Skip to main content
Top
Published in: Malaria Journal 1/2019

Open Access 01-12-2019 | Malaria | Research

Evaluation of a push–pull system consisting of transfluthrin-treated eave ribbons and odour-baited traps for control of indoor- and outdoor-biting malaria vectors

Authors: Arnold S. Mmbando, Elis P. A. Batista, Masoud Kilalangongono, Marceline F. Finda, Emmanuel P. Mwanga, Emmanuel W. Kaindoa, Khamis Kifungo, Rukiyah M. Njalambaha, Halfan S. Ngowo, Alvaro E. Eiras, Fredros O. Okumu

Published in: Malaria Journal | Issue 1/2019

Login to get access

Abstract

Background

Push–pull strategies have been proposed as options to complement primary malaria prevention tools, indoor residual spraying (IRS) and long-lasting insecticide-treated nets (LLINs), by targeting particularly early-night biting and outdoor-biting mosquitoes. This study evaluated different configurations of a push–pull system consisting of spatial repellents [transfluthrin-treated eave ribbons (0.25 g/m2 ai)] and odour-baited traps (CO2-baited BG-Malaria traps), against indoor-biting and outdoor-biting malaria vectors inside large semi-field systems.

Methods

Two experimental huts were used to evaluate protective efficacy of the spatial repellents (push-only), traps (pull-only) or their combinations (push–pull), relative to controls. Adult volunteers sat outdoors (1830 h–2200 h) catching mosquitoes attempting to bite them (outdoor-biting risk), and then went indoors (2200 h–0630 h) to sleep under bed nets beside which CDC-light traps caught host-seeking mosquitoes (indoor-biting risk). Number of traps and their distance from huts were varied to optimize protection, and 500 laboratory-reared Anopheles arabiensis released nightly inside the semi-field chambers over 122 experimentation nights.

Results

Push-pull offered higher protection than traps alone against indoor-biting (83.4% vs. 35.0%) and outdoor-biting (79% vs. 31%), but its advantage over repellents alone was non-existent against indoor-biting (83.4% vs. 81%) and modest for outdoor-biting (79% vs. 63%). Using two traps (1 per hut) offered higher protection than either one trap (0.5 per hut) or four traps (2 per hut). Compared to original distance (5 m from huts), efficacy of push–pull against indoor-biting peaked when traps were 15 m away, while efficacy against outdoor-biting peaked when traps were 30 m away.

