Skip to main content
Top
Published in: Malaria Journal 1/2021

Open Access 01-12-2021 | Malaria | Research

Ecology of asynchronous asexual replication: the intraerythrocytic development cycle of Plasmodium berghei is resistant to host rhythms

Authors: Aidan J. O’Donnell, Sarah E. Reece

Published in: Malaria Journal | Issue 1/2021

Login to get access

Abstract

Background

Daily periodicity in the diverse activities of parasites occurs across a broad taxonomic range. The rhythms exhibited by parasites are thought to be adaptations that allow parasites to cope with, or exploit, the consequences of host activities that follow daily rhythms. Malaria parasites (Plasmodium) are well-known for their synchronized cycles of replication within host red blood cells. Whilst most species of Plasmodium appear sensitive to the timing of the daily rhythms of hosts, and even vectors, some species present no detectable rhythms in blood-stage replication. Why the intraerythrocytic development cycle (IDC) of, for example Plasmodium chabaudi, is governed by host rhythms, yet seems completely independent of host rhythms in Plasmodium berghei, another rodent malaria species, is mysterious.

Methods

This study reports a series of five experiments probing the relationships between the asynchronous IDC schedule of P. berghei and the rhythms of hosts and vectors by manipulating host time-of-day, photoperiod and feeding rhythms.

Results

The results reveal that: (i) a lack coordination between host and parasite rhythms does not impose appreciable fitness costs on P. berghei; (ii) the IDC schedule of P. berghei is impervious to host rhythms, including altered photoperiod and host-feeding-related rhythms; (iii) there is weak evidence for daily rhythms in the density and activities of transmission stages; but (iv), these rhythms have little consequence for successful transmission to mosquitoes.

