Skip to main content
Top
Published in: Malaria Journal 1/2020

Open Access 01-12-2020 | Malaria | Research

A zooprophylaxis strategy using l-lactic acid (Abate) to divert host-seeking malaria vectors from human host to treated non-host animals

Authors: Elison E. Kemibala, Agenor Mafra-Neto, Teun Dekker, Jesse Saroli, Rodrigo Silva, Anitha Philbert, Kija Nghabi, Leonard E. G. Mboera

Published in: Malaria Journal | Issue 1/2020

Login to get access

Abstract

Background

Zooprophylaxis is a technique in which blood-seeking vectors are diverted to non-host animals in order to lower blood-feeding rates on human hosts. The success of this technique depends on the host preference of the vector being targeted. The objective of this study was to evaluate the effect of l-lactic acid (Abate) to divert malaria mosquito, Anopheles gambiae from feeding on human host.

Methods

A 14-month-old female goat was treated with Abate, a formulation incorporating l-lactic acid into a slow-release matrix. This formulation was applied on the fur of the goat’s back and neck. The treated animal was then presented to Anopheles gambiae sensu stricto (s.s.) as a prospective host in a semi-field environment (‘mosquito sphere’) together with either an untreated animal or a human. The number of mosquitoes caught to each host choice offered were compared.

Results

Goat treated with the l-lactic acid formulation successfully attracted An. gambiae at higher rates (70.2%) than the untreated ones (29.8%). Furthermore, An. gambiae s.s. were attracted to a treated goat at an equivalent degree (47.3%) as to their preferred human host (52.7%), even when the preferred host was present in the same environment.

