Skip to main content
Top
Published in: Malaria Journal 1/2019

Open Access 01-12-2019 | Malaria | Research

The complex of Plasmodium falciparum falcipain-2 protease with an (E)-chalcone-based inhibitor highlights a novel, small, molecule-binding site

Authors: Jonathan M. Machin, Anastassia L. Kantsadi, Ioannis Vakonakis

Published in: Malaria Journal | Issue 1/2019

Login to get access

Abstract

Background

Malaria kills over 400,000 people each year and nearly half the world’s population live in at-risk areas. Progress against malaria has recently stalled, highlighting the need for developing novel therapeutics. The parasite haemoglobin degradation pathway, active in the blood stage of the disease where malaria symptoms and lethality manifest, is a well-established drug target. A key enzyme in this pathway is the papain-type protease falcipain-2.

Methods

The crystallographic structure of falcipain-2 at 3.45 Å resolution was resolved in complex with an (E)-chalcone small-molecule inhibitor. The falcipain-2–(E)-chalcone complex was analysed with reference to previous falcipain complexes and their similarity to human cathepsin proteases.

Results

The (E)-chalcone inhibitor binds falcipain-2 to the rear of the substrate-binding cleft. This is the first structure of a falcipain protease where the rear of the substrate cleft is bound by a small molecule. In this manner, the (E)-chalcone inhibitor mimics interactions observed in protein-based falcipain inhibitors, which can achieve high interaction specificity.

