Skip to main content
Top
Published in: Malaria Journal 1/2018

Open Access 01-12-2018 | Research

A randomized trial of dihydroartemisinin–piperaquine versus artemether–lumefantrine for treatment of uncomplicated Plasmodium falciparum malaria in Mali

Authors: Souleymane Dama, Hamidou Niangaly, Moussa Djimde, Issaka Sagara, Cheick Oumar Guindo, Amatigue Zeguime, Antoine Dara, Abdoulaye A. Djimde, Ogobara K. Doumbo

Published in: Malaria Journal | Issue 1/2018

Login to get access

Abstract

Background

Artemether–lumefantrine (AL) and artesunate–amodiaquine are first-line treatment for uncomplicated malaria in many endemic countries, including Mali. Dihydroartemisinin–piperaquine (DHA–PQ) is also an alternative first-line artemisinin-based combination therapy, but only few data are available on DHA–PQ efficacy in sub-Saharan Africa. The main aim of this study was to compare clinical efficacy of DHA–PQ versus AL, using the World Health Organization (WHO) 42-day in vivo protocol.

Methods

The efficacy of three-dose regimens of DHA–PQ was compared to AL combination in a randomized, comparative open label trial using the WHO 42-day follow-up protocol from 2013 to 2015 in Doneguebougou and Torodo, Mali. The primary endpoint was to access the PCR-corrected Adequate Clinical and Parasitological Responses at day 28.

Results

A total of 317 uncomplicated malaria patients were enrolled, with 159 in DHA–PQ arm and 158 in AL arm. The parasite positivity rate decreased from 68.4% (95% CI 60.5–75.5) on day 1 to 3.8% (95% CI 1.4–8.1) on day 2 for DHA–PQ and 79.8% (95% CI 72.3–85.7) on day 1 to 9.5% (95% CI 5.4–15.2) on day 2 for AL, (p = 0.04). There was a significant difference in the uncorrected ACPR between DHA–PQ and AL, both at 28-day and 42-day follow-up with 97.4% (95% CI 93.5–99.3) in DHA–PQ vs 84.5% (95% CI 77.8–89.8) in AL (p < 0.001) and 94.2% (95% CI 89.3–97.3) in DHA–PQ vs 73.4% (95% CI 65.7–80.2) in AL, respectively (p < 0.001). After molecular correction, there was no significant difference in ACPRc between DHA–PQ and AL, both at the 28-day and 42-day follow-up with 99.4% (95% CI 96.5–100) in DHA–PQ versus 98.1% (95% CI 94.5–99.6) in AL (p = 0.3) and 99.3% (95% CI 96.5–100) in DHA–PQ vs 97.4% (95% CI 93.5–99.3) in AL (p = 0.2). There was no significant difference between DHA–PQ and AL in QTc prolongation 12.1% vs 7%, respectively (p = 0.4).

