
143.
go back to reference Brade WR, Davis TD. Evaporative release of repellent chemicals from porous polymers. J Cell Plast. 1983;19:309–11.CrossRef Brade WR, Davis TD. Evaporative release of repellent chemicals from porous polymers. J Cell Plast. 1983;19:309–11.CrossRef
144.
go back to reference Tramon C. Modeling the controlled release of essential oils from a polymer matrix—a special case. Ind Crops Prod. 2014;61:23–30.CrossRef Tramon C. Modeling the controlled release of essential oils from a polymer matrix—a special case. Ind Crops Prod. 2014;61:23–30.CrossRef
145.
go back to reference Nogueira BT, Perdiz SJ, Ricci JE, Regina EMC. Polymer-based drug delivery systems applied to insects repellents devices: a review. Curr Drug Deliv. 2016;13:221–35.CrossRef Nogueira BT, Perdiz SJ, Ricci JE, Regina EMC. Polymer-based drug delivery systems applied to insects repellents devices: a review. Curr Drug Deliv. 2016;13:221–35.CrossRef
146.
go back to reference Namvar A, Bolhassani A, Khairkhah N, Motevalli F. Physicochemical properties of polymers: An important system to overcome the cell barriers in gene transfection. Biopolymers. 2015;103:363–75.PubMedCrossRef Namvar A, Bolhassani A, Khairkhah N, Motevalli F. Physicochemical properties of polymers: An important system to overcome the cell barriers in gene transfection. Biopolymers. 2015;103:363–75.PubMedCrossRef
147.
go back to reference Chattopadhyay P, Dhiman S, Borah S, Rabha B, Chaurasia AK, Veer V. Essential oil based polymeric patch development and evaluating its repellent activity against mosquitoes. Acta Trop. 2015;147:45–53.PubMedCrossRef Chattopadhyay P, Dhiman S, Borah S, Rabha B, Chaurasia AK, Veer V. Essential oil based polymeric patch development and evaluating its repellent activity against mosquitoes. Acta Trop. 2015;147:45–53.PubMedCrossRef
148.
go back to reference Islam J, Zaman K, Chakrabarti S, Bora NS, Pathak MP, Mandal S, et al. Exploration of ethyl anthranilate-loaded monolithic matrix-type prophylactic polymeric patch. J Food Drug Anal. 2017;25:968–75.PubMedCrossRef Islam J, Zaman K, Chakrabarti S, Bora NS, Pathak MP, Mandal S, et al. Exploration of ethyl anthranilate-loaded monolithic matrix-type prophylactic polymeric patch. J Food Drug Anal. 2017;25:968–75.PubMedCrossRef
149.
go back to reference Koren G, Matsui D, Bailey B. DEET-based insect repellents: safety implications for children and pregnant and lactating women. Cmaj. 2003;169:209–12.PubMedPubMedCentral Koren G, Matsui D, Bailey B. DEET-based insect repellents: safety implications for children and pregnant and lactating women. Cmaj. 2003;169:209–12.PubMedPubMedCentral
150.
go back to reference Fradin MS. Mosquitoes and mosquito repellents: a clinician’s guide. Ann Intern Med. 1998;128:931–40.PubMedCrossRef Fradin MS. Mosquitoes and mosquito repellents: a clinician’s guide. Ann Intern Med. 1998;128:931–40.PubMedCrossRef
151.
go back to reference Mapossa AB, Sitoe A, Focke WW, Izadi H, du Toit EL, Androsch R, et al. Mosquito repellent thermal stability, permeability and air volatility. Pest Manag Sci. 2020;76:1112–20.PubMedCrossRef Mapossa AB, Sitoe A, Focke WW, Izadi H, du Toit EL, Androsch R, et al. Mosquito repellent thermal stability, permeability and air volatility. Pest Manag Sci. 2020;76:1112–20.PubMedCrossRef
152.
go back to reference Annandarajah C, Norris EJ, Funk R, Xiang C, Grewell D, Coats JR, et al. Biobased plastics with insect-repellent functionality. Polym Eng Sci. 2019;59:E460-7.CrossRef Annandarajah C, Norris EJ, Funk R, Xiang C, Grewell D, Coats JR, et al. Biobased plastics with insect-repellent functionality. Polym Eng Sci. 2019;59:E460-7.CrossRef
153.
go back to reference Maibach HI, Akers WA, Johnson HL, Khan AA, Skinner WA. Topical insect repellents. Clin Pharmacol Ther. 1974;16:970–3.PubMedCrossRef Maibach HI, Akers WA, Johnson HL, Khan AA, Skinner WA. Topical insect repellents. Clin Pharmacol Ther. 1974;16:970–3.PubMedCrossRef
154.
go back to reference Smith CN. Factors affecting the protection period of mosquito repellents. 1st edn. US Department of Agriculture, 1963. Smith CN. Factors affecting the protection period of mosquito repellents. 1st edn. US Department of Agriculture, 1963.