Conclusions

This work informs the search for novel anti-malaria therapeutics that target falcipain-2 by showing the binding site and interactions of the medically privileged (E)-chalcone molecule. Furthermore, this study highlights the possibility of chemically combining the (E)-chalcone molecule with an existing active-site inhibitor of falcipain, which may yield a potent and selective compound for blocking haemoglobin degradation by the malaria parasite.
Literature
1.
go back to reference WHO. World malaria report 2018. Geneva: World Health Organization; 2018. WHO. World malaria report 2018. Geneva: World Health Organization; 2018.
2.
go back to reference Kirchgatter K, Del Portillo HA. Clinical and molecular aspects of severe malaria. An Acad Bras Cienc. 2005;77:455–75.PubMedCrossRef Kirchgatter K, Del Portillo HA. Clinical and molecular aspects of severe malaria. An Acad Bras Cienc. 2005;77:455–75.PubMedCrossRef
3.
go back to reference Sherman IW. Amino acid metabolism and protein synthesis in malarial parasites. Bull World Health Organ. 1977;55:265–76.PubMedPubMedCentral Sherman IW. Amino acid metabolism and protein synthesis in malarial parasites. Bull World Health Organ. 1977;55:265–76.PubMedPubMedCentral
4.
go back to reference Sherman IW, Tanigoshi L. Incorporation of 14C-amino acids by malaria (Plasmodium lophurae). IV. In vivo utilization of host cell haemoglobin. Int J Biochem. 1970;1:635–7.CrossRef Sherman IW, Tanigoshi L. Incorporation of 14C-amino acids by malaria (Plasmodium lophurae). IV. In vivo utilization of host cell haemoglobin. Int J Biochem. 1970;1:635–7.CrossRef
5.
go back to reference Francis SE, Sullivan DJ Jr, Goldberg DE. Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu Rev Microbiol. 1997;51:97–123.PubMedCrossRef Francis SE, Sullivan DJ Jr, Goldberg DE. Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu Rev Microbiol. 1997;51:97–123.PubMedCrossRef
6.
go back to reference Chugh M, Sundararaman V, Kumar S, Reddy VS, Siddiqui WA, Stuart KD, Malhotra P. Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum. Proc Natl Acad Sci USA. 2013;110:5392–7.PubMedCrossRefPubMedCentral Chugh M, Sundararaman V, Kumar S, Reddy VS, Siddiqui WA, Stuart KD, Malhotra P. Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum. Proc Natl Acad Sci USA. 2013;110:5392–7.PubMedCrossRefPubMedCentral
7.
go back to reference Zhang M, Wang C, Otto TD, Oberstaller J, Liao X, Adapa SR, et al. Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science. 2018;360:e7847.CrossRef Zhang M, Wang C, Otto TD, Oberstaller J, Liao X, Adapa SR, et al. Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science. 2018;360:e7847.CrossRef
8.
go back to reference Hempelmann E. Hemozoin biocrystallization in Plasmodium falciparum and the antimalarial activity of crystallization inhibitors. Parasitol Res. 2007;100:671–6.PubMedCrossRef Hempelmann E. Hemozoin biocrystallization in Plasmodium falciparum and the antimalarial activity of crystallization inhibitors. Parasitol Res. 2007;100:671–6.PubMedCrossRef
10.
go back to reference Olson JE, Lee GK, Semenov A, Rosenthal PJ. Antimalarial effects in mice of orally administered peptidyl cysteine protease inhibitors. Bioorg Med Chem. 1999;7:633–8.PubMedCrossRef Olson JE, Lee GK, Semenov A, Rosenthal PJ. Antimalarial effects in mice of orally administered peptidyl cysteine protease inhibitors. Bioorg Med Chem. 1999;7:633–8.PubMedCrossRef
11.
go back to reference Teixeira C, Gomes JR, Gomes P. Falcipains, Plasmodium falciparum cysteine proteases as key drug targets against malaria. Curr Med Chem. 2011;18:1555–72.PubMedCrossRef Teixeira C, Gomes JR, Gomes P. Falcipains, Plasmodium falciparum cysteine proteases as key drug targets against malaria. Curr Med Chem. 2011;18:1555–72.PubMedCrossRef
12.
go back to reference Hogg T, Nagarajan K, Herzberg S, Chen L, Shen X, Jiang H, et al. Structural and functional characterization of Falcipain-2, a hemoglobinase from the malarial parasite Plasmodium falciparum. J Biol Chem. 2006;281:25425–37.PubMedCrossRef Hogg T, Nagarajan K, Herzberg S, Chen L, Shen X, Jiang H, et al. Structural and functional characterization of Falcipain-2, a hemoglobinase from the malarial parasite Plasmodium falciparum. J Biol Chem. 2006;281:25425–37.PubMedCrossRef
