Skip to main content
Top
Published in: Malaria Journal 1/2018

Open Access 01-12-2018 | Research

Low and heterogeneous prevalence of glucose-6-phosphate dehydrogenase deficiency in different settings in Ethiopia using phenotyping and genotyping approaches

Authors: Getasew Shitaye, Endalamaw Gadisa, Lynn Grignard, Girma Shumie, Wakweya Chali, Temesgen Menberu, Mulualem Belachew, Getaneh Tegegn, Sagni Challi, Jonathan Curry, Laleta Mahey, Tsegaye Hailu, Hassen Mamo, Menakath Menon, Taye Balcha, Abraham Aseffa, Chris Drakeley, Teun Bousema, Fitsum G. Tadesse

Published in: Malaria Journal | Issue 1/2018

Login to get access

Abstract

Background

8-Aminoquinolines such as primaquine clear mature Plasmodium falciparum gametocytes that are responsible for transmission from human to mosquitoes and bring radical cure in Plasmodium vivax by clearing dormant liver stages. Deployment of primaquine is thus of relevance for malaria elimination efforts but challenged by the widespread prevalence of glucose-6-phosphate dehydrogenase deficiency (G6PDd) in endemic countries since primaquine in G6PDd individuals may lead to acute haemolysis. In this study, the prevalence of G6PDd was investigated in different settings in Ethiopia using phenotyping and genotyping approaches.

Methods

Community and school based cross-sectional surveys were conducted from October to December 2016 in four administrative regions (Gambela, Benishangul Gumuz, Oromia, and Amhara) in Ethiopia. Finger prick blood samples were collected for G6PD enzyme activity using the CareStart™ G6PD screening test and genotyping of 36 selected single nucleotide polymorphisms (SNPs) located in the G6PD gene and its flanking regions.

Results

Overall, the prevalence of phenotypic G6PDd was 1.4% (22/1609). For the first time in the Ethiopian population, the African variant (A−) was detected in 3.5% (7/199) of the limited set of genotyped samples, which were all phenotypically normal. Interestingly, all of these individuals had a variation at the rs2515904 locus. Strong geographical variation was observed for both phenotypic and genotypic G6PDd; three-quarters of the phenotypically G6PDd individuals were detected in Gambela.

