Skip to main content
Top
Published in: Malaria Journal 1/2020

Open Access 01-12-2020 | Research

Insect repellents mediate species-specific olfactory behaviours in mosquitoes

Authors: Ali Afify, Christopher J. Potter

Published in: Malaria Journal | Issue 1/2020

Login to get access

Abstract

Background

The species-specific mode of action for DEET and many other mosquito repellents is often unclear. Confusion may arise for many reasons. First, the response of a single mosquito species is often used to represent all mosquito species. Second, behavioural studies usually test the effect of repellents on mosquito attraction towards human odorants, rather than their direct repulsive effect on mosquitoes. Third, the mosquito sensory neuron responses towards repellents are often not directly examined.

Methods

A close proximity response assay was used to test the direct repulsive effect of six mosquito repellents on Anopheles coluzzii, Aedes aegypti and Culex quinquefasciatus mosquitoes. Additionally, the behavioural assay and calcium imaging recordings of antennae were used to test the response of An. coluzzii mosquitoes towards two human odorants (1-octen-3-ol and benzaldehyde) at different concentrations, and mixtures of the repellents lemongrass oil and p-menthane-3,8-diol (PMD) with DEET.

Results

Anopheles coluzzii mosquitoes were repelled by lemongrass oil and PMD, while Ae. aegypti and Cx. quinquefasciatus mosquitoes were repelled by lemongrass oil, PMD, eugenol, and DEET. In addition, high concentrations of 1-octen-3-ol and benzaldehyde were repellent, and activated more olfactory receptor neurons on the An. coluzzii antennae than lower concentrations. Finally, changes in olfactory responses to repellent mixtures reflected changes in repulsive behaviours.