Conclusion

The best configuration of push–pull comprised transfluthrin-treated eave ribbons plus two traps, each at least 15 m from huts. Efficacy of push–pull was mainly due to the spatial repellent component. Adding odour-baited traps slightly improved personal protection indoors, but excessive trap densities increased exposure near users outdoors. Given the marginal efficacy gains over spatial repellents alone and complexity of push–pull, it may be prudent to promote just spatial repellents alongside existing interventions, e.g. LLINs or non-pyrethroid IRS. However, since both transfluthrin and traps also kill mosquitoes, and because transfluthrin can inhibit blood-feeding, field studies should be done to assess potential community-level benefits that push–pull or its components may offer to users and non-users.
Literature
1.
go back to reference WHO. World Malaria Report 2017. Geneva: World Health Organization; 2017. WHO. World Malaria Report 2017. Geneva: World Health Organization; 2017.
2.
go back to reference World Health Organization. Global Malaria Programme Global technical strategy for malaria, 2016–2030. Geneva: World Health Organization; 2015. World Health Organization. Global Malaria Programme Global technical strategy for malaria, 2016–2030. Geneva: World Health Organization; 2015.
3.
go back to reference Rabinovich RN, Drakeley C, Djimde AA, Hall BF, Hay SI, Hemingway J, et al. malERA: an updated research agenda for malaria elimination and eradication. PLoS Med. 2017;14:e1002456.CrossRef Rabinovich RN, Drakeley C, Djimde AA, Hall BF, Hay SI, Hemingway J, et al. malERA: an updated research agenda for malaria elimination and eradication. PLoS Med. 2017;14:e1002456.CrossRef
4.
go back to reference Ranson H. N’guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–8.CrossRef Ranson H. N’guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–8.CrossRef
5.
go back to reference Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J. 2011;10:80.CrossRef Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J. 2011;10:80.CrossRef
6.
go back to reference Durnez L, Coosemans M. Residual transmission of malaria: an old issue for new approaches. In Anopheles mosquitoes: new insights into malaria vectors. Manguin S, ed. 2013, p. 671–704. Durnez L, Coosemans M. Residual transmission of malaria: an old issue for new approaches. In Anopheles mosquitoes: new insights into malaria vectors. Manguin S, ed. 2013, p. 671–704.
7.
go back to reference Moore SJ. A new perspective on the application of mosquito repellents. Lancet Infect Dis. 2016;16:1093–4.CrossRef Moore SJ. A new perspective on the application of mosquito repellents. Lancet Infect Dis. 2016;16:1093–4.CrossRef
8.
go back to reference Gryseels C, Uk S, Sluydts V, Durnez L, Phoeuk P, Suon S, et al. Factors influencing the use of topical repellents: implications for the effectiveness of malaria elimination strategies. Sci Rep. 2015;5:16847.CrossRef Gryseels C, Uk S, Sluydts V, Durnez L, Phoeuk P, Suon S, et al. Factors influencing the use of topical repellents: implications for the effectiveness of malaria elimination strategies. Sci Rep. 2015;5:16847.CrossRef
9.
go back to reference Williams YA, Tusting LS, Hocini S, Graves PM, Killeen GF, Kleinschmidt I, et al. Expanding the vector control toolbox for malaria elimination: a systematic review of the evidence. Adv Parasitol. 2018;99:345–79.CrossRef Williams YA, Tusting LS, Hocini S, Graves PM, Killeen GF, Kleinschmidt I, et al. Expanding the vector control toolbox for malaria elimination: a systematic review of the evidence. Adv Parasitol. 2018;99:345–79.CrossRef
10.
go back to reference Ogoma SB, Mmando AS, Swai JK, Horstmann S, Malone D, Killeen GF. A low technology emanator treated with the volatile pyrethroid transfluthrin confers long term protection against outdoor biting vectors of lymphatic filariasis, arboviruses and malaria. PLoS Negl Trop Dis. 2017;11:e0005455.CrossRef Ogoma SB, Mmando AS, Swai JK, Horstmann S, Malone D, Killeen GF. A low technology emanator treated with the volatile pyrethroid transfluthrin confers long term protection against outdoor biting vectors of lymphatic filariasis, arboviruses and malaria. PLoS Negl Trop Dis. 2017;11:e0005455.CrossRef
11.
