Skip to main content
Top
Published in: Malaria Journal 1/2019

Open Access 01-12-2019 | Malaria | Research

Impact of sunlight exposure on the residual efficacy of biolarvicides Bacillus thuringiensis israelensis and Bacillus sphaericus against the main malaria vector, Anopheles gambiae

Authors: Barnabas Zogo, Bertin N’Cho Tchiekoi, Alphonsine A. Koffi, Amal Dahounto, Ludovic P. Ahoua Alou, Roch K. Dabiré, Lamine Baba-Moussa, Nicolas Moiroux, Cédric Pennetier

Published in: Malaria Journal | Issue 1/2019

Login to get access

Abstract

Background

Biotic and abiotic factors have been reported to affect the larvicidal efficacy of Bacillus thuringiensis israelensis (Bti) and Bacillus sphaericus (Bs), although the extent to which they are affected has been poorly documented. This paper studies the effect of sunlight exposure on the efficacy of a new larvicide formulation based on both Bti and Bs, herein after referred to as BTBSWAX, applied against two different larval stages.

Methods

The emergence of inhibition exhibited by BTBSWAX at three different dosages (1 g/m2, 1.5 g/m2, and 2 g/m2) was monitored under semi-field conditions using a total of 32 containers comprising 16 that were covered and 16 that were uncovered. Two experiments were conducted using first- and second-instar larvae of Anopheles gambiae, respectively.

Results

BTBSWAX at 2 g/m2 in covered containers exhibited high emergence inhibition (> 80%) when larvae were exposed from 1st instar on day-6 post-treatment, whereas the emergence inhibition was only 28% in uncovered containers. For larvae exposed from 1st instar on day-12 post-treatment, the emergence inhibition was moderate (70%) in covered containers but was low (< 20%) in uncovered containers. For larvae exposed from 2nd instar on day-10 post-treatment, the emergence inhibition was moderate (31%) in covered containers but was very low (< 10%) in uncovered containers. Moreover, the residual efficacy of BTBSWAX was markedly affected by environmental stresses, including sunlight exposure (Hazard ratio (HR) = 0.12, p < 0.001 and HR = 0.63, p = 0.033 for BTBSWAX at 2 g/m2 against 1st and 2nd instar larvae, respectively).