155.
go back to reference Barnard DR. Biological assay methods for mosquito repellents. J Am Mosq Control Assoc. 2005;21:12–6.PubMedCrossRef Barnard DR. Biological assay methods for mosquito repellents. J Am Mosq Control Assoc. 2005;21:12–6.PubMedCrossRef
156.
go back to reference Gabel ML, Spencer TS, Akers WA. Evaporation rates and protection times of mosquitorepellents. Mosq News. 1976;36:141–6. Gabel ML, Spencer TS, Akers WA. Evaporation rates and protection times of mosquitorepellents. Mosq News. 1976;36:141–6.
157.
go back to reference Rueda LM, Rutledge LC, Gupta RK. Effect of skin abrasions on the efficacy of the repellent deft against Aedes aegypti. J Am Mosq Control Assoc. 1998;14:178–82.PubMed Rueda LM, Rutledge LC, Gupta RK. Effect of skin abrasions on the efficacy of the repellent deft against Aedes aegypti. J Am Mosq Control Assoc. 1998;14:178–82.PubMed
158.
go back to reference Focke W. A revised equation for estimating the vapour pressure of low-volatility substances from isothermal TG data. J Therm Anal Calorim. 2003;74:97–107.CrossRef Focke W. A revised equation for estimating the vapour pressure of low-volatility substances from isothermal TG data. J Therm Anal Calorim. 2003;74:97–107.CrossRef
159.
go back to reference Kasman S, Roadhouse LAO, Wright GF. Studies in testing insect repellents. Mosq News. 1953;13:116–23. Kasman S, Roadhouse LAO, Wright GF. Studies in testing insect repellents. Mosq News. 1953;13:116–23.
160.
go back to reference Khan AA, Maibach HI, Skidmore DL. A study of insect repellents. 2. Effect of temperature on protection time. J Econ Entomol. 1973;66:437–8.CrossRef Khan AA, Maibach HI, Skidmore DL. A study of insect repellents. 2. Effect of temperature on protection time. J Econ Entomol. 1973;66:437–8.CrossRef
161.
go back to reference Chung SK, Seo JY, Lim JH, Park HH, Yea MJ, Park HJ. Microencapsulation of essential oil for insect repellent in food packaging system. J Food Sci. 2013;78:E709-14.PubMedCrossRef Chung SK, Seo JY, Lim JH, Park HH, Yea MJ, Park HJ. Microencapsulation of essential oil for insect repellent in food packaging system. J Food Sci. 2013;78:E709-14.PubMedCrossRef
162.
go back to reference Mapossa AB. Slow release of mosquito repellents from microporous polyolefin strands. . (2019). Accessed 23 Feb 2021. Mapossa AB. Slow release of mosquito repellents from microporous polyolefin strands. . (2019). Accessed 23 Feb 2021.
163.
go back to reference Bruschi ML. Strategies to modify the drug release from pharmaceutical systems. Cambridge, Woodhead Publishing, UK; 2015. Bruschi ML. Strategies to modify the drug release from pharmaceutical systems. Cambridge, Woodhead Publishing, UK; 2015.
164.
go back to reference Peppas NA, Narasimhan B. Mathematical models in drug delivery: how modeling has shaped the way we design new drug delivery systems. J Control Release. 2014;190:75–81.PubMedCrossRef Peppas NA, Narasimhan B. Mathematical models in drug delivery: how modeling has shaped the way we design new drug delivery systems. J Control Release. 2014;190:75–81.PubMedCrossRef
165.
go back to reference Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5:37–42.CrossRef Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5:37–42.CrossRef
166.
go back to reference Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5:23–36.CrossRef Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5:23–36.CrossRef
167.
