Skip to main content
Top
Published in: Malaria Journal 1/2019

Open Access 01-12-2019 | Malaria | Research

Malaria mosquito control in rice paddy farms using biolarvicide mixed with fertilizer in Tanzania: semi-field experiments

Authors: Humphrey D. Mazigo, Leonard E. G. Mboera, Susan F. Rumisha, Eliningaya J. Kweka

Published in: Malaria Journal | Issue 1/2019

Login to get access

Abstract

Background

The wide distribution of malaria mosquito breeding sites within tropical environments limits the mosquito larval source management efforts to control malaria. Rice farming contributes substantially in supporting malaria mosquito productivity in tropical countries. To overcome this challenge, this study was carried out to determine the effect of applying a mixture of biolarvicide and fertilizer on mosquito larvae density in rice farms under semi-field conditions in Tanzania.

Methods

A semi-field experiment was designed to determine the timing of application of a biolarvicide, Bacillus thuringiensis israelensis (Bti) and fertilizer (di-ammonium phosphate-DAP or urea) and assess their effect on mosquito larvae density and rice grain outputs. The experiment had five blocks (4 treatment arms and one control arm) and each had four replicates. Treatment arms had different intervals of days between treatments for mixtures of fertilizer and biolarvicides. The dosages used were 10 g of Bti/16 M2 and 160 g of DAP/Urea/16 m2.

Results

In overall, the intervention blocks (with biolarvicide) had lowest mean mosquito larvae abundance compared to control block (F = 22.42, P < 0.001). Similarly, the control arm maintained highest density of Anopheles gambiae sensu lato larvae compared to interventions blocks (F = 21.6, P < 0.001). The best determined timing for application of Bti was in 7 and in 10 days (F = 3.753, P < 0.001). There was neither significant different in mean rice grain harvest per ten panicle (F = 1.453, P = 0.27) nor mean difference in rice grain harvest (F = 1.479, P = 0.26) per intervention arms.

