Skip to main content
Top
Published in: Malaria Journal 1/2019

Open Access 01-12-2019 | Research

Pairwise growth competitions identify relative fitness relationships among artemisinin resistant Plasmodium falciparum field isolates

Authors: Abigail R. Tirrell, Katelyn M. Vendrely, Lisa A. Checkley, Sage Z. Davis, Marina McDew-White, Ian H. Cheeseman, Ashley M. Vaughan, François H. Nosten, Timothy J. C. Anderson, Michael T. Ferdig

Published in: Malaria Journal | Issue 1/2019

Login to get access

Abstract

Background

Competitive outcomes between co-infecting malaria parasite lines can reveal fitness disparities in blood stage growth. Blood stage fitness costs often accompany the evolution of drug resistance, with the expectation that relatively fitter parasites will be more likely to spread in populations. With the recent emergence of artemisinin resistance, it is important to understand the relative competitive fitness of the metabolically active asexual blood stage parasites. Genetically distinct drug resistant parasite clones with independently evolved sets of mutations are likely to vary in asexual proliferation rate, contributing to their chance of transmission to the mosquito vector.

Methods

An optimized in vitro 96-well plate-based protocol was used to quantitatively measure-head-to-head competitive fitness during blood stage development between seven genetically distinct field isolates from a hotspot of emerging artemisinin resistance and the laboratory strain, NF54. These field isolates were isolated from patients in Southeast Asia carrying different alleles of kelch13 and included both artemisinin-sensitive and artemisinin-resistant isolates. Fluorescent labeled microsatellite markers were used to track the relative densities of each parasite throughout the co-growth period of 14–60 days. All-on-all competitions were conducted for the panel of eight parasite lines (28 pairwise competitions) to determine their quantitative competitive fitness relationships.

Results

Twenty-eight pairwise competitive growth outcomes allowed for an unambiguous ranking among a set of seven genetically distinct parasite lines isolated from patients in Southeast Asia displaying a range of both kelch13 alleles and clinical clearance times and a laboratory strain, NF54. This comprehensive series of assays established the growth relationships among the eight parasite lines. Interestingly, a clinically artemisinin resistant parasite line that carries the wild-type form of kelch13 outcompeted all other parasites in this study. Furthermore, a kelch13 mutant line (E252Q) was competitively more fit without drug than lines with other resistance-associated kelch13 alleles, including the C580Y allele that has expanded to high frequencies under drug pressure in Southeast Asian resistant populations.