Conclusions

Overall, host rhythms do not affect the performance of P. berghei and its asynchronous IDC is resistant to the scheduling forces that underpin synchronous replication in closely related parasites. This suggests that natural variation in the IDC schedule across species represents different parasite strategies that maximize fitness. Thus, subtle differences in the ecological interactions between parasites and their hosts/vectors may select for the evolution of very different IDC schedules.
Literature
1.
go back to reference Reece SE, Prior KF, Mideo N. The life and times of parasites: rhythms in strategies for within-host survival and between-host transmission. J Biol Rhythms. 2017;32:516–33.PubMedPubMedCentralCrossRef Reece SE, Prior KF, Mideo N. The life and times of parasites: rhythms in strategies for within-host survival and between-host transmission. J Biol Rhythms. 2017;32:516–33.PubMedPubMedCentralCrossRef
2.
go back to reference Westwood ML, O’Donnell AJ, de Bekker C, Lively CM, Zuk M, Reece SE. The evolutionary ecology of circadian rhythms in infection. Nat Ecol Evol. 2019;3:552–60.PubMedCrossRef Westwood ML, O’Donnell AJ, de Bekker C, Lively CM, Zuk M, Reece SE. The evolutionary ecology of circadian rhythms in infection. Nat Ecol Evol. 2019;3:552–60.PubMedCrossRef
3.
go back to reference Hawking F. The 24-hour periodicity of microfilariae: biological mechanisms responsible for its production and control. Proc Sci Biol. 1967;169:59–76. Hawking F. The 24-hour periodicity of microfilariae: biological mechanisms responsible for its production and control. Proc Sci Biol. 1967;169:59–76.
4.
go back to reference Martinaud G, Billaudelle M, Moreau J. Circadian variation in shedding of the oocysts of Isospora turdi (Apicomplexa) in blackbirds (Turdus merula): an adaptative trait against desiccation and ultraviolet radiation. Int J Parasitol. 2009;39:735–9.PubMedCrossRef Martinaud G, Billaudelle M, Moreau J. Circadian variation in shedding of the oocysts of Isospora turdi (Apicomplexa) in blackbirds (Turdus merula): an adaptative trait against desiccation and ultraviolet radiation. Int J Parasitol. 2009;39:735–9.PubMedCrossRef
5.
go back to reference Hevia MA, Canessa P, Müller-Esparza H, Larrondo LF. A circadian oscillator in the fungus Botrytis cinerea regulates virulence when infecting Arabidopsis thaliana. Proc Natl Acad Sci USA. 2015;112:8744–89.PubMedCrossRefPubMedCentral Hevia MA, Canessa P, Müller-Esparza H, Larrondo LF. A circadian oscillator in the fungus Botrytis cinerea regulates virulence when infecting Arabidopsis thaliana. Proc Natl Acad Sci USA. 2015;112:8744–89.PubMedCrossRefPubMedCentral
6.
go back to reference Larrondo LF, Canessa P. The clock keeps on ticking: emerging roles for circadian regulation in the control of fungal physiology and pathogenesis. Curr Top Microbiol Immunol. 2019;422:121–56.PubMed Larrondo LF, Canessa P. The clock keeps on ticking: emerging roles for circadian regulation in the control of fungal physiology and pathogenesis. Curr Top Microbiol Immunol. 2019;422:121–56.PubMed
7.
go back to reference Rijo-Ferreira F, Pinto-Neves D, Barbosa-Morais NL, Takahashi JS, Figueiredo LM. Trypanosoma brucei metabolism is under circadian control. Nat Microbiol. 2017;2:17032.PubMedPubMedCentralCrossRef Rijo-Ferreira F, Pinto-Neves D, Barbosa-Morais NL, Takahashi JS, Figueiredo LM. Trypanosoma brucei metabolism is under circadian control. Nat Microbiol. 2017;2:17032.PubMedPubMedCentralCrossRef
8.
go back to reference Garcia CR, Markus RP, Madeira L. Tertian and quartan fevers: temporal regulation in malarial infection. J Biol Rhythms. 2001;16:436–43.PubMedCrossRef Garcia CR, Markus RP, Madeira L. Tertian and quartan fevers: temporal regulation in malarial infection. J Biol Rhythms. 2001;16:436–43.PubMedCrossRef
9.