go back to reference Peppas NA, Sahlin JJ. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm. 1989;57:169–72.CrossRef Peppas NA, Sahlin JJ. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm. 1989;57:169–72.CrossRef
168.
go back to reference Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35.CrossRef Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35.CrossRef
169.
go back to reference Gomes GM, Bigon JP, Montoro FE, Lona LMF. Encapsulation of N, N-diethyl‐meta‐toluamide (DEET) via miniemulsion polymerization for temperature controlled release. J Appl Polym Sci. 2019;136:47139.CrossRef Gomes GM, Bigon JP, Montoro FE, Lona LMF. Encapsulation of N, N-diethyl‐meta‐toluamide (DEET) via miniemulsion polymerization for temperature controlled release. J Appl Polym Sci. 2019;136:47139.CrossRef
170.
go back to reference Sitoe A, Mapossa AB, Focke WW, Muiambo H, Androsch R, Wesley-Smith J. Development, characterization and modeling of mosquito repellent release from microporous devices. SPE Polymers. 2020;1:90–100.CrossRef Sitoe A, Mapossa AB, Focke WW, Muiambo H, Androsch R, Wesley-Smith J. Development, characterization and modeling of mosquito repellent release from microporous devices. SPE Polymers. 2020;1:90–100.CrossRef
171.
go back to reference Marabi A, Livings S, Jacobson M, Saguy IS. Normalized Weibull distribution for modeling rehydration of food particulates. Eur Food Res Technol. 2003;217:311–8.CrossRef Marabi A, Livings S, Jacobson M, Saguy IS. Normalized Weibull distribution for modeling rehydration of food particulates. Eur Food Res Technol. 2003;217:311–8.CrossRef
172.
go back to reference Papadopoulou V, Kosmidis K, Vlachou M, Macheras P. On the use of the Weibull function for the discernment of drug release mechanisms. Int J Pharm. 2006;309:44–50.PubMedCrossRef Papadopoulou V, Kosmidis K, Vlachou M, Macheras P. On the use of the Weibull function for the discernment of drug release mechanisms. Int J Pharm. 2006;309:44–50.PubMedCrossRef
173.
go back to reference Cunha LM, Oliveira FA, Oliveira JC. Optimal experimental design for estimating the kinetic parameters of processes described by the Weibull probability distribution function. J Food Eng. 1998;37:175–91.CrossRef Cunha LM, Oliveira FA, Oliveira JC. Optimal experimental design for estimating the kinetic parameters of processes described by the Weibull probability distribution function. J Food Eng. 1998;37:175–91.CrossRef
174.
go back to reference Mateus ML, Lindinger C, Gumy JC, Liardon R. Release kinetics of volatile organic compounds from roasted and ground coffee: online measurements by PTR-MS and mathematical modeling. J Agric Food Chem. 2007;55:10117–28.PubMedCrossRef Mateus ML, Lindinger C, Gumy JC, Liardon R. Release kinetics of volatile organic compounds from roasted and ground coffee: online measurements by PTR-MS and mathematical modeling. J Agric Food Chem. 2007;55:10117–28.PubMedCrossRef
175.
go back to reference Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67:217–23.PubMed Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67:217–23.PubMed
176.
go back to reference Mapossa AB, Focke WW, Sitoe A, Androsch R. November. Mosquito repellent microporous polyolefin strands. AIP Conf Proc. 2020;2289:020062. Mapossa AB, Focke WW, Sitoe A, Androsch R. November. Mosquito repellent microporous polyolefin strands. AIP Conf Proc. 2020;2289:020062.
177.
go back to reference Iliou K, Kikionis S, Petrakis PV, Ioannou E, Roussis V. Citronella oil-loaded electrospun micro/nanofibrous matrices as sustained repellency systems for the Asian tiger mosquito Aedes albopictus. Pest Manag Sci. 2019;75:2142–7.PubMedCrossRef Iliou K, Kikionis S, Petrakis PV, Ioannou E, Roussis V. Citronella oil-loaded electrospun micro/nanofibrous matrices as sustained repellency systems for the Asian tiger mosquito Aedes albopictus. Pest Manag Sci. 2019;75:2142–7.PubMedCrossRef
178.