Conclusion

A very low prevalence of G6PDd was detected in the present study populations. The presence of the A− variant alongside other G6PD mutants and the patchy distribution of G6PDd indicate that larger studies specifically designed to unravel the distribution of G6PDd at small geographical scale may be needed to tailor malaria elimination efforts in Ethiopia to the local context.
Appendix
Available only for authorised users
Literature
2.
go back to reference Huijben S, Paaijmans KP. Putting evolution in elimination: winning our ongoing battle with evolving malaria mosquitoes and parasites. Evol Appl. 2018;11:415–30.CrossRefPubMed Huijben S, Paaijmans KP. Putting evolution in elimination: winning our ongoing battle with evolving malaria mosquitoes and parasites. Evol Appl. 2018;11:415–30.CrossRefPubMed
3.
go back to reference Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev. 2011;24:377–410.CrossRefPubMedPubMedCentral Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev. 2011;24:377–410.CrossRefPubMedPubMedCentral
4.
go back to reference Baird JK, Schwartz E, Hoffman SL. Prevention and treatment of vivax malaria. Curr Infect Dis Rep. 2007;9:39–46.CrossRefPubMed Baird JK, Schwartz E, Hoffman SL. Prevention and treatment of vivax malaria. Curr Infect Dis Rep. 2007;9:39–46.CrossRefPubMed
5.
go back to reference Alonso PL, Brown G, Arevalo-Herrera M, Binka F, Chitnis C, Collins F, et al. A research agenda to underpin malaria eradication. PLoS Med. 2011;8:e1000406.CrossRefPubMedPubMedCentral Alonso PL, Brown G, Arevalo-Herrera M, Binka F, Chitnis C, Collins F, et al. A research agenda to underpin malaria eradication. PLoS Med. 2011;8:e1000406.CrossRefPubMedPubMedCentral
7.
9.
go back to reference Betuela I, Robinson LJ, Hetzel MW, Laman M, Siba PM, Bassat Q, et al. Primaquine treatment for Plasmodium vivax-an essential tool for malaria control and elimination in Papua New Guinea. P N G Med J. 2014;57:68.PubMed Betuela I, Robinson LJ, Hetzel MW, Laman M, Siba PM, Bassat Q, et al. Primaquine treatment for Plasmodium vivax-an essential tool for malaria control and elimination in Papua New Guinea. P N G Med J. 2014;57:68.PubMed
11.
go back to reference Gonçalves BP, Tiono AB, Ouédraogo A, Guelbéogo WM, Bradley J, Nebie I, et al. Single low dose primaquine to reduce gametocyte carriage and Plasmodium falciparum transmission after artemether-lumefantrine in children with asymptomatic infection: a randomised, double-blind, placebo-controlled trial. BMC Med. 2016;14:40.CrossRefPubMedPubMedCentral Gonçalves BP, Tiono AB, Ouédraogo A, Guelbéogo WM, Bradley J, Nebie I, et al. Single low dose primaquine to reduce gametocyte carriage and Plasmodium falciparum transmission after artemether-lumefantrine in children with asymptomatic infection: a randomised, double-blind, placebo-controlled trial. BMC Med. 2016;14:40.CrossRefPubMedPubMedCentral
12.
go back to reference Domingo GJ, Satyagraha AW, Anvikar A, Baird K, Bancone G, Bansil P, et al. G6PD testing in support of treatment and elimination of malaria: recommendations for evaluation of G6PD tests. Malar J. 2013;12:391.CrossRefPubMedPubMedCentral Domingo GJ, Satyagraha AW, Anvikar A, Baird K, Bancone G, Bansil P, et al. G6PD testing in support of treatment and elimination of malaria: recommendations for evaluation of G6PD tests. Malar J. 2013;12:391.CrossRefPubMedPubMedCentral
13.
go back to reference Minucci A, Giardina B, Zuppi C, Capoluongo E. Glucose-6-phosphate dehydrogenase laboratory assay: how, when, and why? IUBMB Life. 2009;61:27–34.CrossRefPubMed Minucci A, Giardina B, Zuppi C, Capoluongo E. Glucose-6-phosphate dehydrogenase laboratory assay: how, when, and why? IUBMB Life. 2009;61:27–34.CrossRefPubMed