go back to reference Hirako IC, Assis PA, Hojo-Souza NS, Reed G, Nakaya H, Golenbock DT, et al. Daily rhythms of TNFalpha expression and food intake regulate synchrony of Plasmodium stages with the host circadian cycle. Cell Host Microbe. 2018;23(796–808):e6. Hirako IC, Assis PA, Hojo-Souza NS, Reed G, Nakaya H, Golenbock DT, et al. Daily rhythms of TNFalpha expression and food intake regulate synchrony of Plasmodium stages with the host circadian cycle. Cell Host Microbe. 2018;23(796–808):e6.
10.
go back to reference O’Donnell AJ, Prior KF, Reece SE. Host circadian clocks do not set the schedule for the within-host replication of malaria parasites. Proc Soc Biol. 2020;287:20200347. O’Donnell AJ, Prior KF, Reece SE. Host circadian clocks do not set the schedule for the within-host replication of malaria parasites. Proc Soc Biol. 2020;287:20200347.
11.
go back to reference Prior KF, van der Veen DR, O’Donnell AJ, Cumnock K, Schneider D, Pain A, et al. Timing of host feeding drives rhythms in parasite replication. PLoS Pathog. 2018;14:e1006900.PubMedPubMedCentralCrossRef Prior KF, van der Veen DR, O’Donnell AJ, Cumnock K, Schneider D, Pain A, et al. Timing of host feeding drives rhythms in parasite replication. PLoS Pathog. 2018;14:e1006900.PubMedPubMedCentralCrossRef
12.
go back to reference Prior KF, Middleton B, Owolabi AT, Westwood ML, Holland J, O'Donnell AJ, et al. An essential amino acid synchronises malaria parasite development with daily host rhythms. bioRxiv 2020:2020.2008.2024.264689. Prior KF, Middleton B, Owolabi AT, Westwood ML, Holland J, O'Donnell AJ, et al. An essential amino acid synchronises malaria parasite development with daily host rhythms. bioRxiv 2020:2020.2008.2024.264689.
13.
go back to reference O’Donnell AJ, Mideo N, Reece SE. Erratum to: disrupting rhythms in Plasmodium chabaudi: costs accrue quickly and independently of how infections are initiated. Malar J. 2014;13:503.PubMedCentralCrossRef O’Donnell AJ, Mideo N, Reece SE. Erratum to: disrupting rhythms in Plasmodium chabaudi: costs accrue quickly and independently of how infections are initiated. Malar J. 2014;13:503.PubMedCentralCrossRef
14.
go back to reference O’Donnell AJ, Mideo N, Reece SE. Disrupting rhythms in Plasmodium chabaudi: costs accrue quickly and independently of how infections are initiated. Malar J. 2013;12:372.PubMedPubMedCentralCrossRef O’Donnell AJ, Mideo N, Reece SE. Disrupting rhythms in Plasmodium chabaudi: costs accrue quickly and independently of how infections are initiated. Malar J. 2013;12:372.PubMedPubMedCentralCrossRef
15.
go back to reference O’Donnell AJ, Schneider P, McWatters HG, Reece SE. Fitness costs of disrupting circadian rhythms in malaria parasites. Proc Biol Sci. 2011;278:2429–36.PubMedPubMedCentral O’Donnell AJ, Schneider P, McWatters HG, Reece SE. Fitness costs of disrupting circadian rhythms in malaria parasites. Proc Biol Sci. 2011;278:2429–36.PubMedPubMedCentral
16.
go back to reference Westwood ML, O’Donnell AJ, Schneider P, Albery GF, Prior KF, Reece SE. Testing possible causes of gametocyte reduction in temporally out-of-synch malaria infections. Malar J. 2020;19:17.PubMedPubMedCentralCrossRef Westwood ML, O’Donnell AJ, Schneider P, Albery GF, Prior KF, Reece SE. Testing possible causes of gametocyte reduction in temporally out-of-synch malaria infections. Malar J. 2020;19:17.PubMedPubMedCentralCrossRef
17.
go back to reference Schneider P, Rund SSC, Smith NL, Prior KF, O’Donnell AJ, Reece SE. Adaptive periodicity in the infectivity of malaria gametocytes to mosquitoes. Proc Soc Biol. 2018;285:20181876. Schneider P, Rund SSC, Smith NL, Prior KF, O’Donnell AJ, Reece SE. Adaptive periodicity in the infectivity of malaria gametocytes to mosquitoes. Proc Soc Biol. 2018;285:20181876.
18.
go back to reference Prior KF, Rijo-Ferreira F, Assis PA, Hirako IC, Weaver DR, Gazzinelli RT, et al. Periodic parasites and daily host rhythms. Cell Host Microbe. 2020;27:176–87.PubMedPubMedCentralCrossRef Prior KF, Rijo-Ferreira F, Assis PA, Hirako IC, Weaver DR, Gazzinelli RT, et al. Periodic parasites and daily host rhythms. Cell Host Microbe. 2020;27:176–87.PubMedPubMedCentralCrossRef
19.
