Skip to main content
Top
Published in: Malaria Journal 1/2019

Open Access 01-12-2019 | Malaria | Research

Defining the larval habitat: abiotic and biotic parameters associated with Anopheles farauti productivity

Authors: Kimberley McLaughlin, Thomas R. Burkot, Jance Oscar, Nigel W. Beebe, Tanya L. Russell

Published in: Malaria Journal | Issue 1/2019

Login to get access

Abstract

Background

In the Solomon Island, the dominant malaria vector, Anopheles farauti, is highly anthropophagic and increasingly exophilic and early biting. While long-lasting insecticide-treated nets remain effective against An. farauti, supplemental vector control strategies will be needed to achieve malaria elimination. Presently, the only World Health Organization recommended supplemental vector control strategy is larval source management (LSM). Effective targeted larval source management requires understanding the associations between abiotic, chemical and biological parameters of larval habitats with the presence or density of vector larvae.

Methods

Potential and actual An. farauti larval habitats were characterized for presence and density of larvae and associated abiotic, chemical and biological parameters.

Results

A third of all sampled potential habitats harboured An. farauti larvae with 80% of An. farauti positive habitats being in three habitat classifications (swamps/lagoons, transient pools and man-made holes). Large swamps were the most abundant positive habitats surveyed (43% of all An. farauti positive habitats). Habitats with An. farauti larvae were significantly associated with abiotic (pH, nitrate, ammonia and phosphate concentrations and elevated temperature) and biotic (predators) parameters.