go back to reference Hernández-López M, Correa-Pacheco ZN, Bautista-Baños S, Zavaleta-Avejar L, Benítez-Jiménez JJ, Sabino-Gutiérrez MA, et al. Bio-based composite fibers from pine essential oil and PLA/PBAT polymer blend. Morphological, physicochemical, thermal and mechanical characterization. Mater Chem Phys. 2019;234:345–53.CrossRef Hernández-López M, Correa-Pacheco ZN, Bautista-Baños S, Zavaleta-Avejar L, Benítez-Jiménez JJ, Sabino-Gutiérrez MA, et al. Bio-based composite fibers from pine essential oil and PLA/PBAT polymer blend. Morphological, physicochemical, thermal and mechanical characterization. Mater Chem Phys. 2019;234:345–53.CrossRef
179.
go back to reference Li PH, Lu WC. Effects of storage conditions on the physical stability of d-limonene nanoemulsion. Food Hydrocoll. 2016;53:218–24.CrossRef Li PH, Lu WC. Effects of storage conditions on the physical stability of d-limonene nanoemulsion. Food Hydrocoll. 2016;53:218–24.CrossRef
180.
go back to reference Shahavi MH, Hosseini M, Jahanshahi M, Meyer RL, Darzi GN. Evaluation of critical parameters for preparation of stable clove oil nanoemulsion. Arab J Chem. 2019;12:3225–30.CrossRef Shahavi MH, Hosseini M, Jahanshahi M, Meyer RL, Darzi GN. Evaluation of critical parameters for preparation of stable clove oil nanoemulsion. Arab J Chem. 2019;12:3225–30.CrossRef
181.
go back to reference Soares-Latour EM, Bernard J, Chambert S, Fleury E, Sintes-Zydowicz N. Environmentally benign 100 % bio-based oligoamide microcapsules. Colloid Surf A-Physicochem Eng Asp. 2017;524:193–203.CrossRef Soares-Latour EM, Bernard J, Chambert S, Fleury E, Sintes-Zydowicz N. Environmentally benign 100 % bio-based oligoamide microcapsules. Colloid Surf A-Physicochem Eng Asp. 2017;524:193–203.CrossRef
182.
go back to reference Banerjee S, Chattopadhyay P, Ghosh A, Goyary D, Karmakar S, Veer V. Influence of process variables on essential oil microcapsule properties by carbohydrate polymer–protein blends. Carbohydr Polym. 2013;93:691–7.PubMedCrossRef Banerjee S, Chattopadhyay P, Ghosh A, Goyary D, Karmakar S, Veer V. Influence of process variables on essential oil microcapsule properties by carbohydrate polymer–protein blends. Carbohydr Polym. 2013;93:691–7.PubMedCrossRef
183.
go back to reference Yingngam B, Kacha W, Rungseevijitprapa W, Sudta P, Prasitpuriprecha C, Brantner A. Response surface optimization of spray-dried citronella oil microcapsules with reduced volatility and irritation for cosmetic textile uses. Powder Technol. 2019;355:372–85.CrossRef Yingngam B, Kacha W, Rungseevijitprapa W, Sudta P, Prasitpuriprecha C, Brantner A. Response surface optimization of spray-dried citronella oil microcapsules with reduced volatility and irritation for cosmetic textile uses. Powder Technol. 2019;355:372–85.CrossRef
184.
go back to reference Misni N, Nor ZM, Ahmad R. Repellent effect of microencapsulated essential oil in lotion formulation against mosquito bites. J Vector Borne Dis. 2017;54:44–53.PubMed Misni N, Nor ZM, Ahmad R. Repellent effect of microencapsulated essential oil in lotion formulation against mosquito bites. J Vector Borne Dis. 2017;54:44–53.PubMed
185.
go back to reference Kulkarni SS, Mohan MS, Jagtap SB, Dandage RG, Jadhav AS, Shukla PG. Polyurea and polyurethane microcapsules containing mosquito repellent DEET: preparation and characterization. Appl Sci Adv Mat Int. 2015;2:7–10. Kulkarni SS, Mohan MS, Jagtap SB, Dandage RG, Jadhav AS, Shukla PG. Polyurea and polyurethane microcapsules containing mosquito repellent DEET: preparation and characterization. Appl Sci Adv Mat Int. 2015;2:7–10.
186.
go back to reference Kulkarni SS, Jagtap SB, Patil VD, Shukla PG. Poly (methyl methacrylate) Coated Polyurea Microcapsules Containing DEET. Appl Sci Adv Mat Int. 2016;2:81–4. Kulkarni SS, Jagtap SB, Patil VD, Shukla PG. Poly (methyl methacrylate) Coated Polyurea Microcapsules Containing DEET. Appl Sci Adv Mat Int. 2016;2:81–4.