go back to reference Janse CJ, Waters AP. Plasmodium berghei - The application of cultivation and purification techniques to molecular studies of malaria parasites. Parasitol Today. 1995;11:138–43.PubMedCrossRef Janse CJ, Waters AP. Plasmodium berghei - The application of cultivation and purification techniques to molecular studies of malaria parasites. Parasitol Today. 1995;11:138–43.PubMedCrossRef
20.
go back to reference Mons B, Janse CJ, Boorsma EG, Vanderkaay HJ. Synchronized erythrocytic schizogony and gametocytogenesis of Plasmodium berghei in vivo and in vitro. Parasitology. 1985;91:423–30.PubMedCrossRef Mons B, Janse CJ, Boorsma EG, Vanderkaay HJ. Synchronized erythrocytic schizogony and gametocytogenesis of Plasmodium berghei in vivo and in vitro. Parasitology. 1985;91:423–30.PubMedCrossRef
21.
go back to reference Deharo E, Coquelin F, Chabaud AG, Landau I. The erythrocytic schizogony of two synchronized strains of Plasmodium berghei, NK65 and ANKA, in normocytes and reticulocytes. Parasitol Res. 1996;82:178–82.PubMedCrossRef Deharo E, Coquelin F, Chabaud AG, Landau I. The erythrocytic schizogony of two synchronized strains of Plasmodium berghei, NK65 and ANKA, in normocytes and reticulocytes. Parasitol Res. 1996;82:178–82.PubMedCrossRef
22.
go back to reference Gautret P, Deharo E, Tahar R, Chabaud AG, Landau I. The adjustment of the schizogonic cycle of Plasmodium chabaudi chabaudi in the blood to the circadian rhythm of the host. Parasite. 1995;2:69–74.PubMedCrossRef Gautret P, Deharo E, Tahar R, Chabaud AG, Landau I. The adjustment of the schizogonic cycle of Plasmodium chabaudi chabaudi in the blood to the circadian rhythm of the host. Parasite. 1995;2:69–74.PubMedCrossRef
24.
go back to reference Thompson PE, Huff CG. Saurian malarial parasites of the United States and Mexico. J Infect Dis. 1944;74:68–79.CrossRef Thompson PE, Huff CG. Saurian malarial parasites of the United States and Mexico. J Infect Dis. 1944;74:68–79.CrossRef
25.
go back to reference Rijo-Ferreira F, Acosta-Rodriguez VA, Abel JH, Kornblum I, Bento I, Kilaru G, et al. The malaria parasite has an intrinsic clock. Science. 2020;368:746–53.PubMedPubMedCentralCrossRef Rijo-Ferreira F, Acosta-Rodriguez VA, Abel JH, Kornblum I, Bento I, Kilaru G, et al. The malaria parasite has an intrinsic clock. Science. 2020;368:746–53.PubMedPubMedCentralCrossRef
26.
go back to reference Smith LM, Motta FC, Chopra G, Moch JK, Nerem RR, Cummins B, et al. An intrinsic oscillator drives the blood stage cycle of the malaria parasite Plasmodium falciparum. Science. 2020;368:754–9.PubMedPubMedCentralCrossRef Smith LM, Motta FC, Chopra G, Moch JK, Nerem RR, Cummins B, et al. An intrinsic oscillator drives the blood stage cycle of the malaria parasite Plasmodium falciparum. Science. 2020;368:754–9.PubMedPubMedCentralCrossRef
27.
go back to reference Subudhi AK, O’Donnell AJ, Ramaprasad A, Abkallo HM, Kaushik A, Ansari HR, et al. Malaria parasites regulate intra-erythrocytic development duration via serpentine receptor 10 to coordinate with host rhythms. Nat Commun. 2020;11:2763.PubMedPubMedCentralCrossRef Subudhi AK, O’Donnell AJ, Ramaprasad A, Abkallo HM, Kaushik A, Ansari HR, et al. Malaria parasites regulate intra-erythrocytic development duration via serpentine receptor 10 to coordinate with host rhythms. Nat Commun. 2020;11:2763.PubMedPubMedCentralCrossRef
28.
go back to reference Killick-Kendrick R, Peters W. Rodent malaria. London: Academic Press; 1978. Killick-Kendrick R, Peters W. Rodent malaria. London: Academic Press; 1978.
29.
go back to reference Kitchen S. The infection of reticulocytes by Plasmodium vivax. Am J Trop Med Hyg. 1938;18:347–59.CrossRef Kitchen S. The infection of reticulocytes by Plasmodium vivax. Am J Trop Med Hyg. 1938;18:347–59.CrossRef
30.
go back to reference Pasvol G, Weatherall D, Wilson R. The increased susceptibility of young red cells to invasion by the malarial parasite Plasmodium falciparum. Br J Haematol. 1980;45:285–95.PubMedCrossRef Pasvol G, Weatherall D, Wilson R. The increased susceptibility of young red cells to invasion by the malarial parasite Plasmodium falciparum. Br J Haematol. 1980;45:285–95.PubMedCrossRef