Conclusion

The results showed that dihydroartemisinin–piperaquine and artemether–lumefantrine were clinically efficacious on Plasmodium falciparum parasites in Mali.
Literature
1.
go back to reference Ndiaye JL, Randrianarivelojosia M, Sagara I, Brasseur P, Ndiaye I, Faye B, et al. Randomized, multicentre assessment of the efficacy and safety of ASAQ—a fixed-dose artesunate–amodiaquine combination therapy in the treatment of uncomplicated Plasmodium falciparum malaria. Malar J. 2009;8:125.CrossRef Ndiaye JL, Randrianarivelojosia M, Sagara I, Brasseur P, Ndiaye I, Faye B, et al. Randomized, multicentre assessment of the efficacy and safety of ASAQ—a fixed-dose artesunate–amodiaquine combination therapy in the treatment of uncomplicated Plasmodium falciparum malaria. Malar J. 2009;8:125.CrossRef
2.
go back to reference Tinto H, Diallo S, Zongo I, Guiraud I, Valea I, Kazienga A, et al. Effectiveness of artesunate–amodiaquine vs. artemether–lumefantrine for the treatment of uncomplicated falciparum malaria in Nanoro, Burkina Faso: a non-inferiority randomised trial. Trop Med Int Health. 2014;19:469–75.CrossRef Tinto H, Diallo S, Zongo I, Guiraud I, Valea I, Kazienga A, et al. Effectiveness of artesunate–amodiaquine vs. artemether–lumefantrine for the treatment of uncomplicated falciparum malaria in Nanoro, Burkina Faso: a non-inferiority randomised trial. Trop Med Int Health. 2014;19:469–75.CrossRef
3.
go back to reference Toure OA, Assi SB, N’Guessan TL, Adji GE, Ako AB, Brou MJ, et al. Open-label, randomized, non-inferiority clinical trial of artesunate–amodiaquine versus artemether–lumefantrine fixed-dose combinations in children and adults with uncomplicated falciparum malaria in Cote d’Ivoire. Malar J. 2014;13:439.CrossRef Toure OA, Assi SB, N’Guessan TL, Adji GE, Ako AB, Brou MJ, et al. Open-label, randomized, non-inferiority clinical trial of artesunate–amodiaquine versus artemether–lumefantrine fixed-dose combinations in children and adults with uncomplicated falciparum malaria in Cote d’Ivoire. Malar J. 2014;13:439.CrossRef
4.
go back to reference Kabanywanyi AM, Mwita A, Sumari D, Mandike R, Mugittu K, Abdulla S. Efficacy and safety of artemisinin-based antimalarial in the treatment of uncomplicated malaria in children in southern Tanzania. Malar J. 2007;6:146.CrossRef Kabanywanyi AM, Mwita A, Sumari D, Mandike R, Mugittu K, Abdulla S. Efficacy and safety of artemisinin-based antimalarial in the treatment of uncomplicated malaria in children in southern Tanzania. Malar J. 2007;6:146.CrossRef
5.
go back to reference Tshefu AK, Gaye O, Kayentao K, Thompson R, Bhatt KM, Sesay SSS, et al. Efficacy and safety of a fixed-dose oral combination of pyronaridine–artesunate compared with artemetherlumefantrine in children and adults with uncomplicated Plasmodium falciparum malaria: a randomised non-inferiority trial. Lancet. 2010;375:1457–67.CrossRef Tshefu AK, Gaye O, Kayentao K, Thompson R, Bhatt KM, Sesay SSS, et al. Efficacy and safety of a fixed-dose oral combination of pyronaridine–artesunate compared with artemetherlumefantrine in children and adults with uncomplicated Plasmodium falciparum malaria: a randomised non-inferiority trial. Lancet. 2010;375:1457–67.CrossRef
6.
go back to reference Zongo I, Dorsey G, Rouamba N, Dokomajilar C, Séré Y, Rosenthal P, et al. Randomized comparison of amodiaquine plus sulfadoxine–pyrimethamine, artemether–lumefantrine, and dihydroartemisinin–piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria in Burkina Faso. Clin Infect Dis. 2007;45:1453–61.CrossRef Zongo I, Dorsey G, Rouamba N, Dokomajilar C, Séré Y, Rosenthal P, et al. Randomized comparison of amodiaquine plus sulfadoxine–pyrimethamine, artemether–lumefantrine, and dihydroartemisinin–piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria in Burkina Faso. Clin Infect Dis. 2007;45:1453–61.CrossRef
7.