Conclusion

These findings emphasize the impact of environmental variables (e.g., sunlight exposure) on the residual efficacy of Bti and Bs biolarvicides in the field. They hence highlight the need to take these factors into account for larvicide formulation development processes. Moreover, studies of the ecology of Anopheles larvae in targeted areas are also crucial for the integration of larval control strategies into malaria transmission plans devised by national malaria control programmes of endemic countries.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.CrossRef Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.CrossRef
2.
go back to reference Mwangangi JM, Mbogo CM, Orindi BO, Muturi EJ, Midega JT, Nzovu J, et al. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years. Malar J. 2013;12:13.CrossRef Mwangangi JM, Mbogo CM, Orindi BO, Muturi EJ, Midega JT, Nzovu J, et al. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years. Malar J. 2013;12:13.CrossRef
3.
go back to reference Moiroux N, Gomez MB, Pennetier C, Elanga E, Djènontin A, Chandre F, et al. Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J Infect Dis. 2012;206:1622–9.CrossRef Moiroux N, Gomez MB, Pennetier C, Elanga E, Djènontin A, Chandre F, et al. Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J Infect Dis. 2012;206:1622–9.CrossRef
4.
go back to reference WHO. Control of residual malaria parasite transmission. Geneva: World Health Organization; 2014. WHO. Control of residual malaria parasite transmission. Geneva: World Health Organization; 2014.
5.
go back to reference Ranson H, Lissenden N. Insecticide resistance in African Anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 2016;32:187–96.CrossRef Ranson H, Lissenden N. Insecticide resistance in African Anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 2016;32:187–96.CrossRef
6.
go back to reference WHO. World malaria report. Geneva: World Health Organization; 2017. WHO. World malaria report. Geneva: World Health Organization; 2017.
7.
go back to reference WHO. Larval source management—a supplementary measure for malaria vector control An operational manual. Geneva: World Health Organization; 2013. WHO. Larval source management—a supplementary measure for malaria vector control An operational manual. Geneva: World Health Organization; 2013.
8.
go back to reference Ketseoglou I, Koekemoer LL, Coetzee M, Bouwer G. The larvicidal efficacy of Bacillus thuringiensis subsp. israelensis against five African Anopheles (Diptera: Culicidae) species. Afr Entomol. 2011;19:146–50.CrossRef Ketseoglou I, Koekemoer LL, Coetzee M, Bouwer G. The larvicidal efficacy of Bacillus thuringiensis subsp. israelensis against five African Anopheles (Diptera: Culicidae) species. Afr Entomol. 2011;19:146–50.CrossRef
9.
go back to reference Vasquez MI, Violaris M, Hadjivassilis A, Wirth MC. Susceptibility of Culex pipiens (Diptera: Culicidae) field populations in Cyprus to conventional organic insecticides, Bacillus thuringiensis subsp. israelensis, and methoprene. J Med Entomol. 2009;46:881–7.CrossRef Vasquez MI, Violaris M, Hadjivassilis A, Wirth MC. Susceptibility of Culex pipiens (Diptera: Culicidae) field populations in Cyprus to conventional organic insecticides, Bacillus thuringiensis subsp. israelensis, and methoprene. J Med Entomol. 2009;46:881–7.CrossRef
10.
go back to reference Becker N, Ludwig M. Investigations on possible resistance in Aedes vexans field populations after a 10-year application of Bacillus thuringiensis israelensis. J Am Mosq Control Assoc. 1993;9:221–4.PubMed Becker N, Ludwig M. Investigations on possible resistance in Aedes vexans field populations after a 10-year application of Bacillus thuringiensis israelensis. J Am Mosq Control Assoc. 1993;9:221–4.PubMed
11.