14.
go back to reference Kumar P, Yadav U, Rai V. Prevalence of glucose-6-phosphate dehydrogenase deficiency in India: an updated meta-analysis. EJMHG. 2016;17:295–302. Kumar P, Yadav U, Rai V. Prevalence of glucose-6-phosphate dehydrogenase deficiency in India: an updated meta-analysis. EJMHG. 2016;17:295–302.
16.
go back to reference Shah SS, Macharia A, Makale J, Uyoga S, Kivinen K, Craik R, et al. Genetic determinants of glucose-6-phosphate dehydrogenase activity in Kenya. BMC Med Genet. 2014;15:93.CrossRefPubMedPubMedCentral Shah SS, Macharia A, Makale J, Uyoga S, Kivinen K, Craik R, et al. Genetic determinants of glucose-6-phosphate dehydrogenase activity in Kenya. BMC Med Genet. 2014;15:93.CrossRefPubMedPubMedCentral
17.
go back to reference Ouattara AK, Bisseye C, Bazie BVJTE, Diarra B, Compaore TR, Djigma F, et al. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is associated with asymptomatic malaria in a rural community in Burkina Faso. Asian Pacific J Trop Biomed. 2014;4:655–8.CrossRef Ouattara AK, Bisseye C, Bazie BVJTE, Diarra B, Compaore TR, Djigma F, et al. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is associated with asymptomatic malaria in a rural community in Burkina Faso. Asian Pacific J Trop Biomed. 2014;4:655–8.CrossRef
18.
go back to reference Luzzatto L, Nannelli C, Notaro R. Glucose-6-phosphate dehydrogenase deficiency. Hematol Oncol Clin. 2016;30:373–93.CrossRef Luzzatto L, Nannelli C, Notaro R. Glucose-6-phosphate dehydrogenase deficiency. Hematol Oncol Clin. 2016;30:373–93.CrossRef
20.
go back to reference Howes RE, Piel FB, Patil AP, Nyangiri OA, Gething PW, Dewi M, et al. G6PD deficiency prevalence and estimates of affected populations in malaria endemic countries: a geostatistical model-based map. PLoS Med. 2012;9:e1001339.CrossRefPubMedPubMedCentral Howes RE, Piel FB, Patil AP, Nyangiri OA, Gething PW, Dewi M, et al. G6PD deficiency prevalence and estimates of affected populations in malaria endemic countries: a geostatistical model-based map. PLoS Med. 2012;9:e1001339.CrossRefPubMedPubMedCentral
21.
go back to reference Piomelli S, Corash LM, Davenport DD, Miraglia J, Amorosi EL. In vivo lability of glucose-6-phosphate dehydrogenase in Gd A− and Gd Mediterranean deficiency. J Clin Invest. 1968;47:940–8.CrossRefPubMedPubMedCentral Piomelli S, Corash LM, Davenport DD, Miraglia J, Amorosi EL. In vivo lability of glucose-6-phosphate dehydrogenase in Gd A− and Gd Mediterranean deficiency. J Clin Invest. 1968;47:940–8.CrossRefPubMedPubMedCentral
22.
go back to reference Tang T, Huang C, Huang M, Tam K, Yeh C, Tang C. Diverse point mutations result in glucose-6-phosphate dehydrogenase (G6PD) polymorphism in Taiwan. Blood. 1992;79:2135–40.PubMed Tang T, Huang C, Huang M, Tam K, Yeh C, Tang C. Diverse point mutations result in glucose-6-phosphate dehydrogenase (G6PD) polymorphism in Taiwan. Blood. 1992;79:2135–40.PubMed
23.
go back to reference Louicharoen C, Patin E, Paul R, Nuchprayoon I, Witoonpanich B, Peerapittayamongkol C, et al. Positively selected G6PD-Mahidol mutation reduces Plasmodium vivax density in Southeast Asians. Science. 2009;326:1546–9.CrossRefPubMed Louicharoen C, Patin E, Paul R, Nuchprayoon I, Witoonpanich B, Peerapittayamongkol C, et al. Positively selected G6PD-Mahidol mutation reduces Plasmodium vivax density in Southeast Asians. Science. 2009;326:1546–9.CrossRefPubMed
24.