go back to reference Nambozi M, Van Geertruyden J-P, Hachizovu S, Chaponda M, Mukwamataba D, Mulenga M, et al. Safety and efficacy of dihydroartemisinin–piperaquine versus artemether–lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria in Zambian children. Malar J. 2011;10:50.CrossRef Nambozi M, Van Geertruyden J-P, Hachizovu S, Chaponda M, Mukwamataba D, Mulenga M, et al. Safety and efficacy of dihydroartemisinin–piperaquine versus artemether–lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria in Zambian children. Malar J. 2011;10:50.CrossRef
8.
go back to reference Davis TME, Hung T-Y, Sim I-K, Karunajeewa HA, Ilett KF. Piperaquine a resurgent antimalarial drug. Drugs. 2005;65:75–87.CrossRef Davis TME, Hung T-Y, Sim I-K, Karunajeewa HA, Ilett KF. Piperaquine a resurgent antimalarial drug. Drugs. 2005;65:75–87.CrossRef
9.
go back to reference WHO. Assessment and monitoring of antimalarial drug efficacy for the treatment of uncomplicated falciparum malaria. Geneva: World Health Organization; 2003. WHO. Assessment and monitoring of antimalarial drug efficacy for the treatment of uncomplicated falciparum malaria. Geneva: World Health Organization; 2003.
10.
go back to reference Mugittu K, Adjuik M, Snounou G, Ntoumi F, Taylor W, Mshinda H, et al. Molecular genotyping to distinguish between recrudescents and new infections in treatment trials of Plasmodium falciparum malaria conducted in sub-Saharan Africa: adjustment of parasitological outcomes and assessment of genotyping effectiveness. Trop Med Int Health. 2006;11:1350–9.CrossRef Mugittu K, Adjuik M, Snounou G, Ntoumi F, Taylor W, Mshinda H, et al. Molecular genotyping to distinguish between recrudescents and new infections in treatment trials of Plasmodium falciparum malaria conducted in sub-Saharan Africa: adjustment of parasitological outcomes and assessment of genotyping effectiveness. Trop Med Int Health. 2006;11:1350–9.CrossRef
11.
go back to reference Sagara I, Beavogui AH, Zongo I, Soulama I, Borghini-Fuhrer I, Fofana B, et al. Safety and efficacy of re-treatments with pyronaridine–artesunate in African patients with malaria: a substudy of the WANECAM randomised trial. Lancet Infect Dis. 2016;16:189–98.CrossRef Sagara I, Beavogui AH, Zongo I, Soulama I, Borghini-Fuhrer I, Fofana B, et al. Safety and efficacy of re-treatments with pyronaridine–artesunate in African patients with malaria: a substudy of the WANECAM randomised trial. Lancet Infect Dis. 2016;16:189–98.CrossRef
12.
go back to reference Sagara I, Rulisa S, Mbacham W, Adam I, Sissoko K, Maiga H, et al. Efficacy and safety of a fixed dose artesunate–sulphamethoxypyrazine–pyrimethamine compared to artemether–lumefantrine for the treatment of uncomplicated falciparum malaria across Africa: a randomized multi-centre trial. Malar J. 2009;8:63.CrossRef Sagara I, Rulisa S, Mbacham W, Adam I, Sissoko K, Maiga H, et al. Efficacy and safety of a fixed dose artesunate–sulphamethoxypyrazine–pyrimethamine compared to artemether–lumefantrine for the treatment of uncomplicated falciparum malaria across Africa: a randomized multi-centre trial. Malar J. 2009;8:63.CrossRef
13.
go back to reference WWARN Artemisinin based Combination Therapy (ACT) Africa Baseline Study Group, Dahal P, D’Alessandro U, Dorsey G, Guerin PJ, Nsanzabana C, et al. Clinical determinants of early parasitological response to ACTs in African patients with uncomplicated falciparum malaria: a literature review and meta-analysis of individual patient data. BMC Med. 2015;13:212.CrossRef WWARN Artemisinin based Combination Therapy (ACT) Africa Baseline Study Group, Dahal P, D’Alessandro U, Dorsey G, Guerin PJ, Nsanzabana C, et al. Clinical determinants of early parasitological response to ACTs in African patients with uncomplicated falciparum malaria: a literature review and meta-analysis of individual patient data. BMC Med. 2015;13:212.CrossRef
14.