Conclusions

The findings described here suggest that different species of mosquitoes have different behavioural responses to repellents. The data further suggest that high-odour concentrations may recruit repellent-sensing neurons, or generally excite many olfactory neurons, yielding repellent behavioural responses. Finally, DEET can decrease the neuronal and behavioural response of An. coluzzii mosquitoes towards PMD but not towards lemongrass oil. Overall, these studies can help inform mosquito repellent choice by species, guide decisions on effective repellent blends, and could ultimately identify the olfactory neurons and receptors in mosquitoes that mediate repellency.
Literature
2.
go back to reference Debboun M, Frances S, Strickman D. Insect repellents handbook. 2nd ed. Boca Raton: CRC Press; 2014.CrossRef Debboun M, Frances S, Strickman D. Insect repellents handbook. 2nd ed. Boca Raton: CRC Press; 2014.CrossRef
3.
go back to reference Boeckh J, Breer H, Geier M, Hoever F-P, Krüger B-W, Nentwig G, et al. Acylated 1,3-aminopropanols as repellents against bloodsucking arthropods. Pestic Sci. 1996;48:359–73.CrossRef Boeckh J, Breer H, Geier M, Hoever F-P, Krüger B-W, Nentwig G, et al. Acylated 1,3-aminopropanols as repellents against bloodsucking arthropods. Pestic Sci. 1996;48:359–73.CrossRef
4.
go back to reference Syed Z, Leal WS. Mosquitoes smell and avoid the insect repellent DEET. Proc Natl Acad Sci USA. 2008;105:13598–603.CrossRef Syed Z, Leal WS. Mosquitoes smell and avoid the insect repellent DEET. Proc Natl Acad Sci USA. 2008;105:13598–603.CrossRef
5.
go back to reference Lee Y, Kim SH, Montell C. Avoiding DEET through insect gustatory receptors. Neuron. 2010;67:555–61.CrossRef Lee Y, Kim SH, Montell C. Avoiding DEET through insect gustatory receptors. Neuron. 2010;67:555–61.CrossRef
6.
go back to reference Stanczyk NM, Brookfield JFY, Ignell R, Logan JG, Field LM. Behavioral insensitivity to DEET in Aedes aegypti is a genetically determined trait residing in changes in sensillum function. Proc Natl Acad Sci USA. 2010;107:8575–80.CrossRef Stanczyk NM, Brookfield JFY, Ignell R, Logan JG, Field LM. Behavioral insensitivity to DEET in Aedes aegypti is a genetically determined trait residing in changes in sensillum function. Proc Natl Acad Sci USA. 2010;107:8575–80.CrossRef
7.
go back to reference Bohbot JD, Fu L, Le TC, Chauhan KR, Cantrell CL, Dickens JC. Multiple activities of insect repellents on odorant receptors in mosquitoes. Med Vet Entomol. 2011;25:436–44.CrossRef Bohbot JD, Fu L, Le TC, Chauhan KR, Cantrell CL, Dickens JC. Multiple activities of insect repellents on odorant receptors in mosquitoes. Med Vet Entomol. 2011;25:436–44.CrossRef
8.
go back to reference DeGennaro M, McBride CS, Seeholzer L, Nakagawa T, Dennis EJ, Goldman C, et al. orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature. 2013;498:487–91.CrossRef DeGennaro M, McBride CS, Seeholzer L, Nakagawa T, Dennis EJ, Goldman C, et al. orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature. 2013;498:487–91.CrossRef
9.
go back to reference Xu P, Choo Y-M, De La Rosa A, Leal WS. Mosquito odorant receptor for DEET and methyl jasmonate. Proc Natl Acad Sci USA. 2014;111:16592–7.CrossRef Xu P, Choo Y-M, De La Rosa A, Leal WS. Mosquito odorant receptor for DEET and methyl jasmonate. Proc Natl Acad Sci USA. 2014;111:16592–7.CrossRef
10.
go back to reference Ditzen M, Pellegrino M, Vosshall LB. Insect odorant receptors are molecular targets of the insect repellent DEET. Science. 2008;319:1838–42.CrossRef Ditzen M, Pellegrino M, Vosshall LB. Insect odorant receptors are molecular targets of the insect repellent DEET. Science. 2008;319:1838–42.CrossRef
11.
go back to reference Bohbot JD, Dickens JC. Insect repellents: modulators of mosquito odorant receptor activity. PLoS ONE. 2010;5:e12138.CrossRef Bohbot JD, Dickens JC. Insect repellents: modulators of mosquito odorant receptor activity. PLoS ONE. 2010;5:e12138.CrossRef
12.
go back to reference Pellegrino M, Steinbach N, Stensmyr MC, Hansson BS, Vosshall LB. A natural polymorphism alters odour and DEET sensitivity in an insect odorant receptor. Nature. 2011;478:511–4.CrossRef Pellegrino M, Steinbach N, Stensmyr MC, Hansson BS, Vosshall LB. A natural polymorphism alters odour and DEET sensitivity in an insect odorant receptor. Nature. 2011;478:511–4.CrossRef