go back to reference Carter N, Pamba A, Duparc S, Waitumbi JN. Frequency of glucose-6-phosphate dehydrogenase deficiency in malaria patients from six African countries enrolled in two randomized anti-malarial clinical trials. Malar J. 2011;10:241.CrossRefPubMedPubMedCentral Carter N, Pamba A, Duparc S, Waitumbi JN. Frequency of glucose-6-phosphate dehydrogenase deficiency in malaria patients from six African countries enrolled in two randomized anti-malarial clinical trials. Malar J. 2011;10:241.CrossRefPubMedPubMedCentral
25.
go back to reference Howes RE, Dewi M, Piel FB, Monteiro WM, Battle KE, Messina JP, et al. Spatial distribution of G6PD deficiency variants across malaria-endemic regions. Malar J. 2013;12:428.CrossRef Howes RE, Dewi M, Piel FB, Monteiro WM, Battle KE, Messina JP, et al. Spatial distribution of G6PD deficiency variants across malaria-endemic regions. Malar J. 2013;12:428.CrossRef
26.
go back to reference Monteiro WM, Moura-Neto JP, Recht J, Bassat Q, Lacerda M. Fatal primaquine-induced hemolysis in a patient with Plasmodium vivax malaria and G6PD A(−) variant in the Brazilian Amazon. Clin Infect Dis. 2016;62:1188.CrossRefPubMed Monteiro WM, Moura-Neto JP, Recht J, Bassat Q, Lacerda M. Fatal primaquine-induced hemolysis in a patient with Plasmodium vivax malaria and G6PD A(−) variant in the Brazilian Amazon. Clin Infect Dis. 2016;62:1188.CrossRefPubMed
27.
go back to reference Deribew A, Dejene T, Kebede B, Tessema GA, Melaku YA, Misganaw A, et al. Incidence, prevalence and mortality rates of malaria in Ethiopia from 1990 to 2015: analysis of the global burden of diseases 2015. Malar J. 2017;16:271.CrossRefPubMedPubMedCentral Deribew A, Dejene T, Kebede B, Tessema GA, Melaku YA, Misganaw A, et al. Incidence, prevalence and mortality rates of malaria in Ethiopia from 1990 to 2015: analysis of the global burden of diseases 2015. Malar J. 2017;16:271.CrossRefPubMedPubMedCentral
31.
go back to reference Eziefula AC, Gosling R, Hwang J, Hsiang MS, Bousema T, von Seidlein L, et al. Rationale for short course primaquine in Africa to interrupt malaria transmission. Malar J. 2012;11:360.CrossRefPubMedPubMedCentral Eziefula AC, Gosling R, Hwang J, Hsiang MS, Bousema T, von Seidlein L, et al. Rationale for short course primaquine in Africa to interrupt malaria transmission. Malar J. 2012;11:360.CrossRefPubMedPubMedCentral
32.
go back to reference Tadesse FG, Hoogen L, Lanke K, Schildkraut J, Tetteh K, Aseffa A, et al. The shape of the iceberg: quantification of submicroscopic Plasmodium falciparum and Plasmodium vivax parasitaemia and gametocytaemia in five low endemic settings in Ethiopia. Malar J. 2017;16:99.CrossRefPubMedPubMedCentral Tadesse FG, Hoogen L, Lanke K, Schildkraut J, Tetteh K, Aseffa A, et al. The shape of the iceberg: quantification of submicroscopic Plasmodium falciparum and Plasmodium vivax parasitaemia and gametocytaemia in five low endemic settings in Ethiopia. Malar J. 2017;16:99.CrossRefPubMedPubMedCentral
33.
go back to reference Brooker S, Kolaczinski JH, Gitonga CW, Noor AM, Snow RW. The use of schools for malaria surveillance and programme evaluation in Africa. Malar J. 2009;8:231.CrossRefPubMedPubMedCentral Brooker S, Kolaczinski JH, Gitonga CW, Noor AM, Snow RW. The use of schools for malaria surveillance and programme evaluation in Africa. Malar J. 2009;8:231.CrossRefPubMedPubMedCentral
34.
go back to reference Tadesse FG, Pett H, Baidjoe A, Lanke K, Grignard L, Sutherland C, et al. Submicroscopic carriage of Plasmodium falciparum and Plasmodium vivax in a low endemic area in Ethiopia where no parasitaemia was detected by microscopy or rapid diagnostic test. Malar J. 2015;14:303.CrossRefPubMedPubMedCentral Tadesse FG, Pett H, Baidjoe A, Lanke K, Grignard L, Sutherland C, et al. Submicroscopic carriage of Plasmodium falciparum and Plasmodium vivax in a low endemic area in Ethiopia where no parasitaemia was detected by microscopy or rapid diagnostic test. Malar J. 2015;14:303.CrossRefPubMedPubMedCentral