187.
go back to reference Proniuk S, Liederer BM, Dixon SE, Rein JA, Kallen MA, Blanchard J. Topical formulation studies with DEET (N, N-diethyl‐3‐methylbenzamide) and cyclodextrins. J Pharm Sci. 2002;91:101–10.PubMedCrossRef Proniuk S, Liederer BM, Dixon SE, Rein JA, Kallen MA, Blanchard J. Topical formulation studies with DEET (N, N-diethyl‐3‐methylbenzamide) and cyclodextrins. J Pharm Sci. 2002;91:101–10.PubMedCrossRef
188.
go back to reference Scacchetti FAP, Pinto E, Soares GMB. Functionalization and characterization of cotton with phase change materials and thyme oil encapsulated in beta-cyclodextrins. Prog Org Coat. 2017;107:64–74.CrossRef Scacchetti FAP, Pinto E, Soares GMB. Functionalization and characterization of cotton with phase change materials and thyme oil encapsulated in beta-cyclodextrins. Prog Org Coat. 2017;107:64–74.CrossRef
189.
go back to reference Menezes PP, Serafini MR, Santana BV, Nunes RS, Quintans LJ Jr, Silva GF, et al. Solid-state β-cyclodextrin complexes containing geraniol. Thermochim Acta. 2012;548:45–50.CrossRef Menezes PP, Serafini MR, Santana BV, Nunes RS, Quintans LJ Jr, Silva GF, et al. Solid-state β-cyclodextrin complexes containing geraniol. Thermochim Acta. 2012;548:45–50.CrossRef
190.
go back to reference Campos EV, Proença PL, Oliveira JL, Melville CC, Della Vechia JF, De Andrade DJ, et al. Chitosan nanoparticles functionalized with β-cyclodextrin: a promising carrier for botanical pesticides. Sci Rep. 2018;8:2067.PubMedPubMedCentralCrossRef Campos EV, Proença PL, Oliveira JL, Melville CC, Della Vechia JF, De Andrade DJ, et al. Chitosan nanoparticles functionalized with β-cyclodextrin: a promising carrier for botanical pesticides. Sci Rep. 2018;8:2067.PubMedPubMedCentralCrossRef
191.
go back to reference Pinto IC, Cerqueira-Coutinho CS, Santos EP, Carmo FA, Ricci-Junior E. Development and characterization of repellent formulations based on nanostructured hydrogels. Drug Dev Ind Pharm. 2017;43:67–73.PubMedCrossRef Pinto IC, Cerqueira-Coutinho CS, Santos EP, Carmo FA, Ricci-Junior E. Development and characterization of repellent formulations based on nanostructured hydrogels. Drug Dev Ind Pharm. 2017;43:67–73.PubMedCrossRef
192.
go back to reference Eden WT, Alighiri D, Supardi KI, Cahyono E. The mosquito repellent activity of the active component of air freshener gel from Java Citronella oil (Cymbopogon winterianus). J Parasitol Res. 2020;2020:9053741.PubMedPubMedCentralCrossRef Eden WT, Alighiri D, Supardi KI, Cahyono E. The mosquito repellent activity of the active component of air freshener gel from Java Citronella oil (Cymbopogon winterianus). J Parasitol Res. 2020;2020:9053741.PubMedPubMedCentralCrossRef
193.
go back to reference Govindarajan M. Larvicidal and repellent properties of some essential oils against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pac J Trop Dis. 2011;4:106–11.CrossRef Govindarajan M. Larvicidal and repellent properties of some essential oils against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pac J Trop Dis. 2011;4:106–11.CrossRef
194.
go back to reference Moore SJ, Darling ST, Sihuincha M, Padilla N, Devine GJ. A low-cost repellent for malaria vectors in the Americas: results of two field trials in Guatemala and Peru. Malar J. 2007;6:101.PubMedPubMedCentralCrossRef Moore SJ, Darling ST, Sihuincha M, Padilla N, Devine GJ. A low-cost repellent for malaria vectors in the Americas: results of two field trials in Guatemala and Peru. Malar J. 2007;6:101.PubMedPubMedCentralCrossRef
195.