13.
go back to reference Ramjee MK, Flinn NS, Pemberton TP, Quibell M, Wang Y, Watts JP. Substrate mapping and inhibitor profiling of falcipain-2, falcipain-3 and berghepain-2: implications for peptidase anti-malarial drug discovery. Biochem J. 2006;399:47–57.PubMedPubMedCentralCrossRef Ramjee MK, Flinn NS, Pemberton TP, Quibell M, Wang Y, Watts JP. Substrate mapping and inhibitor profiling of falcipain-2, falcipain-3 and berghepain-2: implications for peptidase anti-malarial drug discovery. Biochem J. 2006;399:47–57.PubMedPubMedCentralCrossRef
14.
go back to reference Hanspal M, Dua M, Takakuwa Y, Chishti AH, Mizuno A. Plasmodium falciparum cysteine protease falcipain-2 cleaves erythrocyte membrane skeletal proteins at late stages of parasite development. Blood. 2002;100:1048–54.PubMedCrossRef Hanspal M, Dua M, Takakuwa Y, Chishti AH, Mizuno A. Plasmodium falciparum cysteine protease falcipain-2 cleaves erythrocyte membrane skeletal proteins at late stages of parasite development. Blood. 2002;100:1048–54.PubMedCrossRef
15.
go back to reference Royo S, Schirmeister T, Kaiser M, Jung S, Rodriguez S, Bautista JM, Gonzalez FV. Antiprotozoal and cysteine proteases inhibitory activity of dipeptidyl enoates. Bioorg Med Chem. 2018;26:4624–34.PubMedCrossRef Royo S, Schirmeister T, Kaiser M, Jung S, Rodriguez S, Bautista JM, Gonzalez FV. Antiprotozoal and cysteine proteases inhibitory activity of dipeptidyl enoates. Bioorg Med Chem. 2018;26:4624–34.PubMedCrossRef
16.
go back to reference Chen W, Huang Z, Wang W, Mao F, Guan L, Tang Y, et al. Discovery of new antimalarial agents: second-generation dual inhibitors against FP-2 and PfDHFR via fragments assembely. Bioorg Med Chem. 2017;25:6467–78.PubMedCrossRef Chen W, Huang Z, Wang W, Mao F, Guan L, Tang Y, et al. Discovery of new antimalarial agents: second-generation dual inhibitors against FP-2 and PfDHFR via fragments assembely. Bioorg Med Chem. 2017;25:6467–78.PubMedCrossRef
17.
go back to reference Melo PMS, El Chamy Maluf S, Azevedo MF, Paschoalin T, Budu A, Bagnaresi P, et al. Inhibition of Plasmodium falciparum cysteine proteases by the sugarcane cystatin CaneCPI-4. Parasitol Int. 2018;67:233–6.PubMedCrossRef Melo PMS, El Chamy Maluf S, Azevedo MF, Paschoalin T, Budu A, Bagnaresi P, et al. Inhibition of Plasmodium falciparum cysteine proteases by the sugarcane cystatin CaneCPI-4. Parasitol Int. 2018;67:233–6.PubMedCrossRef
18.
go back to reference Ang KK, Ratnam J, Gut J, Legac J, Hansell E, Mackey ZB, et al. Mining a cathepsin inhibitor library for new antiparasitic drug leads. PLoS Negl Trop Dis. 2011;5:e1023.PubMedPubMedCentralCrossRef Ang KK, Ratnam J, Gut J, Legac J, Hansell E, Mackey ZB, et al. Mining a cathepsin inhibitor library for new antiparasitic drug leads. PLoS Negl Trop Dis. 2011;5:e1023.PubMedPubMedCentralCrossRef
19.
go back to reference Salas-Sarduy E, Guerra Y, Covaleda Cortes G, Aviles FX, Chavez Planes MA. Identification of tight-binding plasmepsin II and falcipain 2 inhibitors in aqueous extracts of marine invertebrates by the combination of enzymatic and interaction-based assays. Mar Drugs. 2017;15:123.PubMedCentralCrossRef Salas-Sarduy E, Guerra Y, Covaleda Cortes G, Aviles FX, Chavez Planes MA. Identification of tight-binding plasmepsin II and falcipain 2 inhibitors in aqueous extracts of marine invertebrates by the combination of enzymatic and interaction-based assays. Mar Drugs. 2017;15:123.PubMedCentralCrossRef
20.
go back to reference Nizi E, Sferrazza A, Fabbrini D, Nardi V, Andreini M, Graziani R, et al. Peptidomimetic nitrile inhibitors of malarial protease falcipain-2 with high selectivity against human cathepsins. Bioorg Med Chem Lett. 2018;28:1540–4.PubMedCrossRef Nizi E, Sferrazza A, Fabbrini D, Nardi V, Andreini M, Graziani R, et al. Peptidomimetic nitrile inhibitors of malarial protease falcipain-2 with high selectivity against human cathepsins. Bioorg Med Chem Lett. 2018;28:1540–4.PubMedCrossRef