Conclusion

The findings of this study have shown that application of a mixture of Bti and fertilizer have impact on both mosquito larvae density and maintaining yield rice harvest. Thus, application of a combination of biolarvicide and fertilizer can be an alternative approach in malaria mosquito intervention among rice farming communities of rural Tanzania.
Literature
1.
go back to reference WHO. World malaria report 2018. Geneva: World Health Organization; 2018. WHO. World malaria report 2018. Geneva: World Health Organization; 2018.
2.
go back to reference Mmbando BP, Vestergaard LS, Kitua AY, Lemnge MM, Theander TG, Lusingu JP. A progressive declining in the burden of malaria in north-eastern Tanzania. Malar J. 2010;9:216.CrossRef Mmbando BP, Vestergaard LS, Kitua AY, Lemnge MM, Theander TG, Lusingu JP. A progressive declining in the burden of malaria in north-eastern Tanzania. Malar J. 2010;9:216.CrossRef
3.
go back to reference Geiger C, Agustar HK, Compaoré G, Coulibaly B, Sié A, Becher H, et al. Declining malaria parasite prevalence and trends of asymptomatic parasitaemia in a seasonal transmission setting in north-western Burkina Faso between 2000 and 2009–2012. Malar J. 2013;12:27.CrossRef Geiger C, Agustar HK, Compaoré G, Coulibaly B, Sié A, Becher H, et al. Declining malaria parasite prevalence and trends of asymptomatic parasitaemia in a seasonal transmission setting in north-western Burkina Faso between 2000 and 2009–2012. Malar J. 2013;12:27.CrossRef
4.
go back to reference WHO. World malaria report 2015. Geneva: World Health Organization; 2015. WHO. World malaria report 2015. Geneva: World Health Organization; 2015.
5.
go back to reference WHO. Eliminating malaria. World Health Organization: Geneva; 2016. WHO/HTM/GMP/2016.3. WHO. Eliminating malaria. World Health Organization: Geneva; 2016. WHO/HTM/GMP/2016.3.
6.
go back to reference WHO. Guidance for countries on combining indoor residual spraying and long-lasting insecticidal nets. Geneva: World Health Organization; 2014. WHO. Guidance for countries on combining indoor residual spraying and long-lasting insecticidal nets. Geneva: World Health Organization; 2014.
7.
go back to reference Hamainza B, Moonga H, Sikaala CH, Kamuliwo M, Bennett A, Eisele TP, et al. Monitoring, characterization and control of chronic, symptomatic malaria infections in rural Zambia through monthly household visits by paid community health workers. Malar J. 2014;3:128.CrossRef Hamainza B, Moonga H, Sikaala CH, Kamuliwo M, Bennett A, Eisele TP, et al. Monitoring, characterization and control of chronic, symptomatic malaria infections in rural Zambia through monthly household visits by paid community health workers. Malar J. 2014;3:128.CrossRef
8.
go back to reference Govella NJ, Chaki PP, Killeen GF. Entomological surveillance of behavioural resilience and resistance in residual malaria vector populations. Malar J. 2013;12:124.CrossRef Govella NJ, Chaki PP, Killeen GF. Entomological surveillance of behavioural resilience and resistance in residual malaria vector populations. Malar J. 2013;12:124.CrossRef
9.
go back to reference Chareonviriyaphap T, Bangs MJ, Suwonkerd W, Kongmee M, Corbel V, Ngoen-Klan R. Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasit Vectors. 2013;6:280.CrossRef Chareonviriyaphap T, Bangs MJ, Suwonkerd W, Kongmee M, Corbel V, Ngoen-Klan R. Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasit Vectors. 2013;6:280.CrossRef
10.
go back to reference Coetzee M, Kruger P, Hunt RH, Durrheim DN, Urbach J, Hansford CF. Malaria in South Africa: 110 years of learning to control the disease. S Afr Med J. 2013;103:770–8.CrossRef Coetzee M, Kruger P, Hunt RH, Durrheim DN, Urbach J, Hansford CF. Malaria in South Africa: 110 years of learning to control the disease. S Afr Med J. 2013;103:770–8.CrossRef
11.
go back to reference Winstanley PA, Ward SA, Snow RW. Clinical status and implications of antimalarial drug resistance. Microbes Infect. 2002;4:157–64.CrossRef Winstanley PA, Ward SA, Snow RW. Clinical status and implications of antimalarial drug resistance. Microbes Infect. 2002;4:157–64.CrossRef
12.
go back to reference Haji KA, Khatib BO, Smith S, Ali AS, Devine GJ, Coetzee M, et al. Challenges for malaria elimination in Zanzibar: pyrethroid resistance in malaria vectors and poor performance of long-lasting insecticide nets. Parasit Vectors. 2013;6:82.CrossRef Haji KA, Khatib BO, Smith S, Ali AS, Devine GJ, Coetzee M, et al. Challenges for malaria elimination in Zanzibar: pyrethroid resistance in malaria vectors and poor performance of long-lasting insecticide nets. Parasit Vectors. 2013;6:82.CrossRef
13.
go back to reference Coetzee M, Koekemoer LL. Molecular systematics and insecticide resistance in the major African malaria vector Anopheles funestus. Annu Rev Entomol. 2013;58:393–412.CrossRef Coetzee M, Koekemoer LL. Molecular systematics and insecticide resistance in the major African malaria vector Anopheles funestus. Annu Rev Entomol. 2013;58:393–412.CrossRef