Conclusions

This optimized competitive growth assay can be employed for assessment of relative growth as an index of fitness during the asexual blood stage growth between natural lines carrying different genetic variants associated with artemisinin resistance. Improved understanding of the fitness costs of different parasites proliferating in human blood and the role different resistance mutations play in the context of specific genetic backgrounds will contribute to an understanding of the potential for specific mutations to spread in populations, with the potential to inform targeted strategies for malaria therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lenski RE. The cost of antibiotic resistance—from the perspective of a bacterium. Ciba Foundation Symp. 1997;207:131–40. Lenski RE. The cost of antibiotic resistance—from the perspective of a bacterium. Ciba Foundation Symp. 1997;207:131–40.
2.
go back to reference Babiker HA. Seasonal fluctuation of drug-resistant malaria parasites: a sign of fitness cost. Trends Parasitol. 2009;25:351–2.CrossRef Babiker HA. Seasonal fluctuation of drug-resistant malaria parasites: a sign of fitness cost. Trends Parasitol. 2009;25:351–2.CrossRef
3.
go back to reference Hughes D, Andersson DI. Evolutionary consequences of drug resistance: shared principles across diverse targets and organisms. Nat Rev Genet. 2015;16:459–71.CrossRef Hughes D, Andersson DI. Evolutionary consequences of drug resistance: shared principles across diverse targets and organisms. Nat Rev Genet. 2015;16:459–71.CrossRef
4.
go back to reference Childs LM, Buckee CO. Dissecting the determinants of malaria chronicity: why within-host models struggle to reproduce infection dynamics. J R Soc Interface. 2015;12:20141379.CrossRef Childs LM, Buckee CO. Dissecting the determinants of malaria chronicity: why within-host models struggle to reproduce infection dynamics. J R Soc Interface. 2015;12:20141379.CrossRef
5.
go back to reference Abkallo HM, Tangena JA, Tang J, Kobayashi N, Inoue M, Zougrana A, et al. Within-host competition does not select for virulence in malaria parasites; studies with Plasmodium yoelii. PLoS Pathog. 2015;11:e1004628.CrossRef Abkallo HM, Tangena JA, Tang J, Kobayashi N, Inoue M, Zougrana A, et al. Within-host competition does not select for virulence in malaria parasites; studies with Plasmodium yoelii. PLoS Pathog. 2015;11:e1004628.CrossRef
6.
go back to reference McGuigan L, Callaghan M. The evolving dynamics of the microbial community in the cystic fibrosis lung: CF microbiome. Environ Microbiol. 2015;17:16–28.CrossRef McGuigan L, Callaghan M. The evolving dynamics of the microbial community in the cystic fibrosis lung: CF microbiome. Environ Microbiol. 2015;17:16–28.CrossRef
7.
go back to reference Wacker MA, Turnbull LB, Walker LA, Mount MC, Ferdig MT. Quantification of multiple infections of Plasmodium falciparum in vitro. Malar J. 2012;11:180.CrossRef Wacker MA, Turnbull LB, Walker LA, Mount MC, Ferdig MT. Quantification of multiple infections of Plasmodium falciparum in vitro. Malar J. 2012;11:180.CrossRef
8.
go back to reference Hayward R, Saliba KJ, Kirk K. pfmdr1 mutations associated with chloroquine resistance incur a fitness cost in Plasmodium falciparum. Mol Microbiol. 2005;551:285–95. Hayward R, Saliba KJ, Kirk K. pfmdr1 mutations associated with chloroquine resistance incur a fitness cost in Plasmodium falciparum. Mol Microbiol. 2005;551:285–95.
9.
go back to reference Bushman M, Morton L, Duah N, Quashie N, Abuaku B, Koram KA, et al. Within-host competition and drug resistance in the human malaria parasite Plasmodium falciparum. Proc Biol Sci. 2016;283:20153038.CrossRef Bushman M, Morton L, Duah N, Quashie N, Abuaku B, Koram KA, et al. Within-host competition and drug resistance in the human malaria parasite Plasmodium falciparum. Proc Biol Sci. 2016;283:20153038.CrossRef
10.
go back to reference Lewis IA, Wacker M, Olszewski KL, Cobbold SA, Baska KS, Tan A, et al. Metabolic QTL analysis links chloroquine resistance in Plasmodium falciparum to impaired hemoglobin catabolism. PLoS Genet. 2014;10:e1004085.CrossRef Lewis IA, Wacker M, Olszewski KL, Cobbold SA, Baska KS, Tan A, et al. Metabolic QTL analysis links chloroquine resistance in Plasmodium falciparum to impaired hemoglobin catabolism. PLoS Genet. 2014;10:e1004085.CrossRef
11.
go back to reference Gabryszewski SJ, Modchang C, Musset L, Chookajorn T, Fidock DA. Combinatorial genetic modeling of pfcrt-mediated drug resistance evolution in Plasmodium falciparum. Mol Biol Evol. 2016;33:1554–70.CrossRef Gabryszewski SJ, Modchang C, Musset L, Chookajorn T, Fidock DA. Combinatorial genetic modeling of pfcrt-mediated drug resistance evolution in Plasmodium falciparum. Mol Biol Evol. 2016;33:1554–70.CrossRef