21.
go back to reference Bertoldo JB, Chiaradia-Delatorre LD, Mascarello A, Leal PC, Cordeiro MN, Nunes RJ, et al. Synthetic compounds from an in house library as inhibitors of falcipain-2 from Plasmodium falciparum. J Enzyme Inhib Med Chem. 2015;30:299–307.PubMedCrossRef Bertoldo JB, Chiaradia-Delatorre LD, Mascarello A, Leal PC, Cordeiro MN, Nunes RJ, et al. Synthetic compounds from an in house library as inhibitors of falcipain-2 from Plasmodium falciparum. J Enzyme Inhib Med Chem. 2015;30:299–307.PubMedCrossRef
22.
go back to reference Hernandez-Gonzalez JE, Salas-Sarduy E, Hernandez Ramirez LF, Pascual MJ, Alvarez DE, Pabon A, et al. Identification of (4-(9H-fluoren-9-yl) piperazin-1-yl) methanone derivatives as falcipain 2 inhibitors active against Plasmodium falciparum cultures. Biochim Biophys Acta Gen Subj. 2018;1862:2911–23.PubMedCrossRef Hernandez-Gonzalez JE, Salas-Sarduy E, Hernandez Ramirez LF, Pascual MJ, Alvarez DE, Pabon A, et al. Identification of (4-(9H-fluoren-9-yl) piperazin-1-yl) methanone derivatives as falcipain 2 inhibitors active against Plasmodium falciparum cultures. Biochim Biophys Acta Gen Subj. 2018;1862:2911–23.PubMedCrossRef
23.
go back to reference Kerr ID, Lee JH, Pandey KC, Harrison A, Sajid M, Rosenthal PJ, Brinen LS. Structures of falcipain-2 and falcipain-3 bound to small molecule inhibitors: implications for substrate specificity. J Med Chem. 2009;52:852–7.PubMedPubMedCentralCrossRef Kerr ID, Lee JH, Pandey KC, Harrison A, Sajid M, Rosenthal PJ, Brinen LS. Structures of falcipain-2 and falcipain-3 bound to small molecule inhibitors: implications for substrate specificity. J Med Chem. 2009;52:852–7.PubMedPubMedCentralCrossRef
24.
go back to reference Kerr ID, Lee JH, Farady CJ, Marion R, Rickert M, Sajid M, et al. Vinyl sulfones as antiparasitic agents and a structural basis for drug design. J Biol Chem. 2009;284:25697–703.PubMedPubMedCentralCrossRef Kerr ID, Lee JH, Farady CJ, Marion R, Rickert M, Sajid M, et al. Vinyl sulfones as antiparasitic agents and a structural basis for drug design. J Biol Chem. 2009;284:25697–703.PubMedPubMedCentralCrossRef
25.
go back to reference Wang SX, Pandey KC, Somoza JR, Sijwali PS, Kortemme T, Brinen LS, et al. Structural basis for unique mechanisms of folding and hemoglobin binding by a malarial protease. Proc Natl Acad Sci USA. 2006;103:11503–8.PubMedCrossRefPubMedCentral Wang SX, Pandey KC, Somoza JR, Sijwali PS, Kortemme T, Brinen LS, et al. Structural basis for unique mechanisms of folding and hemoglobin binding by a malarial protease. Proc Natl Acad Sci USA. 2006;103:11503–8.PubMedCrossRefPubMedCentral
26.
go back to reference Wang SX, Pandey KC, Scharfstein J, Whisstock J, Huang RK, Jacobelli J, et al. The structure of chagasin in complex with a cysteine protease clarifies the binding mode and evolution of an inhibitor family. Structure. 2007;15:535–43.PubMedCrossRef Wang SX, Pandey KC, Scharfstein J, Whisstock J, Huang RK, Jacobelli J, et al. The structure of chagasin in complex with a cysteine protease clarifies the binding mode and evolution of an inhibitor family. Structure. 2007;15:535–43.PubMedCrossRef
27.
go back to reference Hansen G, Heitmann A, Witt T, Li H, Jiang H, Shen X, et al. Structural basis for the regulation of cysteine-protease activity by a new class of protease inhibitors in Plasmodium. Structure. 2011;19:919–29.PubMedCrossRef Hansen G, Heitmann A, Witt T, Li H, Jiang H, Shen X, et al. Structural basis for the regulation of cysteine-protease activity by a new class of protease inhibitors in Plasmodium. Structure. 2011;19:919–29.PubMedCrossRef
28.
29.
go back to reference Gomes MN, Muratov EN, Pereira M, Peixoto JC, Rosseto LP, Cravo PVL, et al. Chalcone derivatives: promising starting points for drug design. Molecules. 2017;22:1210.PubMedCentralCrossRef Gomes MN, Muratov EN, Pereira M, Peixoto JC, Rosseto LP, Cravo PVL, et al. Chalcone derivatives: promising starting points for drug design. Molecules. 2017;22:1210.PubMedCentralCrossRef