Conclusion

Large swamps and lagoons are the largest and most abundant An. farauti habitats in the Solomon Islands. Positive habitats were more frequently associated with the presence of predators (vertebrates and invertebrates) and higher water temperatures. Cohabitation with predators is indicative of a complex habitat ecosystem and raises questions about the potential of biological control as an effective control strategy. Increased presence of An. farauti with higher water temperature suggests a potential explanation for the coastal distribution of this species which is not found inland at elevated altitudes where temperatures would be cooler.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. Disease surveillance for malaria elimination: an operational manual. Geneva: World Health Organization; 2012. WHO. Disease surveillance for malaria elimination: an operational manual. Geneva: World Health Organization; 2012.
2.
go back to reference WHO. Global technical strategy for malaria 2016–2030. Geneva: World Health Organization; 2015. WHO. Global technical strategy for malaria 2016–2030. Geneva: World Health Organization; 2015.
3.
go back to reference World Health Organization. World malaria report. Geneva: World Health Organization; 2018. World Health Organization. World malaria report. Geneva: World Health Organization; 2018.
5.
go back to reference Beebe N, Russell T, Burkot T, Lobo N, Cooper R. The systematics and bionomics of malaria vectors in the southwest Pacific. In: Manguin S, ed. Anopheles mosquitoes—new insights into malaria vectors. InTechOpen Publ. 2013:357-94. Beebe N, Russell T, Burkot T, Lobo N, Cooper R. The systematics and bionomics of malaria vectors in the southwest Pacific. In: Manguin S, ed. Anopheles mosquitoes—new insights into malaria vectors. InTechOpen Publ. 2013:357-94.
6.
go back to reference Burkot TR, Bugoro H, Apairamo A, Cooper RD, Echeverry DF, Odabasi D, et al. Spatial-temporal heterogeneity in malaria receptivity is best estimated by vector biting rates in areas nearing elimination. Parasit Vectors. 2018;11:606.CrossRef Burkot TR, Bugoro H, Apairamo A, Cooper RD, Echeverry DF, Odabasi D, et al. Spatial-temporal heterogeneity in malaria receptivity is best estimated by vector biting rates in areas nearing elimination. Parasit Vectors. 2018;11:606.CrossRef
7.
go back to reference Samarawickrema WA, Parkinson AD, Kere N. Seasonal abundance and biting behaviour of Anopheles punctulatus and An.koliensis in Malaita Province, Solomon Islands, and a trial of permethrin impregnated bednets against malaria transmission. Med Vet Entomol. 1992;6:371–8.CrossRef Samarawickrema WA, Parkinson AD, Kere N. Seasonal abundance and biting behaviour of Anopheles punctulatus and An.koliensis in Malaita Province, Solomon Islands, and a trial of permethrin impregnated bednets against malaria transmission. Med Vet Entomol. 1992;6:371–8.CrossRef
8.
go back to reference Beebe NW, Russell T, Burkot TR, Cooper RD. Anopheles punctulatus group: evolution, distribution, and control. Annu Rev Entomol. 2015;60:335–50.CrossRef Beebe NW, Russell T, Burkot TR, Cooper RD. Anopheles punctulatus group: evolution, distribution, and control. Annu Rev Entomol. 2015;60:335–50.CrossRef
9.
go back to reference Taylor B. Observations on malaria vectors of the Anopheles punctulatus complex in the British Solomon Islands Protectorate. J Med Entomol. 1975;11:677–87.CrossRef Taylor B. Observations on malaria vectors of the Anopheles punctulatus complex in the British Solomon Islands Protectorate. J Med Entomol. 1975;11:677–87.CrossRef
10.
go back to reference Cooper RD, Waterson DGE, Frances SP, Beebe NW, Sweeney AW. Speciation and distribution of the members of the Anopheles punctulatus (Diptera: Culicidae) group in Papua New Guinea. J Med Entomol. 2002;39:16–27.CrossRef Cooper RD, Waterson DGE, Frances SP, Beebe NW, Sweeney AW. Speciation and distribution of the members of the Anopheles punctulatus (Diptera: Culicidae) group in Papua New Guinea. J Med Entomol. 2002;39:16–27.CrossRef
11.
go back to reference Russell TL, Burkot TR, Bugoro H, Apairamo A, Beebe NW, Chow WK, et al. Larval habitats of the Anopheles farauti and Anopheles lungae complexes in the Solomon Islands. Malar J. 2016;15:164.CrossRef Russell TL, Burkot TR, Bugoro H, Apairamo A, Beebe NW, Chow WK, et al. Larval habitats of the Anopheles farauti and Anopheles lungae complexes in the Solomon Islands. Malar J. 2016;15:164.CrossRef
12.
go back to reference Taylor B, Maffi M. A review of the mosquito fauna of the Solomon Islands (Diptera: Culicidae). Pac Insects. 1978;19:165–248. Taylor B, Maffi M. A review of the mosquito fauna of the Solomon Islands (Diptera: Culicidae). Pac Insects. 1978;19:165–248.
13.
go back to reference Hii JL, Kanai L, Foligela A, Kan SK, Burkot TR, Wirtz RA. Impact of permethrin-impregnated mosquito nets compared with DDT house spraying against malaria transmission by Anopheles farauti and An. punctulatus in the Solomon Islands. Med Vet Entomol. 1993;7:333–8.CrossRef Hii JL, Kanai L, Foligela A, Kan SK, Burkot TR, Wirtz RA. Impact of permethrin-impregnated mosquito nets compared with DDT house spraying against malaria transmission by Anopheles farauti and An. punctulatus in the Solomon Islands. Med Vet Entomol. 1993;7:333–8.CrossRef
14.
go back to reference Hii JL, Birley MH, Kanai L, Foligeli A, Wagner J. Comparative effects of permethrin-impregnated bednets and DDT house spraying on survival rates and oviposition interval of Anopheles farauti No. 1 (Diptera: Culicidae) in Solomon Islands. Ann Trop Med Parasitol. 1995;89:521–9.CrossRef Hii JL, Birley MH, Kanai L, Foligeli A, Wagner J. Comparative effects of permethrin-impregnated bednets and DDT house spraying on survival rates and oviposition interval of Anopheles farauti No. 1 (Diptera: Culicidae) in Solomon Islands. Ann Trop Med Parasitol. 1995;89:521–9.CrossRef