go back to reference Ogoma SB, Ngonyani H, Simfukwe ET, Mseka A, Moore J, Killeen GF. Spatial repellency of transfluthrin-treated hessian strips against laboratory-reared Anopheles arabiensis mosquitoes in a semi-field tunnel cage. Parasit Vectors. 2012;5:54.CrossRef Ogoma SB, Ngonyani H, Simfukwe ET, Mseka A, Moore J, Killeen GF. Spatial repellency of transfluthrin-treated hessian strips against laboratory-reared Anopheles arabiensis mosquitoes in a semi-field tunnel cage. Parasit Vectors. 2012;5:54.CrossRef
12.
go back to reference Matowo NS, Moore J, Mapua S, Madumla EP, Moshi IR, Kaindoa EW, et al. Using a new odour-baited device to explore options for luring and killing outdoor-biting malaria vectors: a report on design and field evaluation of the Mosquito Landing Box. Parasit Vectors. 2013;6:137.CrossRef Matowo NS, Moore J, Mapua S, Madumla EP, Moshi IR, Kaindoa EW, et al. Using a new odour-baited device to explore options for luring and killing outdoor-biting malaria vectors: a report on design and field evaluation of the Mosquito Landing Box. Parasit Vectors. 2013;6:137.CrossRef
13.
go back to reference Mmbando AS, Okumu FO, Mgando JP, Sumaye RD, Matowo NS, Madumla E, et al. Effects of a new outdoor mosquito control device, the mosquito landing box, on densities and survival of the malaria vector, Anopheles arabiensis, inside controlled semi-field settings. Malar J. 2015;14:494.CrossRef Mmbando AS, Okumu FO, Mgando JP, Sumaye RD, Matowo NS, Madumla E, et al. Effects of a new outdoor mosquito control device, the mosquito landing box, on densities and survival of the malaria vector, Anopheles arabiensis, inside controlled semi-field settings. Malar J. 2015;14:494.CrossRef
14.
go back to reference Mmbando AS, Ngowo HS, Kilalangongono M, Abbas S, Matowo NS, Moore SJ, Okumu FO. Small-scale field evaluation of push-pull system against early-and outdoor-biting malaria mosquitoes in an area of high pyrethroid resistance in Tanzania. Wellcome Open Res. 2017;2:112.CrossRef Mmbando AS, Ngowo HS, Kilalangongono M, Abbas S, Matowo NS, Moore SJ, Okumu FO. Small-scale field evaluation of push-pull system against early-and outdoor-biting malaria mosquitoes in an area of high pyrethroid resistance in Tanzania. Wellcome Open Res. 2017;2:112.CrossRef
15.
go back to reference Menger DJ, Otieno B, Marjolein de Rijk W, van Loon JJ, Takken W. A push-pull system to reduce house entry of malaria mosquitoes. Parasit Vectors. 2014;12:18. Menger DJ, Otieno B, Marjolein de Rijk W, van Loon JJ, Takken W. A push-pull system to reduce house entry of malaria mosquitoes. Parasit Vectors. 2014;12:18.
16.
go back to reference Maia MF, Onyango SP, Thele M, Simfukwe ET, Turner EL, Moore SJ. Do topical repellents divert mosquitoes within a community? Health equity implications of topical repellents as a mosquito bite prevention tool. PLoS ONE. 2013;8:e84875.CrossRef Maia MF, Onyango SP, Thele M, Simfukwe ET, Turner EL, Moore SJ. Do topical repellents divert mosquitoes within a community? Health equity implications of topical repellents as a mosquito bite prevention tool. PLoS ONE. 2013;8:e84875.CrossRef
17.
go back to reference Heng S, Sluydts V, Durnez L, Mean V, Polo K, Tho S, Coosemans M, van Griensven J. Safety of a topical insect repellent (picaridin) during community mass use for malaria control in rural Cambodia. PLoS ONE. 2017;12:e0172566.CrossRef Heng S, Sluydts V, Durnez L, Mean V, Polo K, Tho S, Coosemans M, van Griensven J. Safety of a topical insect repellent (picaridin) during community mass use for malaria control in rural Cambodia. PLoS ONE. 2017;12:e0172566.CrossRef
18.
go back to reference Sluydts V, Durnez L, Heng S, Gryseels C, Canier L, Kim S, Van Roey K, Kerkhof K, Khim N, Mao S. Efficacy of topical mosquito repellent (picaridin) plus long-lasting insecticidal nets versus long-lasting insecticidal nets alone for control of malaria: a cluster randomised controlled trial. Lancet Infect Dis. 2016;16:1169–77.CrossRef Sluydts V, Durnez L, Heng S, Gryseels C, Canier L, Kim S, Van Roey K, Kerkhof K, Khim N, Mao S. Efficacy of topical mosquito repellent (picaridin) plus long-lasting insecticidal nets versus long-lasting insecticidal nets alone for control of malaria: a cluster randomised controlled trial. Lancet Infect Dis. 2016;16:1169–77.CrossRef
19.