go back to reference Benelli G, Pavela R, Rakotosaona R, Nzekoue FK, Canale A, Nicoletti M, et al. Insecticidal and mosquito repellent efficacy of the essential oils from stem bark and wood of Hazomalania voyronii. J Ethnopharmacol. 2020;248:112333.PubMedCrossRef Benelli G, Pavela R, Rakotosaona R, Nzekoue FK, Canale A, Nicoletti M, et al. Insecticidal and mosquito repellent efficacy of the essential oils from stem bark and wood of Hazomalania voyronii. J Ethnopharmacol. 2020;248:112333.PubMedCrossRef
196.
go back to reference Phukerd U, Soonwera M. Repellency of essential oils extracted from Thai native plants against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say). Parasitol Res. 2014;113:3333–40.PubMedCrossRef Phukerd U, Soonwera M. Repellency of essential oils extracted from Thai native plants against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say). Parasitol Res. 2014;113:3333–40.PubMedCrossRef
197.
go back to reference Yoon JK, Kim KC, Cho Y, Gwon YD, Cho HS, Heo Y, et al. Comparison of repellency effect of mosquito repellents for DEET, citronella, and fennel oil. J Parasitol Res. Yoon JK, Kim KC, Cho Y, Gwon YD, Cho HS, Heo Y, et al. Comparison of repellency effect of mosquito repellents for DEET, citronella, and fennel oil. J Parasitol Res.
198.
go back to reference Muñoz V, Buffa F, Molinari F, Hermida LG, García JJ, Abraham GA. Electrospun ethylcellulose-based nanofibrous mats with insect-repellent activity. Mater Lett. 2019;253:289–92.CrossRef Muñoz V, Buffa F, Molinari F, Hermida LG, García JJ, Abraham GA. Electrospun ethylcellulose-based nanofibrous mats with insect-repellent activity. Mater Lett. 2019;253:289–92.CrossRef
199.
go back to reference N’Guessan R, Rowland M, Moumouni TL, Kesse NB, Carnevale P. Evaluation of synthetic repellents on mosquito nets in experimental huts against insecticide-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes. Trans R Soc Trop Med Hyg. 2006;100:1091–7.PubMedCrossRef N’Guessan R, Rowland M, Moumouni TL, Kesse NB, Carnevale P. Evaluation of synthetic repellents on mosquito nets in experimental huts against insecticide-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes. Trans R Soc Trop Med Hyg. 2006;100:1091–7.PubMedCrossRef
200.
go back to reference Barnard DR, Xue RD. Laboratory evaluation of mosquito repellents against Aedes albopictus, Culex nigripalpus, and Ochlerotatus triseriatus (Diptera: Culicidae). J Med Entomol. 2004;41:726–30.PubMedCrossRef Barnard DR, Xue RD. Laboratory evaluation of mosquito repellents against Aedes albopictus, Culex nigripalpus, and Ochlerotatus triseriatus (Diptera: Culicidae). J Med Entomol. 2004;41:726–30.PubMedCrossRef
201.
go back to reference Trongtokit Y, Rongsriyam Y, Komalamisra N, Krisadaphong P, Apiwathnasorn C. Laboratory and field trial of developing medicinal local Thai plant products against four species of mosquito vectors. Southeast Asian J Trop Med Public Health. 2004;35:325–33.PubMed Trongtokit Y, Rongsriyam Y, Komalamisra N, Krisadaphong P, Apiwathnasorn C. Laboratory and field trial of developing medicinal local Thai plant products against four species of mosquito vectors. Southeast Asian J Trop Med Public Health. 2004;35:325–33.PubMed
202.
go back to reference Debboun M, Strickman D, Solberg VB, Wilkerson RC, McPherson KR, Golenda C, et al. Field evaluation of deet and a piperidine repellent against Aedes communis (Diptera: Culicidae) and Simulium venustum (Diptera: Simuliidae) in the Adirondack mountains of New York. J Med Entomol. 2000;37:919–23.PubMedCrossRef Debboun M, Strickman D, Solberg VB, Wilkerson RC, McPherson KR, Golenda C, et al. Field evaluation of deet and a piperidine repellent against Aedes communis (Diptera: Culicidae) and Simulium venustum (Diptera: Simuliidae) in the Adirondack mountains of New York. J Med Entomol. 2000;37:919–23.PubMedCrossRef
203.