Conclusions

The findings indicate that human host-seeking mosquitoes can be diverted into feeding on non-preferred hosts despite the close proximity of their favoured host, hence reducing chances for the transmission of blood-borne parasites.
Literature
1.
go back to reference WHO. World malaria report 2018. Geneva: World Health Organization; 2018. WHO. World malaria report 2018. Geneva: World Health Organization; 2018.
2.
go back to reference Paaijmans KP. Weather, water & malaria—the impact of meteorological factors on water temperature and larvae of the Afro-tropical malaria vector Anopheles gambiae giles. PhD. Thesis—Wageningen University, The Netherlands. 2008. ISBN 978-90-8504-750-6. Paaijmans KP. Weather, water & malaria—the impact of meteorological factors on water temperature and larvae of the Afro-tropical malaria vector Anopheles gambiae giles. PhD. Thesis—Wageningen University, The Netherlands. 2008. ISBN 978-90-8504-750-6.
3.
go back to reference WHO. World malaria report 2012. Geneva: World Health Organization; 2019. WHO. World malaria report 2012. Geneva: World Health Organization; 2019.
4.
go back to reference WHO. World malaria report 2015. Geneva: World Health Organization; 2019. WHO. World malaria report 2015. Geneva: World Health Organization; 2019.
5.
go back to reference Mboera LEG, Mazigo HD, Rumisha SF, Randall K. Towards malaria elimination and its implication for vector control, disease management and livelihoods in Tanzania. Malar World J. 2013;4:19. Mboera LEG, Mazigo HD, Rumisha SF, Randall K. Towards malaria elimination and its implication for vector control, disease management and livelihoods in Tanzania. Malar World J. 2013;4:19.
6.
go back to reference Asidi A, N’Guessan R, Akogbeto M, Curtis C, Rowland M. Loss of household protection from use of insecticide-treated nets against pyrethroid-resistant mosquitoes, Benin. Emerg Infect Dis. 2012;18:1101–6.CrossRef Asidi A, N’Guessan R, Akogbeto M, Curtis C, Rowland M. Loss of household protection from use of insecticide-treated nets against pyrethroid-resistant mosquitoes, Benin. Emerg Infect Dis. 2012;18:1101–6.CrossRef
7.
go back to reference Koenker HM, Yukich JO, Mkindi A, Mandike R, Brown N, Kilian A, et al. Analysing and recommending options for maintaining universal coverage with long-lasting insecticidal nets: the case of Tanzania in 2011. Malar J. 2013;12:150.CrossRef Koenker HM, Yukich JO, Mkindi A, Mandike R, Brown N, Kilian A, et al. Analysing and recommending options for maintaining universal coverage with long-lasting insecticidal nets: the case of Tanzania in 2011. Malar J. 2013;12:150.CrossRef
8.
go back to reference White MT, Conteh L, Cibulskis R, Ghani AC. Costs and cost-effectiveness of malaria control interventions—a systematic review. Malar J. 2011;10:337.CrossRef White MT, Conteh L, Cibulskis R, Ghani AC. Costs and cost-effectiveness of malaria control interventions—a systematic review. Malar J. 2011;10:337.CrossRef
9.
go back to reference Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–8.CrossRef Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–8.CrossRef
10.
go back to reference Cohen JM, Smith DL, Cotter C, Ward A, Yamey G, Sabot OJ, et al. Malaria resurgence: a systematic review and assessment of its causes. Malar J. 2012;11:122.CrossRef Cohen JM, Smith DL, Cotter C, Ward A, Yamey G, Sabot OJ, et al. Malaria resurgence: a systematic review and assessment of its causes. Malar J. 2012;11:122.CrossRef
11.
go back to reference Protopopoff N, Matowo J, Malima R, Kavishe R, Kaaya R, Wright A, et al. High level of resistance in the mosquito Anopheles gambiae to pyrethroid insecticides and reduced susceptibility to bendiocarb in north-western Tanzania. Malar J. 2013;12:149.CrossRef Protopopoff N, Matowo J, Malima R, Kavishe R, Kaaya R, Wright A, et al. High level of resistance in the mosquito Anopheles gambiae to pyrethroid insecticides and reduced susceptibility to bendiocarb in north-western Tanzania. Malar J. 2013;12:149.CrossRef
12.
go back to reference Strode C, Donegan S, Garner P, Enayati AA, Hemingway J. The impact of pyrethroid resistance on the efficacy of insecticide-treated bed nets against African Anopheline mosquitoes: systematic review and meta-analysis. PLoS Med. 2014;11:e1001619.CrossRef Strode C, Donegan S, Garner P, Enayati AA, Hemingway J. The impact of pyrethroid resistance on the efficacy of insecticide-treated bed nets against African Anopheline mosquitoes: systematic review and meta-analysis. PLoS Med. 2014;11:e1001619.CrossRef