12.
go back to reference Petersen I, Gabryszewski SJ, Johnston GL, Dhingra SK, Ecker A, Lewis RE, et al. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter: PfCRT impacts antimalarial resistance and growth rates. Mol Microbiol. 2015;97:381–95.CrossRef Petersen I, Gabryszewski SJ, Johnston GL, Dhingra SK, Ecker A, Lewis RE, et al. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter: PfCRT impacts antimalarial resistance and growth rates. Mol Microbiol. 2015;97:381–95.CrossRef
13.
go back to reference Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.CrossRef Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.CrossRef
14.
go back to reference Wilairat P, Kümpornsin K, Chookajorn T. Plasmodium falciparum malaria: convergent evolutionary trajectories towards delayed clearance following artemisinin treatment. Med Hypotheses. 2016;90:19–22.CrossRef Wilairat P, Kümpornsin K, Chookajorn T. Plasmodium falciparum malaria: convergent evolutionary trajectories towards delayed clearance following artemisinin treatment. Med Hypotheses. 2016;90:19–22.CrossRef
15.
go back to reference Pollitt LC, Huijben S, Sim DG, Salathé RM, Jones MJ, Read AF. Rapid response to selection, competitive release and increased transmission potential of artesunate-selected Plasmodium chabaudi malaria parasites. PLoS Pathog. 2014;10:e1004019.CrossRef Pollitt LC, Huijben S, Sim DG, Salathé RM, Jones MJ, Read AF. Rapid response to selection, competitive release and increased transmission potential of artesunate-selected Plasmodium chabaudi malaria parasites. PLoS Pathog. 2014;10:e1004019.CrossRef
16.
go back to reference Hott A, Tucker MS, Casandra D, Sparks K, Kyle DE. Fitness of artemisinin-resistant Plasmodium falciparum in vitro. J Antimicrob Chemother. 2015;70:2787–96.CrossRef Hott A, Tucker MS, Casandra D, Sparks K, Kyle DE. Fitness of artemisinin-resistant Plasmodium falciparum in vitro. J Antimicrob Chemother. 2015;70:2787–96.CrossRef
17.
go back to reference Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–5.CrossRef Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–5.CrossRef
18.
go back to reference Fairhurst RM, Dondorp AM. Artemisinin-resistant Plasmodium falciparum malaria. Microbiol Spectr. 2016;4:409–29. Fairhurst RM, Dondorp AM. Artemisinin-resistant Plasmodium falciparum malaria. Microbiol Spectr. 2016;4:409–29.
19.
go back to reference Anderson TJC, Nair S, McDew-White M, Cheeseman IH, Nkhoma S, Bilgic F, et al. Population parameters underlying an ongoing soft sweep in southeast Asian malaria parasites. Mol Biol Evol. 2017;34:131–44.CrossRef Anderson TJC, Nair S, McDew-White M, Cheeseman IH, Nkhoma S, Bilgic F, et al. Population parameters underlying an ongoing soft sweep in southeast Asian malaria parasites. Mol Biol Evol. 2017;34:131–44.CrossRef
20.
go back to reference Imwong M, Suwannasin K, Kunasol C, Sutawong K, Mayxay M, Rekol H, et al. The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study. Lancet Infect Dis. 2017;17:491–7.CrossRef Imwong M, Suwannasin K, Kunasol C, Sutawong K, Mayxay M, Rekol H, et al. The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study. Lancet Infect Dis. 2017;17:491–7.CrossRef
21.
go back to reference Torrentino-Madamet M, Fall B, Benoit N, Camara C, Amalvict R, Fall M, et al. Limited polymorphisms in k13 gene in Plasmodium falciparum isolates from Dakar, Senegal in 2012–2013. Malar J. 2014;13:472.CrossRef Torrentino-Madamet M, Fall B, Benoit N, Camara C, Amalvict R, Fall M, et al. Limited polymorphisms in k13 gene in Plasmodium falciparum isolates from Dakar, Senegal in 2012–2013. Malar J. 2014;13:472.CrossRef
22.
go back to reference Cerqueira GC, Cheeseman IH, Schaffner SF, Nair S, McDew-White M, Phyo AP, et al. Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance. Genome Biol. 2017;18:78.CrossRef Cerqueira GC, Cheeseman IH, Schaffner SF, Nair S, McDew-White M, Phyo AP, et al. Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance. Genome Biol. 2017;18:78.CrossRef
23.
go back to reference Boullé M, Witkowski B, Duru V, Srprawat K, Nair S, McDew-White M, et al. Artemisinin-resistant Plasmodium falciparum K13 mutant alleles, Thailand–Myanmar border. Emerg Infect Dis. 2016;22:1503–5.CrossRef Boullé M, Witkowski B, Duru V, Srprawat K, Nair S, McDew-White M, et al. Artemisinin-resistant Plasmodium falciparum K13 mutant alleles, Thailand–Myanmar border. Emerg Infect Dis. 2016;22:1503–5.CrossRef
24.