go back to reference Georghiou GP, Wirth MC. Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subsp. israelensis on development of resistance in the mosquito Culex quinquefasciatus (Diptera: Culicidae). Appl Environ Microbiol. 1997;63:1095–101.PubMedPubMedCentral Georghiou GP, Wirth MC. Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subsp. israelensis on development of resistance in the mosquito Culex quinquefasciatus (Diptera: Culicidae). Appl Environ Microbiol. 1997;63:1095–101.PubMedPubMedCentral
12.
go back to reference Hongyu Z, Changju Y, Jingye H, Lin L. Susceptibility of field populations of Anopheles sinensis (Diptera: Culicidae) to Bacillus thuringiensis subsp. israelensis. Biocontrol Sci Technol. 2004;14:321–5.CrossRef Hongyu Z, Changju Y, Jingye H, Lin L. Susceptibility of field populations of Anopheles sinensis (Diptera: Culicidae) to Bacillus thuringiensis subsp. israelensis. Biocontrol Sci Technol. 2004;14:321–5.CrossRef
13.
go back to reference Paul A, Harrington LC, Zhang L, Scott JG. Insecticide resistance in Culex pipiens from New York. J Am Mosq Control Assoc. 2005;21:305–9.CrossRef Paul A, Harrington LC, Zhang L, Scott JG. Insecticide resistance in Culex pipiens from New York. J Am Mosq Control Assoc. 2005;21:305–9.CrossRef
14.
go back to reference Boyer S, Paris M, Jego S, Lempérière G, Ravanel P. Influence of insecticide Bacillus thuringiensis subsp. israelensis treatments on resistance and enzyme activities in Aedes rusticus larvae (Diptera: Culicidae). Biol Control. 2012;62:75–81.CrossRef Boyer S, Paris M, Jego S, Lempérière G, Ravanel P. Influence of insecticide Bacillus thuringiensis subsp. israelensis treatments on resistance and enzyme activities in Aedes rusticus larvae (Diptera: Culicidae). Biol Control. 2012;62:75–81.CrossRef
15.
go back to reference Walker K, Lynch M. Contribution of Anopheles larvae control to malaria suppression in tropical Africa: review of achievements and potential. Med Vet Entomol. 2007;21:2–21.CrossRef Walker K, Lynch M. Contribution of Anopheles larvae control to malaria suppression in tropical Africa: review of achievements and potential. Med Vet Entomol. 2007;21:2–21.CrossRef
16.
go back to reference Chevillon C, Bernard C, Marquine M, Pasteur N. Resistance to Bacillus sphaericus in Culex pipiens (Diptera: Culicidae): interaction between recessive mutants and evolution in southern France. J Med Entomol. 2001;38:657–64.CrossRef Chevillon C, Bernard C, Marquine M, Pasteur N. Resistance to Bacillus sphaericus in Culex pipiens (Diptera: Culicidae): interaction between recessive mutants and evolution in southern France. J Med Entomol. 2001;38:657–64.CrossRef
17.
go back to reference Zahiri NS, Su T, Mulla MS. Strategies for the management of resistance in mosquitoes to the microbial control agent Bacillus sphaericus. J Med Entomol. 2002;39:513–20.CrossRef Zahiri NS, Su T, Mulla MS. Strategies for the management of resistance in mosquitoes to the microbial control agent Bacillus sphaericus. J Med Entomol. 2002;39:513–20.CrossRef
18.
go back to reference Nielsen-Leroux C, Charles JF, Thiéry I, Georghiou GP. Resistance in a laboratory population of Culex quinquefasciatus (Diptera: Culicidae) to Bacillus sphaericus binary toxin is due to a change in the receptor on midgut brush-border membranes. Eur J Biochem. 1995;228:206–10.CrossRef Nielsen-Leroux C, Charles JF, Thiéry I, Georghiou GP. Resistance in a laboratory population of Culex quinquefasciatus (Diptera: Culicidae) to Bacillus sphaericus binary toxin is due to a change in the receptor on midgut brush-border membranes. Eur J Biochem. 1995;228:206–10.CrossRef
19.
go back to reference Poopathi S, Mani TR, Rao DR, Baskaran G, Kabilan L. Cross-resistance to Bacillus sphaericus strains in Culex quinquefasciatus resistant to B sphaericus 1593M. Southeast Asian J Trop Med Public Health. 1999;30:477–81.PubMed Poopathi S, Mani TR, Rao DR, Baskaran G, Kabilan L. Cross-resistance to Bacillus sphaericus strains in Culex quinquefasciatus resistant to B sphaericus 1593M. Southeast Asian J Trop Med Public Health. 1999;30:477–81.PubMed
20.