go back to reference Mmbando AS, Ngowo H, Limwagu A, Kilalangongono M, Kifungo K, Okumu FO. Eave ribbons treated with the spatial repellent, transfluthrin, can effectively protect against indoor-biting and outdoor-biting malaria mosquitoes. Malar J. 2018;17:368.CrossRef Mmbando AS, Ngowo H, Limwagu A, Kilalangongono M, Kifungo K, Okumu FO. Eave ribbons treated with the spatial repellent, transfluthrin, can effectively protect against indoor-biting and outdoor-biting malaria mosquitoes. Malar J. 2018;17:368.CrossRef
20.
go back to reference Maia MF, Kreppel K, Mbeyela E, Roman D, Mayagaya V, Lobo NF, et al. A crossover study to evaluate the diversion of malaria vectors in a community with incomplete coverage of spatial repellents in the Kilombero Valley, Tanzania. Parasit Vectors. 2016;9:451.CrossRef Maia MF, Kreppel K, Mbeyela E, Roman D, Mayagaya V, Lobo NF, et al. A crossover study to evaluate the diversion of malaria vectors in a community with incomplete coverage of spatial repellents in the Kilombero Valley, Tanzania. Parasit Vectors. 2016;9:451.CrossRef
21.
go back to reference Cook SM, Khan ZR, Pickett JA. The use of push-pull strategies in integrated pest management. Ann Rev Entomol. 2007;52:375–400.CrossRef Cook SM, Khan ZR, Pickett JA. The use of push-pull strategies in integrated pest management. Ann Rev Entomol. 2007;52:375–400.CrossRef
22.
go back to reference Hassanali A, Herren H, Khan ZR, Pickett JA, Woodcock CM. Integrated pest management: the push–pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Philos Trans R Soc Lond B Biol Sci. 2008;363:611–21.CrossRef Hassanali A, Herren H, Khan ZR, Pickett JA, Woodcock CM. Integrated pest management: the push–pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Philos Trans R Soc Lond B Biol Sci. 2008;363:611–21.CrossRef
23.
go back to reference Okumu FO, Killeen GF, Ogoma S, Biswaro L, Smallegange RC, Mbeyela E, et al. Development and field evaluation of a synthetic mosquito lure that is more attractive than humans. PLoS ONE. 2010;5:e8951.CrossRef Okumu FO, Killeen GF, Ogoma S, Biswaro L, Smallegange RC, Mbeyela E, et al. Development and field evaluation of a synthetic mosquito lure that is more attractive than humans. PLoS ONE. 2010;5:e8951.CrossRef
24.
go back to reference Okumu FO, Madumla EP, John AN, Lwetoijera DW, Sumaye RD. Attracting, trapping and killing disease-transmitting mosquitoes using odor-baited stations-the Ifakara Odor-Baited Stations. Parasit Vectors. 2010;3:12.CrossRef Okumu FO, Madumla EP, John AN, Lwetoijera DW, Sumaye RD. Attracting, trapping and killing disease-transmitting mosquitoes using odor-baited stations-the Ifakara Odor-Baited Stations. Parasit Vectors. 2010;3:12.CrossRef
25.
go back to reference Batista EP, Ngowo H, Opiyo M, Shubis GK, Meza FC, Siria DJ, et al. Field evaluation of the BG-Malaria trap for monitoring malaria vectors in rural Tanzanian villages. PLoS ONE. 2018;13:e0205358.CrossRef Batista EP, Ngowo H, Opiyo M, Shubis GK, Meza FC, Siria DJ, et al. Field evaluation of the BG-Malaria trap for monitoring malaria vectors in rural Tanzanian villages. PLoS ONE. 2018;13:e0205358.CrossRef
26.
go back to reference Gama RA, Silva IM, Geier M, Eiras AE. Development of the BG-Malaria trap as an alternative to human-landing catches for the capture of Anopheles darlingi. Mem Inst Oswaldo Cruz. 2013;108:763–71.CrossRef Gama RA, Silva IM, Geier M, Eiras AE. Development of the BG-Malaria trap as an alternative to human-landing catches for the capture of Anopheles darlingi. Mem Inst Oswaldo Cruz. 2013;108:763–71.CrossRef
27.
go back to reference Ferguson HM, Ng’habi KR, Walder T, Kadungula D, Moore SJ, Lyimo I, et al. Establishment of a large semi-field system for experimental study of African malaria vector ecology and control in Tanzania. Malar J. 2008;7:158.CrossRef Ferguson HM, Ng’habi KR, Walder T, Kadungula D, Moore SJ, Lyimo I, et al. Establishment of a large semi-field system for experimental study of African malaria vector ecology and control in Tanzania. Malar J. 2008;7:158.CrossRef
28.
go back to reference Okumu FO, Chipwaza B, Madumla EP, Mbeyela E, Lingamba G, Moore J, et al. Implications of bio-efficacy and persistence of insecticides when indoor residual spraying and long-lasting insecticide nets are combined for malaria prevention. Malar J. 2012;11:378.CrossRef Okumu FO, Chipwaza B, Madumla EP, Mbeyela E, Lingamba G, Moore J, et al. Implications of bio-efficacy and persistence of insecticides when indoor residual spraying and long-lasting insecticide nets are combined for malaria prevention. Malar J. 2012;11:378.CrossRef