go back to reference Mukherjee A, Bopp S, Magistrado P, Wong W, Daniels R, Demas A, et al. Artemisinin resistance without pfkelch13 mutations in Plasmodium falciparum isolates from Cambodia. Malar J. 2017;16:195.CrossRef Mukherjee A, Bopp S, Magistrado P, Wong W, Daniels R, Demas A, et al. Artemisinin resistance without pfkelch13 mutations in Plasmodium falciparum isolates from Cambodia. Malar J. 2017;16:195.CrossRef
25.
go back to reference Straimer J, Gnädig NF, Stokes BH, Ehrenberger M, Crane AA, Fidock DA. Plasmodium falciparum k13 mutations differentially impact ozonide susceptibility and parasite fitness in vitro. mBio. 2017;8:e00172-17.CrossRef Straimer J, Gnädig NF, Stokes BH, Ehrenberger M, Crane AA, Fidock DA. Plasmodium falciparum k13 mutations differentially impact ozonide susceptibility and parasite fitness in vitro. mBio. 2017;8:e00172-17.CrossRef
26.
go back to reference Nair S, Li X, Arya GA, McDew-White M, Ferrari M, Nosten F, et al. Fitness costs and the rapid spread of kelch13-C580Y substitutions conferring artemisinin resistance. Antimicrob Agents Chemother. 2018;62:e00605–18.CrossRef Nair S, Li X, Arya GA, McDew-White M, Ferrari M, Nosten F, et al. Fitness costs and the rapid spread of kelch13-C580Y substitutions conferring artemisinin resistance. Antimicrob Agents Chemother. 2018;62:e00605–18.CrossRef
27.
go back to reference Straimer J, Gnädig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, et al. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015;347:425–8.CrossRef Straimer J, Gnädig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, et al. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015;347:425–8.CrossRef
28.
go back to reference Witkowski B, Khim N, Chim P, Kim S, Ke S, Kloeung N, et al. Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia. Antimicrob Agents Chemother. 2013;57:914–23.CrossRef Witkowski B, Khim N, Chim P, Kim S, Ke S, Kloeung N, et al. Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia. Antimicrob Agents Chemother. 2013;57:914–23.CrossRef
29.
go back to reference Su X. A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. Science. 1999;286:1351–3.CrossRef Su X. A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. Science. 1999;286:1351–3.CrossRef
30.
go back to reference Vaughan AM, Pinapati RS, Cheeseman IH, Camargo N, Fishbaugher M, Checkley LA, et al. Plasmodium falciparum genetic crosses in a humanized mouse model. Nat Methods. 2015;12:631–3.CrossRef Vaughan AM, Pinapati RS, Cheeseman IH, Camargo N, Fishbaugher M, Checkley LA, et al. Plasmodium falciparum genetic crosses in a humanized mouse model. Nat Methods. 2015;12:631–3.CrossRef
32.
go back to reference Cheeseman IH, McDew-White M, Phyo AP, Sriprawat K, Nosten F, Anderson TJC. Pooled sequencing and rare variant association tests for identifying the determinants of emerging drug resistance in malaria parasites. Mol Biol Evol. 2015;32:1080–90.CrossRef Cheeseman IH, McDew-White M, Phyo AP, Sriprawat K, Nosten F, Anderson TJC. Pooled sequencing and rare variant association tests for identifying the determinants of emerging drug resistance in malaria parasites. Mol Biol Evol. 2015;32:1080–90.CrossRef
33.
go back to reference Phyo AP, Nkhoma S, Stepniewska K, Ashley EA, Nair S, McGready R, et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet. 2012;379:1960–6.CrossRef Phyo AP, Nkhoma S, Stepniewska K, Ashley EA, Nair S, McGready R, et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet. 2012;379:1960–6.CrossRef
34.
go back to reference Taylor AR, Schaffner SF, Cerqueira GC, Nkhoma SC, Anderson TJC, Sriprawat K, et al. Quantifying connectivity between local Plasmodium falciparum malaria parasite populations using identity by descent. PLoS Genet. 2017;13:e1007065.CrossRef Taylor AR, Schaffner SF, Cerqueira GC, Nkhoma SC, Anderson TJC, Sriprawat K, et al. Quantifying connectivity between local Plasmodium falciparum malaria parasite populations using identity by descent. PLoS Genet. 2017;13:e1007065.CrossRef
35.
go back to reference Murray L, Stewart LB, Tarr SJ, Ahouidi AD, Diakite M, Amambua-Ngwa A, et al. Multiplication rate variation in the human malaria parasite Plasmodium falciparum. Sci Rep. 2017;7:6436.CrossRef Murray L, Stewart LB, Tarr SJ, Ahouidi AD, Diakite M, Amambua-Ngwa A, et al. Multiplication rate variation in the human malaria parasite Plasmodium falciparum. Sci Rep. 2017;7:6436.CrossRef
36.
go back to reference Amato R, Pearson RD, Almagro-Garcia J, Amaratunga C, Lim P, Suon S, et al. Origins of the current outbreak of multidrug-resistant malaria in southeast Asia: a retrospective genetic study. Lancet Infect Dis. 2018;18:337–45.CrossRef Amato R, Pearson RD, Almagro-Garcia J, Amaratunga C, Lim P, Suon S, et al. Origins of the current outbreak of multidrug-resistant malaria in southeast Asia: a retrospective genetic study. Lancet Infect Dis. 2018;18:337–45.CrossRef