go back to reference Rao DR, Mani TR, Rajendran R, Joseph AS, Gajanana A, Reuben R. Development of a high level of resistance to Bacillus sphaericus in a field population of Culex quinquefasciatus from Kochi, India. J Am Mosq Control Assoc. 1995;11:1–5.PubMed Rao DR, Mani TR, Rajendran R, Joseph AS, Gajanana A, Reuben R. Development of a high level of resistance to Bacillus sphaericus in a field population of Culex quinquefasciatus from Kochi, India. J Am Mosq Control Assoc. 1995;11:1–5.PubMed
21.
go back to reference Adak T, Mittal PK, Raghavendra K, Subbarao SK, Ansari MA, Sharma VP. Resistance to Bacillus sphaericus in Culex quinquefasciatus Say 1823. Curr Sci. 1995;69:695–8. Adak T, Mittal PK, Raghavendra K, Subbarao SK, Ansari MA, Sharma VP. Resistance to Bacillus sphaericus in Culex quinquefasciatus Say 1823. Curr Sci. 1995;69:695–8.
22.
go back to reference Pennetier C, Costantini C, Corbel V, Licciardi S, Dabiré RK, Lapied B, et al. Mixture for controlling insecticide-resistant malaria vectors. Emerg Infect Dis. 2008;14:1707–14.CrossRef Pennetier C, Costantini C, Corbel V, Licciardi S, Dabiré RK, Lapied B, et al. Mixture for controlling insecticide-resistant malaria vectors. Emerg Infect Dis. 2008;14:1707–14.CrossRef
23.
go back to reference Lacey LA. Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. J Am Mosq Control Assoc. 2007;23:133–63.CrossRef Lacey LA. Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. J Am Mosq Control Assoc. 2007;23:133–63.CrossRef
24.
go back to reference Djènontin A, Pennetier C, Zogo B, Soukou KB, Ole-Sangba M, Akogbéto M, et al. Field efficacy of vectobac GR as a mosquito larvicide for the control of anopheline and culicine mosquitoes in natural habitats in Benin, West Africa. PLoS One. 2014;9:e87934.CrossRef Djènontin A, Pennetier C, Zogo B, Soukou KB, Ole-Sangba M, Akogbéto M, et al. Field efficacy of vectobac GR as a mosquito larvicide for the control of anopheline and culicine mosquitoes in natural habitats in Benin, West Africa. PLoS One. 2014;9:e87934.CrossRef
25.
go back to reference Fillinger U, Bv I, Becker N. Efficacy and efficiency of new Bacillus thuringiensis var. israelensis and Bacillus sphaericus formulations against Afrotropical anophelines in Western Kenya. Trop Med Int Health. 2003;8:37–47.CrossRef Fillinger U, Bv I, Becker N. Efficacy and efficiency of new Bacillus thuringiensis var. israelensis and Bacillus sphaericus formulations against Afrotropical anophelines in Western Kenya. Trop Med Int Health. 2003;8:37–47.CrossRef
26.
go back to reference Davidson EW, Sweeney AW, Cooper R. Comparative field trials of Bacillus sphaericus strain 1593 and B. thuringiensis var. israelensis commercial powder formulations. J Econ Entomol. 1981;74:350–4.CrossRef Davidson EW, Sweeney AW, Cooper R. Comparative field trials of Bacillus sphaericus strain 1593 and B. thuringiensis var. israelensis commercial powder formulations. J Econ Entomol. 1981;74:350–4.CrossRef
27.
go back to reference Skovmand O, Sanogo E. Experimental formulations of Bacillus sphaericus and B. thuringiensis israelensis against Culex quinquefasciatus and Anopheles gambiae (Diptera: Culicidae) in Burkina Faso. J Med Entomol. 1999;36:62–7.CrossRef Skovmand O, Sanogo E. Experimental formulations of Bacillus sphaericus and B. thuringiensis israelensis against Culex quinquefasciatus and Anopheles gambiae (Diptera: Culicidae) in Burkina Faso. J Med Entomol. 1999;36:62–7.CrossRef
28.
go back to reference Gunasekaran K, Prabakaran G, Balaraman K. Efficacy of a floating sustained release formulation of Bacillus thuringiensis ssp. israelensis in controlling Culex quinquefasciatus larvae in polluted water habitats. Acta Trop. 2002;83:241–7.CrossRef Gunasekaran K, Prabakaran G, Balaraman K. Efficacy of a floating sustained release formulation of Bacillus thuringiensis ssp. israelensis in controlling Culex quinquefasciatus larvae in polluted water habitats. Acta Trop. 2002;83:241–7.CrossRef