31.
go back to reference Savill NJ, Chadwick W, Reece SE. Quantitative analysis of mechanisms that govern red blood cell age structure and dynamics during anaemia. PLoS Comput Biol. 2009;5:e1000416.PubMedPubMedCentralCrossRef Savill NJ, Chadwick W, Reece SE. Quantitative analysis of mechanisms that govern red blood cell age structure and dynamics during anaemia. PLoS Comput Biol. 2009;5:e1000416.PubMedPubMedCentralCrossRef
32.
go back to reference Ramakrishnan S, Prakash S. Susceptibility of the Indian garden squirrel (Sciurus palmarum) to Plasmodium berghei and its asexual periodicity. Nature. 1951;167:533.PubMedCrossRef Ramakrishnan S, Prakash S. Susceptibility of the Indian garden squirrel (Sciurus palmarum) to Plasmodium berghei and its asexual periodicity. Nature. 1951;167:533.PubMedCrossRef
33.
go back to reference Arnold JD, Berger A, Martin DC. The role of the pineal in mediating photoperiodic control of growth and division synchrony and capillary sequestration of Plasmodium berghei in mice. J Parasitol. 1969;55:609–16.PubMedCrossRef Arnold JD, Berger A, Martin DC. The role of the pineal in mediating photoperiodic control of growth and division synchrony and capillary sequestration of Plasmodium berghei in mice. J Parasitol. 1969;55:609–16.PubMedCrossRef
34.
go back to reference Arnold JD, Lalli F, Martin DC. Augmentation of growth and division synchrony and of vascular sequestration of Plasmodium berghei by the photoperiodic rhythm. J Parasitol. 1969;55:597–608.PubMedCrossRef Arnold JD, Lalli F, Martin DC. Augmentation of growth and division synchrony and of vascular sequestration of Plasmodium berghei by the photoperiodic rhythm. J Parasitol. 1969;55:597–608.PubMedCrossRef
35.
go back to reference Hotta CT, Gazarini ML, Beraldo FH, Varotti FP, Lopes C, Markus RP, et al. Calcium-dependent modulation by melatonin of the circadian rhythm in malarial parasites. Nat Cell Biol. 2000;2:466–8.PubMedCrossRef Hotta CT, Gazarini ML, Beraldo FH, Varotti FP, Lopes C, Markus RP, et al. Calcium-dependent modulation by melatonin of the circadian rhythm in malarial parasites. Nat Cell Biol. 2000;2:466–8.PubMedCrossRef
36.
go back to reference Bae K, Jin X, Maywood ES, Hastings MH, Reppert SM, Weaver DR. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron. 2001;30:525–36.PubMedCrossRef Bae K, Jin X, Maywood ES, Hastings MH, Reppert SM, Weaver DR. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron. 2001;30:525–36.PubMedCrossRef
37.
go back to reference Maywood E, Chesham J, Smyllie N, Hastings M. The Tau mutation of casein kinase 1ϵ sets the period of the mammalian pacemaker via regulation of Period1 or Period2 clock proteins. J Biol Rhythms. 2014;29:110–8.PubMedPubMedCentralCrossRef Maywood E, Chesham J, Smyllie N, Hastings M. The Tau mutation of casein kinase 1ϵ sets the period of the mammalian pacemaker via regulation of Period1 or Period2 clock proteins. J Biol Rhythms. 2014;29:110–8.PubMedPubMedCentralCrossRef
38.
go back to reference Gautret P, Coquelin F, Chabaud AG, Landau I. The production of gametocytes by rodent Plasmodium species in mice during phenylhydrazine induced reticulocytosis. Acta Parasitol. 1997;42:65–7. Gautret P, Coquelin F, Chabaud AG, Landau I. The production of gametocytes by rodent Plasmodium species in mice during phenylhydrazine induced reticulocytosis. Acta Parasitol. 1997;42:65–7.
39.
go back to reference Hughes ME, Hogenesch JB, Kornacker K. JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J Biol Rhythms. 2010;25:372–80.PubMedPubMedCentralCrossRef Hughes ME, Hogenesch JB, Kornacker K. JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J Biol Rhythms. 2010;25:372–80.PubMedPubMedCentralCrossRef
40.
go back to reference Greischar MA, Reece SE, Savill NJ, Mideo N. The challenge of quantifying synchrony in malaria parasites. Trends Parasitol. 2019. Greischar MA, Reece SE, Savill NJ, Mideo N. The challenge of quantifying synchrony in malaria parasites. Trends Parasitol. 2019.