37.
go back to reference Reece SE, Drew DR, Gardner A. Sex ratio adjustment and kin discrimination in malaria parasites. Nature. 2008;453:609–14.CrossRef Reece SE, Drew DR, Gardner A. Sex ratio adjustment and kin discrimination in malaria parasites. Nature. 2008;453:609–14.CrossRef
38.
go back to reference Atkinson S, Williams P. Quorum sensing and social networking in the microbial world. Interface Focus. 2009;6:959–78. Atkinson S, Williams P. Quorum sensing and social networking in the microbial world. Interface Focus. 2009;6:959–78.
39.
go back to reference Dyer M, Day KP. Regulation of the rate of asexual growth and commitment to sexual development by diffusible factors from in vitro cultures of Plasmodium falciparum. Am J Trop Med Hyg. 2003;68:403–9.CrossRef Dyer M, Day KP. Regulation of the rate of asexual growth and commitment to sexual development by diffusible factors from in vitro cultures of Plasmodium falciparum. Am J Trop Med Hyg. 2003;68:403–9.CrossRef
40.
go back to reference Regev-Rudzki N, Wilson DW, Carvalho TG, Sisquella X, Coleman BM, Rug M, et al. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell. 2013;153:1120–33.CrossRef Regev-Rudzki N, Wilson DW, Carvalho TG, Sisquella X, Coleman BM, Rug M, et al. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell. 2013;153:1120–33.CrossRef
41.
go back to reference O’Brien C, Henrich PP, Passi N, Fidock DA. Recent clinical and molecular insights into emerging artemisinin resistance in Plasmodium falciparum. Curr Opin Infect Dis. 2011;24:570–7.CrossRef O’Brien C, Henrich PP, Passi N, Fidock DA. Recent clinical and molecular insights into emerging artemisinin resistance in Plasmodium falciparum. Curr Opin Infect Dis. 2011;24:570–7.CrossRef
42.
go back to reference Sutherland CJ, Lansdell P, Sanders M, Muwanguzi J, van Schalkwyk DA, Kaur H, et al. Pfk13-independent treatment failure in four imported cases of Plasmodium falciparum malaria treated with artemether–lumefantrine in the United Kingdom. Antimicrob Agents Chemother. 2017;61:e02382-16.CrossRef Sutherland CJ, Lansdell P, Sanders M, Muwanguzi J, van Schalkwyk DA, Kaur H, et al. Pfk13-independent treatment failure in four imported cases of Plasmodium falciparum malaria treated with artemether–lumefantrine in the United Kingdom. Antimicrob Agents Chemother. 2017;61:e02382-16.CrossRef
43.
go back to reference Kobasa T, Talundzic E, Sug-aram R, Boondat P, Goldman IF, Lucchi NW, et al. Emergence and spread of kelch13 mutations associated with artemisinin resistance in Plasmodium falciparum parasites in 12 Thai provinces from 2007 to 2016. Antimicrob Agents Chemother. 2018;62:e02141-17.CrossRef Kobasa T, Talundzic E, Sug-aram R, Boondat P, Goldman IF, Lucchi NW, et al. Emergence and spread of kelch13 mutations associated with artemisinin resistance in Plasmodium falciparum parasites in 12 Thai provinces from 2007 to 2016. Antimicrob Agents Chemother. 2018;62:e02141-17.CrossRef
44.
go back to reference Ménard D, Clain J, Ariey F. Multidrug-resistant Plasmodium falciparum malaria in the Greater Mekong subregion. Lancet Infect Dis. 2018;18:238–9.CrossRef Ménard D, Clain J, Ariey F. Multidrug-resistant Plasmodium falciparum malaria in the Greater Mekong subregion. Lancet Infect Dis. 2018;18:238–9.CrossRef
45.
go back to reference Phyo AP, Ashley EA, Anderson TJC, Bozdech Z, Carrara VI, Sriprawat K, et al. Declining efficacy of artemisinin combination therapy against P. falciparum malaria on the Thai–Myanmar border (2003–2013): the role of parasite genetic factors. Clin Infect Dis. 2016;63:784–91.CrossRef Phyo AP, Ashley EA, Anderson TJC, Bozdech Z, Carrara VI, Sriprawat K, et al. Declining efficacy of artemisinin combination therapy against P. falciparum malaria on the Thai–Myanmar border (2003–2013): the role of parasite genetic factors. Clin Infect Dis. 2016;63:784–91.CrossRef
Metadata
Title
Pairwise growth competitions identify relative fitness relationships among artemisinin resistant Plasmodium falciparum field isolates
Authors
Abigail R. Tirrell
Katelyn M. Vendrely
Lisa A. Checkley
Sage Z. Davis
Marina McDew-White
Ian H. Cheeseman
Ashley M. Vaughan
François H. Nosten
Timothy J. C. Anderson
Michael T. Ferdig
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2019
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-019-2934-4

Other articles of this Issue 1/2019

Malaria Journal 1/2019 Go to the issue