29.
go back to reference Zhang L, Zhang X, Zhang Y, Wu S, Gelbič I, Xu L, et al. A new formulation of Bacillus thuringiensis: UV protection and sustained release mosquito larvae studies. Sci Rep. 2016;6:39425.CrossRef Zhang L, Zhang X, Zhang Y, Wu S, Gelbič I, Xu L, et al. A new formulation of Bacillus thuringiensis: UV protection and sustained release mosquito larvae studies. Sci Rep. 2016;6:39425.CrossRef
30.
go back to reference Mittal PK. Biolarvicides in vector control: challenges and prospects. J Vect Borne Dis. 2003;40:20–32. Mittal PK. Biolarvicides in vector control: challenges and prospects. J Vect Borne Dis. 2003;40:20–32.
31.
go back to reference Fillinger U, Ndenga B, Githeko A, Lindsay SW. Integrated malaria vector control with microbial larvicides and insecticide-treated nets in western Kenya: a controlled trial. Bull World Health Organ. 2009;87:655–65.CrossRef Fillinger U, Ndenga B, Githeko A, Lindsay SW. Integrated malaria vector control with microbial larvicides and insecticide-treated nets in western Kenya: a controlled trial. Bull World Health Organ. 2009;87:655–65.CrossRef
32.
go back to reference Becker N, Zgomba IM, Ludwig M, Petric D, Rettich F. Factors influencing the activity of Bacillus thuringiensis var. israelensis treatments. J Am Mosq Control Assoc. 1992;8:285–9.PubMed Becker N, Zgomba IM, Ludwig M, Petric D, Rettich F. Factors influencing the activity of Bacillus thuringiensis var. israelensis treatments. J Am Mosq Control Assoc. 1992;8:285–9.PubMed
33.
go back to reference Shute GT. A method of maintaining colonies of East African strains of Anopheles gambiae. Ann Trop Med Parasitol. 1956;50:92–4.CrossRef Shute GT. A method of maintaining colonies of East African strains of Anopheles gambiae. Ann Trop Med Parasitol. 1956;50:92–4.CrossRef
35.
go back to reference WHO Communicable Disease Control Prevention and Eradication. Guidelines for laboratory and field testing of mosquito larvicides. Geneva: World Health Organization; 2005. WHO Communicable Disease Control Prevention and Eradication. Guidelines for laboratory and field testing of mosquito larvicides. Geneva: World Health Organization; 2005.
38.
go back to reference Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.CrossRef Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.CrossRef
39.
go back to reference Becker N, Zgomba M, Petric D, Beck M, Ludwig M. Role of larval cadavers in recycling processes of Bacillus sphaericus. J Am Mosq Control Assoc. 1995;11:329–34.PubMed Becker N, Zgomba M, Petric D, Beck M, Ludwig M. Role of larval cadavers in recycling processes of Bacillus sphaericus. J Am Mosq Control Assoc. 1995;11:329–34.PubMed
40.
go back to reference Mwangangi JM, Kahindi SC, Kibe LW, Nzovu JG, Luethy P, Githure JI, et al. Wide-scale application of Bti/Bs biolarvicide in different aquatic habitat types in urban and peri-urban Malindi, Kenya. Parasitol Res. 2011;108:1355–63.CrossRef Mwangangi JM, Kahindi SC, Kibe LW, Nzovu JG, Luethy P, Githure JI, et al. Wide-scale application of Bti/Bs biolarvicide in different aquatic habitat types in urban and peri-urban Malindi, Kenya. Parasitol Res. 2011;108:1355–63.CrossRef
41.
go back to reference Schorkopf DLP, Spanoudis CG, Mboera LEG, Mafra-Neto A, Ignell R, Dekker T. Combining attractants and larvicides in biodegradable matrices for sustainable mosquito vector control. PLoS Negl Trop Dis. 2016;10:e0005043.CrossRef Schorkopf DLP, Spanoudis CG, Mboera LEG, Mafra-Neto A, Ignell R, Dekker T. Combining attractants and larvicides in biodegradable matrices for sustainable mosquito vector control. PLoS Negl Trop Dis. 2016;10:e0005043.CrossRef
42.
go back to reference Charles JF, Nielsen-LeRoux C. Mosquitocidal bacterial toxins: diversity, mode of action and resistance phenomena. Mem Inst Oswaldo Cruz. 2000;95(Suppl 1):201–6.CrossRef Charles JF, Nielsen-LeRoux C. Mosquitocidal bacterial toxins: diversity, mode of action and resistance phenomena. Mem Inst Oswaldo Cruz. 2000;95(Suppl 1):201–6.CrossRef