go back to reference Stepniewska K, Ashley E, Lee SJ, Anstey N, Barnes KI, Binh TQ, et al. In vivo parasitological measures of artemisinin susceptibility. J Infect Dis. 2010;201:570–9.CrossRef Stepniewska K, Ashley E, Lee SJ, Anstey N, Barnes KI, Binh TQ, et al. In vivo parasitological measures of artemisinin susceptibility. J Infect Dis. 2010;201:570–9.CrossRef
15.
go back to reference Bassat Q, Mulenga M, Tinto H, Piola P, Borrmann S, Menéndez C. Dihydroartemisinin–piperaquine and artemether–lumefantrine for treating uncomplicated malaria in African children: a randomised, non-inferiority trial. PLoS ONE. 2009;4:e7871.CrossRef Bassat Q, Mulenga M, Tinto H, Piola P, Borrmann S, Menéndez C. Dihydroartemisinin–piperaquine and artemether–lumefantrine for treating uncomplicated malaria in African children: a randomised, non-inferiority trial. PLoS ONE. 2009;4:e7871.CrossRef
16.
go back to reference Hung TY, Davis TME, Ilett KF, Karunajeewa H, Hewitt S, Denis MB, et al. Population pharmacokinetics of piperaquine in adults and children with uncomplicated falciparum or vivax malaria. Br J Clin Pharmacol. 2004;57:253–62.CrossRef Hung TY, Davis TME, Ilett KF, Karunajeewa H, Hewitt S, Denis MB, et al. Population pharmacokinetics of piperaquine in adults and children with uncomplicated falciparum or vivax malaria. Br J Clin Pharmacol. 2004;57:253–62.CrossRef
17.
go back to reference Ezzet F, Mull R, Karbwang J. Population pharmacokinetics and therapeutic response of CGP 56697 (artemether + benflumetol) in malaria patients. Br J Clin Pharmacol. 1998;46:553–61.CrossRef Ezzet F, Mull R, Karbwang J. Population pharmacokinetics and therapeutic response of CGP 56697 (artemether + benflumetol) in malaria patients. Br J Clin Pharmacol. 1998;46:553–61.CrossRef
18.
go back to reference Manning J, Vanachayangkul P, Lon C, Spring M, So M, Sea D, et al. Randomized, double-blind, placebo-controlled clinical trial of a two-day regimen of dihydroartemisinin–piperaquine for malaria prevention halted for concern over prolonged corrected QT interval. Antimicrob Agents Chemother. 2014;58:6056–67.CrossRef Manning J, Vanachayangkul P, Lon C, Spring M, So M, Sea D, et al. Randomized, double-blind, placebo-controlled clinical trial of a two-day regimen of dihydroartemisinin–piperaquine for malaria prevention halted for concern over prolonged corrected QT interval. Antimicrob Agents Chemother. 2014;58:6056–67.CrossRef
19.
go back to reference Baiden R, Oduro A, Halidou T, Gyapong M, Sie A, Macete E, et al. Prospective observational study to evaluate the clinical safety of the fixed-dose artemisinin-based combination Eurartesim® (dihydroartemisinin/piperaquine), in public health facilities in Burkina Faso, Mozambique, Ghana, and Tanzania. Malar J. 2015;14:160.CrossRef Baiden R, Oduro A, Halidou T, Gyapong M, Sie A, Macete E, et al. Prospective observational study to evaluate the clinical safety of the fixed-dose artemisinin-based combination Eurartesim® (dihydroartemisinin/piperaquine), in public health facilities in Burkina Faso, Mozambique, Ghana, and Tanzania. Malar J. 2015;14:160.CrossRef
20.
go back to reference Malaria Policy Advisory Committee to the WHO. Conclusions and recommendations of sixth biannual meeting (September 2014). Malar J. 2015;14:107.CrossRef Malaria Policy Advisory Committee to the WHO. Conclusions and recommendations of sixth biannual meeting (September 2014). Malar J. 2015;14:107.CrossRef
Metadata
Title
A randomized trial of dihydroartemisinin–piperaquine versus artemether–lumefantrine for treatment of uncomplicated Plasmodium falciparum malaria in Mali
Authors
Souleymane Dama
Hamidou Niangaly
Moussa Djimde
Issaka Sagara
Cheick Oumar Guindo
Amatigue Zeguime
Antoine Dara
Abdoulaye A. Djimde
Ogobara K. Doumbo
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2018
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-018-2496-x

Other articles of this Issue 1/2018

Malaria Journal 1/2018 Go to the issue