14.
go back to reference WHO. Guidelines for integrated vector management. Harare: World Health Organization Region Office for Africa; 2003. WHO. Guidelines for integrated vector management. Harare: World Health Organization Region Office for Africa; 2003.
15.
go back to reference Fillinger U, Lindsay SW. Suppression of exposure to malaria vectors by an order of magnitude using microbial larvicides in rural Kenya. Trop Med Int Health. 2006;11:1629–42.CrossRef Fillinger U, Lindsay SW. Suppression of exposure to malaria vectors by an order of magnitude using microbial larvicides in rural Kenya. Trop Med Int Health. 2006;11:1629–42.CrossRef
16.
go back to reference Shililu JI, Tewolde GM, Brantly E, Githure JI, Mbogo CM, Beier JC, et al. Efficacy of Bacillus thuringiensis israelensis, Bacillus sphaericus and temephos for managing Anopheles larvae in Eritrea. J Am Mosq Control Assoc. 2003;19:251–8.PubMed Shililu JI, Tewolde GM, Brantly E, Githure JI, Mbogo CM, Beier JC, et al. Efficacy of Bacillus thuringiensis israelensis, Bacillus sphaericus and temephos for managing Anopheles larvae in Eritrea. J Am Mosq Control Assoc. 2003;19:251–8.PubMed
17.
go back to reference Majambere S, Pinder U, Fillinger U, Ameh D, Conway DJ, Green C, et al. Is mosquito larval source management appropriate for reducing malaria in areas of extensive flooding in The Gambia? A cross-over intervention trial. Am J Trop Med Hyg. 2010;87:2176–84. Majambere S, Pinder U, Fillinger U, Ameh D, Conway DJ, Green C, et al. Is mosquito larval source management appropriate for reducing malaria in areas of extensive flooding in The Gambia? A cross-over intervention trial. Am J Trop Med Hyg. 2010;87:2176–84.
18.
go back to reference WHO. Handbook for integrated vector management. Geneva: World Health Organization; 2012. WHO. Handbook for integrated vector management. Geneva: World Health Organization; 2012.
19.
go back to reference National Institute for Medical Research. Efficacy of Bacillus thuringiensis var. israelensis (Bactivec®) and Bacillus sphaericus (Griselesf®) for control of mosquito larvae. A field trial in Mvomero and Bagamoyo districts, Tanzania. 2009. National Institute for Medical Research. Efficacy of Bacillus thuringiensis var. israelensis (Bactivec®) and Bacillus sphaericus (Griselesf®) for control of mosquito larvae. A field trial in Mvomero and Bagamoyo districts, Tanzania. 2009.
20.
go back to reference Maheu-Giroux M, Castro MC. Impact of community-based larviciding on the prevalence of malaria infection in Dar es Salaam, Tanzania. PLoS ONE. 2013;8:e71638.CrossRef Maheu-Giroux M, Castro MC. Impact of community-based larviciding on the prevalence of malaria infection in Dar es Salaam, Tanzania. PLoS ONE. 2013;8:e71638.CrossRef
21.
go back to reference Geissbuhler Y, Kannady K, Chaki PP, Emidi B, Govella NJ, Mayagaya V, et al. Microbial larvicide application by a large-scale, community-based program reduces malaria infection prevalence in urban Dar es Salaam, Tanzania. PLoS ONE. 2009;4:e5107.CrossRef Geissbuhler Y, Kannady K, Chaki PP, Emidi B, Govella NJ, Mayagaya V, et al. Microbial larvicide application by a large-scale, community-based program reduces malaria infection prevalence in urban Dar es Salaam, Tanzania. PLoS ONE. 2009;4:e5107.CrossRef
22.
go back to reference Rahman R, Lesser A, Mboera L, Kramer R. Cost of microbial larviciding for malaria control in rural Tanzania. Trop Med Int Health. 2016;21:1468–75.CrossRef Rahman R, Lesser A, Mboera L, Kramer R. Cost of microbial larviciding for malaria control in rural Tanzania. Trop Med Int Health. 2016;21:1468–75.CrossRef
23.
go back to reference WHO. Global strategies framework for integrated vector management. Geneva: World Health Organization; 2004. WHO. Global strategies framework for integrated vector management. Geneva: World Health Organization; 2004.
24.
go back to reference Dambach P, Traore I, Kaiser A, Sie A, Sauerborn R, Becker N. Challenges of implementing a large scale larviciding campaign against malaria in rural Burkina Faso—lessons learned and recommendations derived from the EMIRA project. BMC Public Health. 2016;6:1023.CrossRef Dambach P, Traore I, Kaiser A, Sie A, Sauerborn R, Becker N. Challenges of implementing a large scale larviciding campaign against malaria in rural Burkina Faso—lessons learned and recommendations derived from the EMIRA project. BMC Public Health. 2016;6:1023.CrossRef
25.
go back to reference WHO. Larval source management a supplementary measure for malaria control. An operational manual. Geneva: World Health Organization; 2013. WHO. Larval source management a supplementary measure for malaria control. An operational manual. Geneva: World Health Organization; 2013.
26.