43.
go back to reference Mulla MS, Darwazeh HA, Zgomba M. Effect of some environmental factors on the efficacy of Bacillus sphaericus 2362 and Bacillus thuringiensis (H-14) against mosquitoes. Bull Soc Vector Ecol. 1995;15:166–75. Mulla MS, Darwazeh HA, Zgomba M. Effect of some environmental factors on the efficacy of Bacillus sphaericus 2362 and Bacillus thuringiensis (H-14) against mosquitoes. Bull Soc Vector Ecol. 1995;15:166–75.
44.
go back to reference Bukhari T, Takken W, Koenraadt CJM. Biological tools for control of larval stages of malaria vectors—a review. Biocontrol Sci Technol. 2013;23:987–1023.CrossRef Bukhari T, Takken W, Koenraadt CJM. Biological tools for control of larval stages of malaria vectors—a review. Biocontrol Sci Technol. 2013;23:987–1023.CrossRef
45.
go back to reference Manasherob R, Ben-Dov E, Xiaoqiang W, Boussiba S, Zaritsky A. Protection from UV-B damage of mosquito larvicidal toxins from Bacillus thuringiensis subsp. israelensis expressed in Anabaena PCC 7120. Curr Microbiol. 2002;45:217–20.CrossRef Manasherob R, Ben-Dov E, Xiaoqiang W, Boussiba S, Zaritsky A. Protection from UV-B damage of mosquito larvicidal toxins from Bacillus thuringiensis subsp. israelensis expressed in Anabaena PCC 7120. Curr Microbiol. 2002;45:217–20.CrossRef
46.
go back to reference Rojas JE, Mazzarri M, Sojo M, García-A GY. Effectiveness of Bacillus sphaericus strain 2362 on larvae of Anopheles nuñeztovari. Invest Clin. 2001;42:131–46.PubMed Rojas JE, Mazzarri M, Sojo M, García-A GY. Effectiveness of Bacillus sphaericus strain 2362 on larvae of Anopheles nuñeztovari. Invest Clin. 2001;42:131–46.PubMed
47.
go back to reference Minakawa N, Mutero CM, Githure JI, Beier JC, Yan G. Spatial distribution and habitat characterization of anopheline mosquito larvae in western Kenya. Am J Trop Med Hyg. 1999;61:1010–6.CrossRef Minakawa N, Mutero CM, Githure JI, Beier JC, Yan G. Spatial distribution and habitat characterization of anopheline mosquito larvae in western Kenya. Am J Trop Med Hyg. 1999;61:1010–6.CrossRef
48.
go back to reference Afrane YA, Mweresa NG, Wanjala CL, Gilbreath TM III, Zhou G, Lee M-C, et al. Evaluation of long-lasting microbial larvicide for malaria vector control in Kenya. Malar J. 2016;15:577.CrossRef Afrane YA, Mweresa NG, Wanjala CL, Gilbreath TM III, Zhou G, Lee M-C, et al. Evaluation of long-lasting microbial larvicide for malaria vector control in Kenya. Malar J. 2016;15:577.CrossRef
49.
go back to reference Fillinger U, Lindsay SW. Suppression of exposure to malaria vectors by an order of magnitude using microbial larvicides in rural Kenya. Trop Med Int Health. 2006;11:1629–42.CrossRef Fillinger U, Lindsay SW. Suppression of exposure to malaria vectors by an order of magnitude using microbial larvicides in rural Kenya. Trop Med Int Health. 2006;11:1629–42.CrossRef
50.
go back to reference Gu W, Novak RJ. Habitat-based modeling of impacts of mosquito larval interventions on entomological inoculation rates, incidence, and prevalence of malaria. Am J Trop Med Hyg. 2005;73:546–52.CrossRef Gu W, Novak RJ. Habitat-based modeling of impacts of mosquito larval interventions on entomological inoculation rates, incidence, and prevalence of malaria. Am J Trop Med Hyg. 2005;73:546–52.CrossRef
Metadata
Title
Impact of sunlight exposure on the residual efficacy of biolarvicides Bacillus thuringiensis israelensis and Bacillus sphaericus against the main malaria vector, Anopheles gambiae
Authors
Barnabas Zogo
Bertin N’Cho Tchiekoi
Alphonsine A. Koffi
Amal Dahounto
Ludovic P. Ahoua Alou
Roch K. Dabiré
Lamine Baba-Moussa
Nicolas Moiroux
Cédric Pennetier
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Malaria
Published in
Malaria Journal / Issue 1/2019
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-019-2687-0

Other articles of this Issue 1/2019

Malaria Journal 1/2019 Go to the issue