15.
go back to reference Bugoro H, Hii J, Russell T, Cooper R, Chan B, Iro’ofa C, et al. Influence of environmental factors on the abundance of Anopheles farauti larvae in large brackish water streams in Northern Guadalcanal, Solomon Islands. Malar J. 2011;10:262.CrossRef Bugoro H, Hii J, Russell T, Cooper R, Chan B, Iro’ofa C, et al. Influence of environmental factors on the abundance of Anopheles farauti larvae in large brackish water streams in Northern Guadalcanal, Solomon Islands. Malar J. 2011;10:262.CrossRef
16.
go back to reference Beebe NW, Saul A. Discrimination of all members of the Anopheles punctulatus complex by polymerase chain reaction–restriction fragment length polymorphism analysis. Am J Trop Med Hyg. 1995;53:478–81.CrossRef Beebe NW, Saul A. Discrimination of all members of the Anopheles punctulatus complex by polymerase chain reaction–restriction fragment length polymorphism analysis. Am J Trop Med Hyg. 1995;53:478–81.CrossRef
17.
go back to reference ASTM D6913/D6913M-17. Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. West Conshohocken: ASTM International, 2017. ASTM D6913/D6913M-17. Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. West Conshohocken: ASTM International, 2017.
18.
go back to reference R: a language and environment for statistical computing [program]. 3.6.0 version. Vienna: R Foundation for Statistical Computing, 2019. R: a language and environment for statistical computing [program]. 3.6.0 version. Vienna: R Foundation for Statistical Computing, 2019.
19.
go back to reference Service MW. Studies on sampling larval populations of the Anopheles gambiae complex. Bull World Health Organ. 1971;45:169–80.PubMedPubMedCentral Service MW. Studies on sampling larval populations of the Anopheles gambiae complex. Bull World Health Organ. 1971;45:169–80.PubMedPubMedCentral
20.
go back to reference Knight KL. Quantitative methods for mosquito larval surveys. J Med Entomol. 1964;1:109–15.CrossRef Knight KL. Quantitative methods for mosquito larval surveys. J Med Entomol. 1964;1:109–15.CrossRef
21.
go back to reference Lyimo E, Takken W, Koella JC. Effect of rearing temperature and larval density on larval survival, age at pupation and adult body size of Anopheles gambiae. Entomol Exp Appl. 1992;63:265–71.CrossRef Lyimo E, Takken W, Koella JC. Effect of rearing temperature and larval density on larval survival, age at pupation and adult body size of Anopheles gambiae. Entomol Exp Appl. 1992;63:265–71.CrossRef
22.
go back to reference Mwangangi JM, Muturi EJ, Shililu JI, Muriu S, Jacob B, Kabiru EW, et al. Environmental covariates of Anopheles arabiensis in a rice agroecosystem in Mwea, Central Kenya. J Am Mosq Control Assoc. 2007;23:371–7.CrossRef Mwangangi JM, Muturi EJ, Shililu JI, Muriu S, Jacob B, Kabiru EW, et al. Environmental covariates of Anopheles arabiensis in a rice agroecosystem in Mwea, Central Kenya. J Am Mosq Control Assoc. 2007;23:371–7.CrossRef
23.
go back to reference Awolola TS, Oduola AO, Obansa JB, Chukwurar NJ, Unyimadu JP. Anopheles gambiae ss breeding in polluted water bodies in urban Lagos, southwestern Nigeria. J Vector Borne Dis. 2007;44(4):241.PubMed Awolola TS, Oduola AO, Obansa JB, Chukwurar NJ, Unyimadu JP. Anopheles gambiae ss breeding in polluted water bodies in urban Lagos, southwestern Nigeria. J Vector Borne Dis. 2007;44(4):241.PubMed
24.
go back to reference Ndenga BA, Simbauni JA, Mbugi JP, Githeko AK. Physical, chemical and biological characteristics in habitats of high and low presence of anopheline larvae in western Kenya highlands. PLoS ONE. 2012;7:e47975.CrossRef Ndenga BA, Simbauni JA, Mbugi JP, Githeko AK. Physical, chemical and biological characteristics in habitats of high and low presence of anopheline larvae in western Kenya highlands. PLoS ONE. 2012;7:e47975.CrossRef
25.
go back to reference Mala AO, Irungu LW. Factors influencing differential larval habitat productivity of Anopheles gambiae complex mosquitoes in a western Kenyan village. J Vector Borne Dis. 2011;48:52–7.PubMed Mala AO, Irungu LW. Factors influencing differential larval habitat productivity of Anopheles gambiae complex mosquitoes in a western Kenyan village. J Vector Borne Dis. 2011;48:52–7.PubMed
26.
go back to reference Bell D, Bryan J, Cameron A, Foley D, Pholsyna K. Salinity tolerance of Anopheles farauti Laveran sensu stricto. P N G Med J. 1999;42:5–9.PubMed Bell D, Bryan J, Cameron A, Foley D, Pholsyna K. Salinity tolerance of Anopheles farauti Laveran sensu stricto. P N G Med J. 1999;42:5–9.PubMed
27.
go back to reference Sweeney AW. Larval salinity tolerances of the sibling species of Anopheles farauti. J Am Mosq Control Assoc. 1987;8:589–92. Sweeney AW. Larval salinity tolerances of the sibling species of Anopheles farauti. J Am Mosq Control Assoc. 1987;8:589–92.
28.
go back to reference Martin GG, Suárez MF, Astaeza R. An ecological survey of Anopheles albimanus larval habitats in Colombia. J Vector Ecol. 1996;21:122–31. Martin GG, Suárez MF, Astaeza R. An ecological survey of Anopheles albimanus larval habitats in Colombia. J Vector Ecol. 1996;21:122–31.
29.
go back to reference WHO. Interim position statement—the role of larviciding for malaria control in sub-Saharan Africa. Geneva: World Health Organization, 2012. WHO. Interim position statement—the role of larviciding for malaria control in sub-Saharan Africa. Geneva: World Health Organization, 2012.
Metadata
Title
Defining the larval habitat: abiotic and biotic parameters associated with Anopheles farauti productivity
Authors
Kimberley McLaughlin
Thomas R. Burkot
Jance Oscar
Nigel W. Beebe
Tanya L. Russell
Publication date
01-12-2019
Publisher
BioMed Central
Keywords
Malaria
Nitrate
Published in
Malaria Journal / Issue 1/2019
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-019-3049-7

Other articles of this Issue 1/2019

Malaria Journal 1/2019 Go to the issue