30.
go back to reference Rogala KB, Dynes NJ, Hatzopoulos GN, Yan J, Pong SK, Robinson CV, et al. The Caenorhabditis elegans protein SAS-5 forms large oligomeric assemblies critical for centriole formation. Elife. 2015;4:e07410.PubMedPubMedCentralCrossRef Rogala KB, Dynes NJ, Hatzopoulos GN, Yan J, Pong SK, Robinson CV, et al. The Caenorhabditis elegans protein SAS-5 forms large oligomeric assemblies critical for centriole formation. Elife. 2015;4:e07410.PubMedPubMedCentralCrossRef
31.
32.
go back to reference Vonrhein C, Flensburg C, Keller P, Sharff A, Smart O, Paciorek W, et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr D Biol Crystallogr. 2011;67:293–302.PubMedPubMedCentralCrossRef Vonrhein C, Flensburg C, Keller P, Sharff A, Smart O, Paciorek W, et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr D Biol Crystallogr. 2011;67:293–302.PubMedPubMedCentralCrossRef
33.
go back to reference Tickle IJ, Flensburg C, Keller P, Paciorek W, Sharff A, Vonrhein C, Bricogne G. STARANISO. Cambridge: Global Phasing Ltd.; 2018. Tickle IJ, Flensburg C, Keller P, Paciorek W, Sharff A, Vonrhein C, Bricogne G. STARANISO. Cambridge: Global Phasing Ltd.; 2018.
34.
35.
go back to reference Bricogne G, Blanc E, Brandl M, Flensburg C, Keller P, Paciorek W, et al. BUSTER. Cambridge: Global Phasing Ltd.; 2017. Bricogne G, Blanc E, Brandl M, Flensburg C, Keller P, Paciorek W, et al. BUSTER. Cambridge: Global Phasing Ltd.; 2017.
37.
go back to reference Smart OS, Womack TO, Sharff A, Flensburg C, Keller P, Paciorek W, et al. GRADE. Cambridge: Global Phasing Ltd.; 2011. Smart OS, Womack TO, Sharff A, Flensburg C, Keller P, Paciorek W, et al. GRADE. Cambridge: Global Phasing Ltd.; 2011.
38.
go back to reference Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010;66:12–21.PubMedCrossRef Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010;66:12–21.PubMedCrossRef
39.
go back to reference DeLano WL. The PyMOL Molecular Graphics System. San Carlos: DeLano Scientific; 2002. DeLano WL. The PyMOL Molecular Graphics System. San Carlos: DeLano Scientific; 2002.
40.
go back to reference Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.PubMedPubMedCentralCrossRef Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.PubMedPubMedCentralCrossRef
41.
go back to reference Jeffrey GA. An introduction to hydrogen bonding. New York: Oxford University Press; 1997. Jeffrey GA. An introduction to hydrogen bonding. New York: Oxford University Press; 1997.
42.
go back to reference Rennenberg A, Lehmann C, Heitmann A, Witt T, Hansen G, Nagarajan K, et al. Exoerythrocytic Plasmodium parasites secrete a cysteine protease inhibitor involved in sporozoite invasion and capable of blocking cell death of host hepatocytes. PLoS Pathog. 2010;6:e1000825.PubMedPubMedCentralCrossRef Rennenberg A, Lehmann C, Heitmann A, Witt T, Hansen G, Nagarajan K, et al. Exoerythrocytic Plasmodium parasites secrete a cysteine protease inhibitor involved in sporozoite invasion and capable of blocking cell death of host hepatocytes. PLoS Pathog. 2010;6:e1000825.PubMedPubMedCentralCrossRef
43.
go back to reference Pandey KC, Singh N, Arastu-Kapur S, Bogyo M, Rosenthal PJ. Falstatin, a cysteine protease inhibitor of Plasmodium falciparum, facilitates erythrocyte invasion. PLoS Pathog. 2006;2:e117.PubMedPubMedCentralCrossRef Pandey KC, Singh N, Arastu-Kapur S, Bogyo M, Rosenthal PJ. Falstatin, a cysteine protease inhibitor of Plasmodium falciparum, facilitates erythrocyte invasion. PLoS Pathog. 2006;2:e117.PubMedPubMedCentralCrossRef
Metadata
Title
The complex of Plasmodium falciparum falcipain-2 protease with an (E)-chalcone-based inhibitor highlights a novel, small, molecule-binding site
Authors
Jonathan M. Machin
Anastassia L. Kantsadi
Ioannis Vakonakis
Publication date
01-12-2019
Publisher
BioMed Central
Keywords
Malaria
Plasmodia
Published in
Malaria Journal / Issue 1/2019
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-019-3043-0

Other articles of this Issue 1/2019

Malaria Journal 1/2019 Go to the issue