go back to reference Mazigo HD, Rumisha SF, Chiduo MG, Bwana VM, Mboera LEG. Malaria among rice farming communities in Kilangali village, Kilosa district, Central Tanzania: prevalence, intensity and associated factors. Infect Dis Poverty. 2017;6:101.CrossRef Mazigo HD, Rumisha SF, Chiduo MG, Bwana VM, Mboera LEG. Malaria among rice farming communities in Kilangali village, Kilosa district, Central Tanzania: prevalence, intensity and associated factors. Infect Dis Poverty. 2017;6:101.CrossRef
27.
go back to reference WHO. Entomological field techniques for malaria control. Part 1. Geneva: World Health Organization; 1992. WHO. Entomological field techniques for malaria control. Part 1. Geneva: World Health Organization; 1992.
28.
go back to reference Gillies MT, De Meillon B. The anophelinae of Africa south of the Sahara. Publ S Afr Inst Med Res. 1987;54:1–343. Gillies MT, De Meillon B. The anophelinae of Africa south of the Sahara. Publ S Afr Inst Med Res. 1987;54:1–343.
29.
go back to reference Dhananchezyhiyan P, Parveen S, Naik N. Study of mechanical properties of popular paddy varieties of Tamil Nadu relevant to development of mini paddy thresher. Curr Agric Res J. 2013;1:59–64.CrossRef Dhananchezyhiyan P, Parveen S, Naik N. Study of mechanical properties of popular paddy varieties of Tamil Nadu relevant to development of mini paddy thresher. Curr Agric Res J. 2013;1:59–64.CrossRef
30.
go back to reference Fillinger U, Knols BG, Becker N. Efficacy and efficiency of new Bacillus thuringiensis var israelensis and Bacillus sphaericus formulations against Afrotropical anophelines in Western Kenya. Trop Med Int Health. 2003;8:37–47.CrossRef Fillinger U, Knols BG, Becker N. Efficacy and efficiency of new Bacillus thuringiensis var israelensis and Bacillus sphaericus formulations against Afrotropical anophelines in Western Kenya. Trop Med Int Health. 2003;8:37–47.CrossRef
31.
go back to reference Mwangangi JM, Kahindi SC, Kibe LW, Nzovu JG, Luethy P, Githure JI, et al. Wide-scale application of Bti/Bs biolarvicide in different aquatic habitat types in urban and peri-urban Malindi, Kenya. Parasitol Res. 2011;108:1355–63.CrossRef Mwangangi JM, Kahindi SC, Kibe LW, Nzovu JG, Luethy P, Githure JI, et al. Wide-scale application of Bti/Bs biolarvicide in different aquatic habitat types in urban and peri-urban Malindi, Kenya. Parasitol Res. 2011;108:1355–63.CrossRef
32.
go back to reference Amalraj DD, Sahu SS, Jambulingam P, Doss PSB, Kalyanasundaram M, Das PK. Efficacy of aqueous suspension and granular formulations of Bacillus thuringiensis (Vectobac) against mosquito vectors. Acta Trop. 2000;75:243–6.CrossRef Amalraj DD, Sahu SS, Jambulingam P, Doss PSB, Kalyanasundaram M, Das PK. Efficacy of aqueous suspension and granular formulations of Bacillus thuringiensis (Vectobac) against mosquito vectors. Acta Trop. 2000;75:243–6.CrossRef
33.
go back to reference Zhou G, Wiseman V, Atieli HE, Lee MC, Githeko AK, Yan G. The impact of long-lasting microbial larvicides in reducing malaria transmission and clinical malaria incidence: study protocol for a cluster randomized controlled trial. Trials. 2016;17:423.CrossRef Zhou G, Wiseman V, Atieli HE, Lee MC, Githeko AK, Yan G. The impact of long-lasting microbial larvicides in reducing malaria transmission and clinical malaria incidence: study protocol for a cluster randomized controlled trial. Trials. 2016;17:423.CrossRef
34.
go back to reference Afrane YA, Mweresa NG, Wanjala CL, Gilbreath Iii TM, Zhou G, Lee MC, et al. Evaluation of long-lasting microbial larvicide for malaria vector control in Kenya. Malar J. 2016;15:577.CrossRef Afrane YA, Mweresa NG, Wanjala CL, Gilbreath Iii TM, Zhou G, Lee MC, et al. Evaluation of long-lasting microbial larvicide for malaria vector control in Kenya. Malar J. 2016;15:577.CrossRef
35.
go back to reference Bahmaniar MA, Ranjbar GA. Effects of nitrogen and potassium fertilizers on rice (Oryza sativa L.) genotypes processing characteristics. Pak J Biol Sci. 2007;10:1829–34.CrossRef Bahmaniar MA, Ranjbar GA. Effects of nitrogen and potassium fertilizers on rice (Oryza sativa L.) genotypes processing characteristics. Pak J Biol Sci. 2007;10:1829–34.CrossRef
36.
go back to reference Kibuthu TW, Njenga SM, Mbugua AK, Muturi EJ. Agricultural chemicals: life changer for mosquito vectors in agricultural landscapes? Parasit Vectors. 2016;9:500.CrossRef Kibuthu TW, Njenga SM, Mbugua AK, Muturi EJ. Agricultural chemicals: life changer for mosquito vectors in agricultural landscapes? Parasit Vectors. 2016;9:500.CrossRef
Metadata
Title
Malaria mosquito control in rice paddy farms using biolarvicide mixed with fertilizer in Tanzania: semi-field experiments
Authors
Humphrey D. Mazigo
Leonard E. G. Mboera
Susan F. Rumisha
Eliningaya J. Kweka
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Malaria
Published in
Malaria Journal / Issue 1/2019
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-019-2861-4

Other articles of this Issue 1/2019

Malaria Journal 1/2019 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.