13.
go back to reference Afify A, Betz JF, Riabinina O, Lahondère C, Potter CJ. Commonly used insect repellents hide human odors from Anopheles mosquitoes. Curr Biol. 2019;29:3669–80.CrossRef Afify A, Betz JF, Riabinina O, Lahondère C, Potter CJ. Commonly used insect repellents hide human odors from Anopheles mosquitoes. Curr Biol. 2019;29:3669–80.CrossRef
14.
go back to reference Dennis EJ, Goldman OV, Vosshall LB. Aedes aegypti mosquitoes use their legs to sense DEET on contact. Curr Biol. 2019;29:1551–6.CrossRef Dennis EJ, Goldman OV, Vosshall LB. Aedes aegypti mosquitoes use their legs to sense DEET on contact. Curr Biol. 2019;29:1551–6.CrossRef
15.
go back to reference Rueda LM. Global diversity of mosquitoes (Insecta: Diptera: Culicidae) in freshwater. In: Balian EV, Lévêque C, Segers H, Martens K, editors. Freshwater animal diversity assessment. Dordrecht: Springer; 2008. p. 477–87.CrossRef Rueda LM. Global diversity of mosquitoes (Insecta: Diptera: Culicidae) in freshwater. In: Balian EV, Lévêque C, Segers H, Martens K, editors. Freshwater animal diversity assessment. Dordrecht: Springer; 2008. p. 477–87.CrossRef
16.
go back to reference Moreno M, Marinotti O, Krzywinski J, Tadei W, James A, Achee N, et al. Complete mtDNA genomes of Anopheles darlingi and an approach to anopheline divergence time. Malar J. 2010;9:27.CrossRef Moreno M, Marinotti O, Krzywinski J, Tadei W, James A, Achee N, et al. Complete mtDNA genomes of Anopheles darlingi and an approach to anopheline divergence time. Malar J. 2010;9:27.CrossRef
17.
go back to reference Sieglaff DH, Dunn WA, Xie XS, Megy K, Marinotti O, James AA. Comparative genomics allows the discovery of cis-regulatory elements in mosquitoes. Proc Natl Acad Sci USA. 2009;106:3053–8.CrossRef Sieglaff DH, Dunn WA, Xie XS, Megy K, Marinotti O, James AA. Comparative genomics allows the discovery of cis-regulatory elements in mosquitoes. Proc Natl Acad Sci USA. 2009;106:3053–8.CrossRef
18.
go back to reference McBride CS, Baier F, Omondi AB, Spitzer SA, Lutomiah J, Sang R, et al. Evolution of mosquito preference for humans linked to an odorant receptor. Nature. 2014;515:222–7.CrossRef McBride CS, Baier F, Omondi AB, Spitzer SA, Lutomiah J, Sang R, et al. Evolution of mosquito preference for humans linked to an odorant receptor. Nature. 2014;515:222–7.CrossRef
19.
go back to reference Auer TO, Khallaf MA, Silbering AF, Zappia G, Ellis K, Álvarez-Ocaña R, et al. Olfactory receptor and circuit evolution promote host specialization. Nature. 2020;579:402–8.CrossRef Auer TO, Khallaf MA, Silbering AF, Zappia G, Ellis K, Álvarez-Ocaña R, et al. Olfactory receptor and circuit evolution promote host specialization. Nature. 2020;579:402–8.CrossRef
20.
go back to reference McBride CS, Arguello JR. Five Drosophila genomes reveal nonneutral evolution and the signature of host specialization in the chemoreceptor superfamily. Genetics. 2007;177:1395–416.CrossRef McBride CS, Arguello JR. Five Drosophila genomes reveal nonneutral evolution and the signature of host specialization in the chemoreceptor superfamily. Genetics. 2007;177:1395–416.CrossRef
21.
go back to reference Yan H, Jafari S, Pask G, Zhou X, Reinberg D, Desplan C. Evolution, developmental expression and function of odorant receptors in insects. J Exp Biol. 2020;223:208215.CrossRef Yan H, Jafari S, Pask G, Zhou X, Reinberg D, Desplan C. Evolution, developmental expression and function of odorant receptors in insects. J Exp Biol. 2020;223:208215.CrossRef
22.
go back to reference Nei M, Niimura Y, Nozawa M. The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet. 2008;9:951–63.CrossRef Nei M, Niimura Y, Nozawa M. The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet. 2008;9:951–63.CrossRef
23.
go back to reference Hansson BS, Stensmyr MC. Evolution of Insect Olfaction. Neuron. 2011;72:698–711.CrossRef Hansson BS, Stensmyr MC. Evolution of Insect Olfaction. Neuron. 2011;72:698–711.CrossRef
24.