go back to reference Fradin MS, Day JF. Comparative efficacy of insect repellents against mosquito bites. N Engl J Med. 2002;347:13–8.PubMedCrossRef Fradin MS, Day JF. Comparative efficacy of insect repellents against mosquito bites. N Engl J Med. 2002;347:13–8.PubMedCrossRef
204.
go back to reference Tawatsin A, Wratten SD, Scott RR, Thavara U, Techadamrongsin Y. Repellency of volatile oils from plants against three mosquito vectors. J Vector Ecol. 2001;26:76–82.PubMed Tawatsin A, Wratten SD, Scott RR, Thavara U, Techadamrongsin Y. Repellency of volatile oils from plants against three mosquito vectors. J Vector Ecol. 2001;26:76–82.PubMed
205.
go back to reference Thavara U, Tawatsin A, Chompoosri J, Suwonkerd W, Chansang UR, Asavadachanukorn P. Laboratory and field evaluations of the insect repellent 3535 (ethyl butylacetylaminopropionate) and deet against mosquito vectors in Thailand. J Am Mosq Control Assoc. 2001;17:190–5.PubMed Thavara U, Tawatsin A, Chompoosri J, Suwonkerd W, Chansang UR, Asavadachanukorn P. Laboratory and field evaluations of the insect repellent 3535 (ethyl butylacetylaminopropionate) and deet against mosquito vectors in Thailand. J Am Mosq Control Assoc. 2001;17:190–5.PubMed
206.
go back to reference Frances SP, Waterson DGE, Beebe NW, Cooper RD. Field evaluation of repellent formulations containing deet and picaridin against mosquitoes in Northern Territory, Australia. J Med Entomol. 2004;41:414–7.PubMedCrossRef Frances SP, Waterson DGE, Beebe NW, Cooper RD. Field evaluation of repellent formulations containing deet and picaridin against mosquitoes in Northern Territory, Australia. J Med Entomol. 2004;41:414–7.PubMedCrossRef
207.
go back to reference Misni N, Sulaiman S, Othman H, Omar B. Repellency of essential oil of Piper aduncum against Aedes albopictus in the laboratory. J Am Mosq Control Assoc. 2009;25:442–7.PubMedCrossRef Misni N, Sulaiman S, Othman H, Omar B. Repellency of essential oil of Piper aduncum against Aedes albopictus in the laboratory. J Am Mosq Control Assoc. 2009;25:442–7.PubMedCrossRef
208.
go back to reference Mittal PK, Sreehari U, Razdan RK, Dash AP, Ansari MA. Efficacy of Advanced Odomos repellent cream (N, N-diethyl-benzamide) against mosquito vectors. Indian J Med Res. 2011;133:426.PubMedPubMedCentral Mittal PK, Sreehari U, Razdan RK, Dash AP, Ansari MA. Efficacy of Advanced Odomos repellent cream (N, N-diethyl-benzamide) against mosquito vectors. Indian J Med Res. 2011;133:426.PubMedPubMedCentral
209.
go back to reference Kweka EJ, Munga S, Mahande AM, Msangi S, Mazigo HD, Adrias AQ, et al. Protective efficacy of menthol propylene glycol carbonate compared to N, N-diethyl-methylbenzamide against mosquito bites in Northern Tanzania. Parasit Vectors. 2012;5:189.PubMedPubMedCentralCrossRef Kweka EJ, Munga S, Mahande AM, Msangi S, Mazigo HD, Adrias AQ, et al. Protective efficacy of menthol propylene glycol carbonate compared to N, N-diethyl-methylbenzamide against mosquito bites in Northern Tanzania. Parasit Vectors. 2012;5:189.PubMedPubMedCentralCrossRef
210.
go back to reference Yoon JK, Kim KC, Cho YD, Cho HS, Lee YW, Kim M, et al. Development and evaluation of a semifield test for repellent efficacy testing. J Med Entomol. 2014;51:182–8.PubMedCrossRef Yoon JK, Kim KC, Cho YD, Cho HS, Lee YW, Kim M, et al. Development and evaluation of a semifield test for repellent efficacy testing. J Med Entomol. 2014;51:182–8.PubMedCrossRef
211.
go back to reference Tan K, Faierstein GB, Xu P, Barbosa RM, Buss GK, Leal WS. A popular Indian clove-based mosquito repellent is less effective against Culex quinquefasciatus and Aedes aegypti than DEET. PLoS One. 2019;14;0224810. Tan K, Faierstein GB, Xu P, Barbosa RM, Buss GK, Leal WS. A popular Indian clove-based mosquito repellent is less effective against Culex quinquefasciatus and Aedes aegypti than DEET. PLoS One. 2019;14;0224810.