41.
go back to reference Greischar MA, Read AF, Bjornstad ON. Synchrony in malaria infections: how intensifying within-host competition can be adaptive. Am Nat. 2014;183:E36-49.PubMedCrossRef Greischar MA, Read AF, Bjornstad ON. Synchrony in malaria infections: how intensifying within-host competition can be adaptive. Am Nat. 2014;183:E36-49.PubMedCrossRef
42.
go back to reference Carding SR, Egan PJ. γδ T cells: functional plasticity and heterogeneity. Nat Rev Immunol. 2002;2:336–45.PubMedCrossRef Carding SR, Egan PJ. γδ T cells: functional plasticity and heterogeneity. Nat Rev Immunol. 2002;2:336–45.PubMedCrossRef
43.
go back to reference Scheiermann C, Gibbs J, Ince L, Loudon A. Clocking in to immunity. Nat Rev Immunol. 2018;18:423–37.PubMedCrossRef Scheiermann C, Gibbs J, Ince L, Loudon A. Clocking in to immunity. Nat Rev Immunol. 2018;18:423–37.PubMedCrossRef
44.
go back to reference Costa G, Loizon S, Guenot M, Mocan I, Halary F, de Saint-Basile G, et al. Control of Plasmodium falciparum erythrocytic cycle: γδ T cells target the red blood cell–invasive merozoites. Blood. 2011;118:6952–62.PubMedCrossRef Costa G, Loizon S, Guenot M, Mocan I, Halary F, de Saint-Basile G, et al. Control of Plasmodium falciparum erythrocytic cycle: γδ T cells target the red blood cell–invasive merozoites. Blood. 2011;118:6952–62.PubMedCrossRef
46.
go back to reference Babbitt SE, Altenhofen L, Cobbold SA, Istvan ES, Fennell C, Doerig C, et al. Plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state. Proc Natl Acad Sci USA. 2012;109:E3278–87.PubMedCrossRefPubMedCentral Babbitt SE, Altenhofen L, Cobbold SA, Istvan ES, Fennell C, Doerig C, et al. Plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state. Proc Natl Acad Sci USA. 2012;109:E3278–87.PubMedCrossRefPubMedCentral
47.
go back to reference Conteh S, Anderson C, Lambert L, Orr-Gonzalez S, Herrod J, Robbins YL, et al. Grammomys surdaster, the natural host for Plasmodium berghei parasites, as a model to study whole-organism vaccines against malaria. Am J Trop Med Hyg. 2017;96:835–41.PubMedPubMedCentral Conteh S, Anderson C, Lambert L, Orr-Gonzalez S, Herrod J, Robbins YL, et al. Grammomys surdaster, the natural host for Plasmodium berghei parasites, as a model to study whole-organism vaccines against malaria. Am J Trop Med Hyg. 2017;96:835–41.PubMedPubMedCentral
48.
go back to reference Schaer J, Perkins SL, Decher J, Leendertz FH, Fahr J, Weber N, et al. High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa. Proc Natl Acad Sci USA. 2013;110:17415–9.PubMedCrossRefPubMedCentral Schaer J, Perkins SL, Decher J, Leendertz FH, Fahr J, Weber N, et al. High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa. Proc Natl Acad Sci USA. 2013;110:17415–9.PubMedCrossRefPubMedCentral
49.
go back to reference O’Donnell AJ, Rund SS, Reece SE. Time-of-day of blood-feeding: effects on mosquito life history and malaria transmission. Parasit Vectors. 2019;12:301.PubMedPubMedCentralCrossRef O’Donnell AJ, Rund SS, Reece SE. Time-of-day of blood-feeding: effects on mosquito life history and malaria transmission. Parasit Vectors. 2019;12:301.PubMedPubMedCentralCrossRef
50.
go back to reference Desowitz R, Barnwell J. Plasmodium berghei: deep vascular sequestration of young forms in the heart and kidney of the white rat. Ann Trop Med Parasitol. 1976;70:475–6.PubMedCrossRef Desowitz R, Barnwell J. Plasmodium berghei: deep vascular sequestration of young forms in the heart and kidney of the white rat. Ann Trop Med Parasitol. 1976;70:475–6.PubMedCrossRef
Metadata
Title
Ecology of asynchronous asexual replication: the intraerythrocytic development cycle of Plasmodium berghei is resistant to host rhythms
Authors
Aidan J. O’Donnell
Sarah E. Reece
Publication date
01-12-2021
Publisher
BioMed Central
Keywords
Malaria
Plasmodia
Published in
Malaria Journal / Issue 1/2021
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-021-03643-z

Other articles of this Issue 1/2021

Malaria Journal 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.