go back to reference Cande J, Prudhomme B, Gompel N. Smells like evolution: the role of chemoreceptor evolution in behavioral change. Curr Opin Neurobiol. 2013;23:152–8.CrossRef Cande J, Prudhomme B, Gompel N. Smells like evolution: the role of chemoreceptor evolution in behavioral change. Curr Opin Neurobiol. 2013;23:152–8.CrossRef
25.
go back to reference Sánchez-Gracia A, Vieira FG, Rozas J. Molecular evolution of the major chemosensory gene families in insects. Heredity. 2009;103:208–16.CrossRef Sánchez-Gracia A, Vieira FG, Rozas J. Molecular evolution of the major chemosensory gene families in insects. Heredity. 2009;103:208–16.CrossRef
26.
go back to reference Stanczyk NM, Brookfield JFY, Field LM, Logan JG. Aedes aegypti mosquitoes exhibit decreased repellency by DEET following previous exposure. PLoS ONE. 2013;8:e54438.CrossRef Stanczyk NM, Brookfield JFY, Field LM, Logan JG. Aedes aegypti mosquitoes exhibit decreased repellency by DEET following previous exposure. PLoS ONE. 2013;8:e54438.CrossRef
27.
go back to reference Hao H, Wei J, Dai J, Du J. Host-seeking and blood-feeding behavior of Aedes albopictus (Diptera: culicidae) exposed to vapors of geraniol, citral, citronellal, eugenol, or anisaldehyde. J Med Entomol. 2008;45:533–9.CrossRef Hao H, Wei J, Dai J, Du J. Host-seeking and blood-feeding behavior of Aedes albopictus (Diptera: culicidae) exposed to vapors of geraniol, citral, citronellal, eugenol, or anisaldehyde. J Med Entomol. 2008;45:533–9.CrossRef
28.
go back to reference Afify A, Horlacher B, Roller J, Galizia CG. Different repellents for Aedes aegypti against blood-feeding and oviposition. PLoS ONE. 2014;9:e103765.CrossRef Afify A, Horlacher B, Roller J, Galizia CG. Different repellents for Aedes aegypti against blood-feeding and oviposition. PLoS ONE. 2014;9:e103765.CrossRef
29.
go back to reference Riabinina O, Task D, Marr E, Lin C-C, Alford R, O’Brochta DA, et al. Organization of olfactory centers in the malaria mosquito Anopheles gambiae. Nat Commun. 2016;7:13010.CrossRef Riabinina O, Task D, Marr E, Lin C-C, Alford R, O’Brochta DA, et al. Organization of olfactory centers in the malaria mosquito Anopheles gambiae. Nat Commun. 2016;7:13010.CrossRef
30.
go back to reference R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018. R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018.
31.
go back to reference Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676.CrossRef Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676.CrossRef
32.
go back to reference Semmelhack JL, Wang JW. Select Drosophila glomeruli mediate innate olfactory attraction and aversion. Nature. 2009;459:218–23.CrossRef Semmelhack JL, Wang JW. Select Drosophila glomeruli mediate innate olfactory attraction and aversion. Nature. 2009;459:218–23.CrossRef
33.
go back to reference McKenna M, Monte P, Helfand SL, Woodard C, Carlson J. A simple chemosensory response in Drosophila and the isolation of acj mutants in which it is affected. Proc Natl Acad Sci USA. 1989;86:8118–22.CrossRef McKenna M, Monte P, Helfand SL, Woodard C, Carlson J. A simple chemosensory response in Drosophila and the isolation of acj mutants in which it is affected. Proc Natl Acad Sci USA. 1989;86:8118–22.CrossRef
34.
go back to reference Cork A, Park K. Identification of electrophysiologically-active compounds for the malaria mosquito, Anopheles gambiae, in human sweat extracts. Med Vet Entomol. 1996;10:269–76.CrossRef Cork A, Park K. Identification of electrophysiologically-active compounds for the malaria mosquito, Anopheles gambiae, in human sweat extracts. Med Vet Entomol. 1996;10:269–76.CrossRef
35.
go back to reference Jones PL, Pask GM, Rinker DC, Zwiebel LJ. Functional agonism of insect odorant receptor ion channels. Proc Natl Acad Sci USA. 2011;108:8821–5.CrossRef Jones PL, Pask GM, Rinker DC, Zwiebel LJ. Functional agonism of insect odorant receptor ion channels. Proc Natl Acad Sci USA. 2011;108:8821–5.CrossRef
Metadata
Title
Insect repellents mediate species-specific olfactory behaviours in mosquitoes
Authors
Ali Afify
Christopher J. Potter
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2020
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-020-03206-8

Other articles of this Issue 1/2020

Malaria Journal 1/2020 Go to the issue