29.
go back to reference Moshi IR, Ngowo H, Dillip A, Msellemu D, Madumla EP, Okumu FO, et al. Community perceptions on outdoor malaria transmission in Kilombero Valley, Southern Tanzania. Malar J. 2017;16:274.CrossRef Moshi IR, Ngowo H, Dillip A, Msellemu D, Madumla EP, Okumu FO, et al. Community perceptions on outdoor malaria transmission in Kilombero Valley, Southern Tanzania. Malar J. 2017;16:274.CrossRef
30.
go back to reference R-core Team. R: A language and environment for statistical computing. 2013. R-core Team. R: A language and environment for statistical computing. 2013.
31.
go back to reference Okumu FO, Govella NJ, Moore SJ, Chitnis N, Killeen GF. Potential benefits, limitations and target product-profiles of odor-baited mosquito traps for malaria control in Africa. PLoS ONE. 2010;5:e11573.CrossRef Okumu FO, Govella NJ, Moore SJ, Chitnis N, Killeen GF. Potential benefits, limitations and target product-profiles of odor-baited mosquito traps for malaria control in Africa. PLoS ONE. 2010;5:e11573.CrossRef
32.
go back to reference Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.CrossRef Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.CrossRef
33.
go back to reference Wickham H. ggplot2: elegant graphics for data analysis. J Stat Softw. 2017;77:1–3. Wickham H. ggplot2: elegant graphics for data analysis. J Stat Softw. 2017;77:1–3.
34.
go back to reference Achee NL, Bangs MJ, Farlow R, Killeen GF, Lindsay S, Logan JG, et al. Spatial repellents: from discovery and development to evidence-based validation. Malar J. 2012;11:164.CrossRef Achee NL, Bangs MJ, Farlow R, Killeen GF, Lindsay S, Logan JG, et al. Spatial repellents: from discovery and development to evidence-based validation. Malar J. 2012;11:164.CrossRef
35.
go back to reference Killeen GF, Smith TA. Exploring the contributions of bed nets, cattle, insecticides and excitorepellency to malaria control: a deterministic model of mosquito host-seeking behaviour and mortality. Trans R Soc Trop Med Hyg. 2007;101:867–80.CrossRef Killeen GF, Smith TA. Exploring the contributions of bed nets, cattle, insecticides and excitorepellency to malaria control: a deterministic model of mosquito host-seeking behaviour and mortality. Trans R Soc Trop Med Hyg. 2007;101:867–80.CrossRef
36.
go back to reference Monroe A, Asamoah O, Lam Y, Koenker H, Psychas P, Lynch M, et al. Outdoor-sleeping and other night-time activities in northern Ghana: implications for residual transmission and malaria prevention. Malar J. 2015;14:35.CrossRef Monroe A, Asamoah O, Lam Y, Koenker H, Psychas P, Lynch M, et al. Outdoor-sleeping and other night-time activities in northern Ghana: implications for residual transmission and malaria prevention. Malar J. 2015;14:35.CrossRef
37.
go back to reference Ogoma SB, Ngonyani H, Simfukwe ET, Mseka A, Moore J, Maia MF, et al. The mode of action of spatial repellents and their impact on vectorial capacity of Anopheles gambiae sensu stricto. PLoS ONE. 2014;9:e110433.CrossRef Ogoma SB, Ngonyani H, Simfukwe ET, Mseka A, Moore J, Maia MF, et al. The mode of action of spatial repellents and their impact on vectorial capacity of Anopheles gambiae sensu stricto. PLoS ONE. 2014;9:e110433.CrossRef
38.
go back to reference Menger DJ, Omusula P, Holdinga M, Homan T, Carreira AS, Vandendaele P, et al. Field evaluation of a push-pull system to reduce malaria transmission. PLoS ONE. 2015;10:e0123415.CrossRef Menger DJ, Omusula P, Holdinga M, Homan T, Carreira AS, Vandendaele P, et al. Field evaluation of a push-pull system to reduce malaria transmission. PLoS ONE. 2015;10:e0123415.CrossRef
Metadata
Title
Evaluation of a push–pull system consisting of transfluthrin-treated eave ribbons and odour-baited traps for control of indoor- and outdoor-biting malaria vectors
Authors
Arnold S. Mmbando
Elis P. A. Batista
Masoud Kilalangongono
Marceline F. Finda
Emmanuel P. Mwanga
Emmanuel W. Kaindoa
Khamis Kifungo
Rukiyah M. Njalambaha
Halfan S. Ngowo
Alvaro E. Eiras
Fredros O. Okumu
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Malaria
Published in
Malaria Journal / Issue 1/2019
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-019-2714-1

Other articles of this Issue 1/2019

Malaria Journal 1/2019 Go to the issue