212.
go back to reference Sritabutra D, Soonwera M. Repellent activity of herbal essential oils against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say). Asian Pac J Trop Dis. 2013;3:271–6.PubMedCentralCrossRef Sritabutra D, Soonwera M. Repellent activity of herbal essential oils against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say). Asian Pac J Trop Dis. 2013;3:271–6.PubMedCentralCrossRef
213.
go back to reference Naucke TJ, Kröpke R, Benner G, Schulz J, Wittern KP, Rose A, et al. Field evaluation of the efficacy of proprietary repellent formulations with IR3535® and Picaridin against Aedes aegypti. Parasitol Res. 2007;101:169–77.PubMedCrossRef Naucke TJ, Kröpke R, Benner G, Schulz J, Wittern KP, Rose A, et al. Field evaluation of the efficacy of proprietary repellent formulations with IR3535® and Picaridin against Aedes aegypti. Parasitol Res. 2007;101:169–77.PubMedCrossRef
214.
go back to reference Carroll SP. Prolonged efficacy of IR3535 repellents against mosquitoes and blacklegged ticks in North America. J Med Entomol. 2008;45:706–14.PubMedCrossRef Carroll SP. Prolonged efficacy of IR3535 repellents against mosquitoes and blacklegged ticks in North America. J Med Entomol. 2008;45:706–14.PubMedCrossRef
215.
go back to reference Amer A, Mehlhorn H. Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol Res. 2006;99:478–90.PubMedCrossRef Amer A, Mehlhorn H. Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol Res. 2006;99:478–90.PubMedCrossRef
216.
go back to reference Zhao R, Wang R, Zheng L, Zhou Y, Wang L, Zhao F, et al. Toxicity and repellency of two anthranilates against Aedes albopictus Skuse (Diptera: Culicidae). Acta Trop. 2019;200:105171.PubMedCrossRef Zhao R, Wang R, Zheng L, Zhou Y, Wang L, Zhao F, et al. Toxicity and repellency of two anthranilates against Aedes albopictus Skuse (Diptera: Culicidae). Acta Trop. 2019;200:105171.PubMedCrossRef
217.
go back to reference Islam J, Zaman K, Tyagi V, Duarah S, Dhiman S, Chattopadhyay P. Protection against mosquito vectors Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus using a novel insect repellent, ethyl anthranilate. Acta Trop. 2017;174:56–63.PubMedCrossRef Islam J, Zaman K, Tyagi V, Duarah S, Dhiman S, Chattopadhyay P. Protection against mosquito vectors Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus using a novel insect repellent, ethyl anthranilate. Acta Trop. 2017;174:56–63.PubMedCrossRef
218.
go back to reference Hosseini SM, Hosseini H, Mohammadifar MA, Mortazavian AM, Mohammadi A, Khosravi-Darani K, et al. Incorporation of essential oil in alginate microparticles by multiple emulsion/ionic gelation process. Int J Biol Macromol. 2013;62:582–8.PubMedCrossRef Hosseini SM, Hosseini H, Mohammadifar MA, Mortazavian AM, Mohammadi A, Khosravi-Darani K, et al. Incorporation of essential oil in alginate microparticles by multiple emulsion/ionic gelation process. Int J Biol Macromol. 2013;62:582–8.PubMedCrossRef
219.
go back to reference Ferreira IVW, Focke WW, Du Toit EL. Spontaneous microencapsulation of geraniol by zein. eXPRESS Polym Lett. 2018;12:986–95.CrossRef Ferreira IVW, Focke WW, Du Toit EL. Spontaneous microencapsulation of geraniol by zein. eXPRESS Polym Lett. 2018;12:986–95.CrossRef
Metadata
Title
Mosquito‐repellent controlled‐release formulations for fighting infectious diseases
Authors
António B. Mapossa
Walter W. Focke
Robert K. Tewo
René Androsch
Taneshka Kruger
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Malaria
Published in
Malaria Journal / Issue 1/2021
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-021-03681-7

Other articles of this Issue 1/2021

Malaria Journal 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.