13.
go back to reference Alonso PL, Brown G, Arevalo-Herrera M, Binka F, Chitnis C, Collins F, et al. A research agenda to underpin malaria eradication. PLoS Med. 2011;8:e1000406.CrossRef Alonso PL, Brown G, Arevalo-Herrera M, Binka F, Chitnis C, Collins F, et al. A research agenda to underpin malaria eradication. PLoS Med. 2011;8:e1000406.CrossRef
14.
go back to reference Mafra-Neto A, Saroli J, Oliveira da Silva R, Mboera LE, White GB, Foster W, et al. Getting them where they live-semiochemical-based strategies to address major gaps in vector control programs: Vectrax, SPLAT BAC, Trojan Cow, and SPLAT TK. In: Advances in the biorational control of medical and veterinary pests. SCS symposium series, 2018; p. 101–52. Mafra-Neto A, Saroli J, Oliveira da Silva R, Mboera LE, White GB, Foster W, et al. Getting them where they live-semiochemical-based strategies to address major gaps in vector control programs: Vectrax, SPLAT BAC, Trojan Cow, and SPLAT TK. In: Advances in the biorational control of medical and veterinary pests. SCS symposium series, 2018; p. 101–52.
15.
go back to reference Chaccour CJ, Kobylinski KC, Quique BQ, Bousema T, Drakeley C, Alonso P, et al. Ivermectin to reduce malaria transmission: a research agenda for a promising new tool for elimination. Malar J. 2013;12:153.CrossRef Chaccour CJ, Kobylinski KC, Quique BQ, Bousema T, Drakeley C, Alonso P, et al. Ivermectin to reduce malaria transmission: a research agenda for a promising new tool for elimination. Malar J. 2013;12:153.CrossRef
16.
go back to reference Mboera LEG, Knols BGJ, Takken W, Della Torre A. The response of Anopheles gambiae s.l. and A. funestus (Diptera: Culicidae) to tents baited with human odour or carbon dioxide in Tanzania. Bull Entomol Res. 1997;87:173–8.CrossRef Mboera LEG, Knols BGJ, Takken W, Della Torre A. The response of Anopheles gambiae s.l. and A. funestus (Diptera: Culicidae) to tents baited with human odour or carbon dioxide in Tanzania. Bull Entomol Res. 1997;87:173–8.CrossRef
17.
go back to reference Dekker T, Steib B, Cardé RT, Geier M. l-lactic acid: A human-signifying host cue for the anthropophilic mosquito Anopheles gambiae. Med Vet Entomol. 2002;16:91–8.CrossRef Dekker T, Steib B, Cardé RT, Geier M. l-lactic acid: A human-signifying host cue for the anthropophilic mosquito Anopheles gambiae. Med Vet Entomol. 2002;16:91–8.CrossRef
18.
go back to reference Zwiebel LJ, Takken W. Olfactory regulation of mosquito–host interactions. Insect Biochem Mol. 2004;34:645–52.CrossRef Zwiebel LJ, Takken W. Olfactory regulation of mosquito–host interactions. Insect Biochem Mol. 2004;34:645–52.CrossRef
19.
go back to reference Mboera LEG, Takken W. Carbon dioxide chemotropism in mosquitoes (Diptera: Culicidae) and its potential in vector surveillance and management programmes. Med Vet Entomol. 1997;85:355–68. Mboera LEG, Takken W. Carbon dioxide chemotropism in mosquitoes (Diptera: Culicidae) and its potential in vector surveillance and management programmes. Med Vet Entomol. 1997;85:355–68.
20.
go back to reference Acree F Jr, Turner RB, Gouck HK, Beroza M, Smith N. l-Lactic acid: a mosquito attractant isolated from humans. Science. 1968;161:1346–7.CrossRef Acree F Jr, Turner RB, Gouck HK, Beroza M, Smith N. l-Lactic acid: a mosquito attractant isolated from humans. Science. 1968;161:1346–7.CrossRef
21.
go back to reference Braks MAH, Meijerink J, Takken W. The response of the malaria mosquito, Anopheles gambiae, to two components of human sweat, ammonia and l-lactic acid, in an olfactometer. Physiol Entomol. 2001;26:142–8.CrossRef Braks MAH, Meijerink J, Takken W. The response of the malaria mosquito, Anopheles gambiae, to two components of human sweat, ammonia and l-lactic acid, in an olfactometer. Physiol Entomol. 2001;26:142–8.CrossRef
22.
go back to reference Knols BGJ, Njiru BN, Mathenge EM, Mukabana WR, Beier JC, Killeen GF. Malaria sphere: a greenhouse-enclosed simulation of a natural Anopheles gambiae (Diptera: Culicidae) ecosystem in western Kenya. Malar J. 2002;1:19.CrossRef Knols BGJ, Njiru BN, Mathenge EM, Mukabana WR, Beier JC, Killeen GF. Malaria sphere: a greenhouse-enclosed simulation of a natural Anopheles gambiae (Diptera: Culicidae) ecosystem in western Kenya. Malar J. 2002;1:19.CrossRef
23.
go back to reference Kline DL. Semiochemicals, traps/targets and mass trapping technology for mosquito management. J Am Mosq ContrAssoc. 2007;23:241–51.CrossRef Kline DL. Semiochemicals, traps/targets and mass trapping technology for mosquito management. J Am Mosq ContrAssoc. 2007;23:241–51.CrossRef
24.
go back to reference Okumu FO, Killeen GF, Ogoma S, Biswaro L, Smallegange RC, Mbeyela E, et al. Development and field evaluation of a synthetic mosquito lure that is more attractive than humans. PLoS ONE. 2010;5:e895. Okumu FO, Killeen GF, Ogoma S, Biswaro L, Smallegange RC, Mbeyela E, et al. Development and field evaluation of a synthetic mosquito lure that is more attractive than humans. PLoS ONE. 2010;5:e895.
25.
go back to reference Ault SK. Environmental management: a re-emerging vector control strategy. Am J Trop Med Hyg. 1994;50(6 Suppl):35–49.CrossRef Ault SK. Environmental management: a re-emerging vector control strategy. Am J Trop Med Hyg. 1994;50(6 Suppl):35–49.CrossRef
26.
go back to reference Saul A. Zooprophylaxis or zoopotentiation: the outcome of introducing animals on vector transmission is highly dependent on the mosquito mortality while searching. Malar J. 2003;2:32.CrossRef Saul A. Zooprophylaxis or zoopotentiation: the outcome of introducing animals on vector transmission is highly dependent on the mosquito mortality while searching. Malar J. 2003;2:32.CrossRef
27.
go back to reference Sota T, Mogi M. Effectiveness of zooprophylaxis in malaria control: a theoretical inquiry, with a model for mosquito populations with two blood meal hosts. Med Vet Entomol. 1989;3:337–45.CrossRef Sota T, Mogi M. Effectiveness of zooprophylaxis in malaria control: a theoretical inquiry, with a model for mosquito populations with two blood meal hosts. Med Vet Entomol. 1989;3:337–45.CrossRef
28.
go back to reference Hewitt S, Kamal M, Muhammad N, Rowland M. An entomological investigation of the likely impact of cattle ownership on malaria in Afghan refugee camp in the North West Frontier Province of Pakistan. Med Vet Entomol. 1994;8:160–1.CrossRef Hewitt S, Kamal M, Muhammad N, Rowland M. An entomological investigation of the likely impact of cattle ownership on malaria in Afghan refugee camp in the North West Frontier Province of Pakistan. Med Vet Entomol. 1994;8:160–1.CrossRef
29.
go back to reference Schorkopf DLP, Spanoudis CG, Mboera LEG, Mafra-Neto A, Ignell R, Dekker T. Combining attractants and larvicides in biodegradable matrices for sustainable mosquito vector control. PLoS Negl Trop Dis. 2016;10:e0005043.CrossRef Schorkopf DLP, Spanoudis CG, Mboera LEG, Mafra-Neto A, Ignell R, Dekker T. Combining attractants and larvicides in biodegradable matrices for sustainable mosquito vector control. PLoS Negl Trop Dis. 2016;10:e0005043.CrossRef
30.
go back to reference Qiu YT, Smallegange RC, Hoppe S, van Loon JJ, Bakker EJ, Takken W. Behavioural and electrophysiological responses of the malaria mosquito Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) to human skin emanations. Med Vet Entomol. 2004;18:429–38.CrossRef Qiu YT, Smallegange RC, Hoppe S, van Loon JJ, Bakker EJ, Takken W. Behavioural and electrophysiological responses of the malaria mosquito Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) to human skin emanations. Med Vet Entomol. 2004;18:429–38.CrossRef
31.
go back to reference Aneth MM, Franklin WM, Johnson MM, Eliningaya JK. Role of cattle treated with deltamethrine in areas with a high population of Anopheles arabiensis in Moshi, Northern Tanzania. Malar J. 2007;6:109.CrossRef Aneth MM, Franklin WM, Johnson MM, Eliningaya JK. Role of cattle treated with deltamethrine in areas with a high population of Anopheles arabiensis in Moshi, Northern Tanzania. Malar J. 2007;6:109.CrossRef
Metadata
Title
A zooprophylaxis strategy using l-lactic acid (Abate) to divert host-seeking malaria vectors from human host to treated non-host animals
Authors
Elison E. Kemibala
Agenor Mafra-Neto
Teun Dekker
Jesse Saroli
Rodrigo Silva
Anitha Philbert
Kija Nghabi
Leonard E. G. Mboera
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Malaria
Published in
Malaria Journal / Issue 1/2020
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-020-3136-9

Other articles of this Issue 1/2020

Malaria Journal 1/2020 Go to the issue