35.
go back to reference Clarke GM, Rockett K, Kivinen K, Hubbart C, Jeffreys AE, Rowlands K, et al. Characterisation of the opposing effects of G6PD deficiency on cerebral malaria and severe malarial anaemia. eLife. 2017;6:e15085.CrossRefPubMedPubMedCentral Clarke GM, Rockett K, Kivinen K, Hubbart C, Jeffreys AE, Rowlands K, et al. Characterisation of the opposing effects of G6PD deficiency on cerebral malaria and severe malarial anaemia. eLife. 2017;6:e15085.CrossRefPubMedPubMedCentral
36.
go back to reference Dewasurendra RL, Rockett KA, Fernando SD, Carter R, Kwiatkowski DP, Karunaweera ND, et al. G6PD gene variants and its association with malaria in a Sri Lankan population. Malar J. 2015;14:93.CrossRefPubMedPubMedCentral Dewasurendra RL, Rockett KA, Fernando SD, Carter R, Kwiatkowski DP, Karunaweera ND, et al. G6PD gene variants and its association with malaria in a Sri Lankan population. Malar J. 2015;14:93.CrossRefPubMedPubMedCentral
37.
go back to reference Dombrowski JG, Souza RM, Curry J, Hinton L, Silva NRM, Grignard L, et al. G6PD deficiency alleles in a malaria-endemic region in the Western Brazilian Amazon. Malar J. 2017;16:253.CrossRefPubMedPubMedCentral Dombrowski JG, Souza RM, Curry J, Hinton L, Silva NRM, Grignard L, et al. G6PD deficiency alleles in a malaria-endemic region in the Western Brazilian Amazon. Malar J. 2017;16:253.CrossRefPubMedPubMedCentral
38.
go back to reference Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–81.CrossRefPubMed Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–81.CrossRefPubMed
39.
go back to reference Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5.CrossRefPubMed Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5.CrossRefPubMed
40.
go back to reference Manjurano A, Sepulveda N, Nadjm B, Mtove G, Wangai H, Maxwell C, et al. African glucose-6-phosphate dehydrogenase alleles associated with protection from severe malaria in heterozygous females in Tanzania. PLoS Genet. 2015;11:e1004960.CrossRefPubMedPubMedCentral Manjurano A, Sepulveda N, Nadjm B, Mtove G, Wangai H, Maxwell C, et al. African glucose-6-phosphate dehydrogenase alleles associated with protection from severe malaria in heterozygous females in Tanzania. PLoS Genet. 2015;11:e1004960.CrossRefPubMedPubMedCentral
41.
go back to reference Al-Sweedan SA, Awwad N. Molecular characterization of glucose-6-phosphate dehydrogenase deficiency among Jordanians. Acta Haematol. 2012;128:195–202.CrossRefPubMed Al-Sweedan SA, Awwad N. Molecular characterization of glucose-6-phosphate dehydrogenase deficiency among Jordanians. Acta Haematol. 2012;128:195–202.CrossRefPubMed
42.
go back to reference Sepúlveda N, Manjurano A, Campino SG, Lemnge M, Lusingu J, Olomi R, et al. Malaria host candidate genes validated by association with current, recent, and historical measures of transmission intensity. J Infect Dis. 2017;216:45–54.CrossRefPubMedPubMedCentral Sepúlveda N, Manjurano A, Campino SG, Lemnge M, Lusingu J, Olomi R, et al. Malaria host candidate genes validated by association with current, recent, and historical measures of transmission intensity. J Infect Dis. 2017;216:45–54.CrossRefPubMedPubMedCentral
43.
go back to reference Tsegaye A, Golassa L, Mamo H, Erko B. Glucose-6-phosphate dehydrogenase deficiency among malaria suspects attending Gambella hospital, southwest Ethiopia. Malar J. 2014;13:438.CrossRefPubMedPubMedCentral Tsegaye A, Golassa L, Mamo H, Erko B. Glucose-6-phosphate dehydrogenase deficiency among malaria suspects attending Gambella hospital, southwest Ethiopia. Malar J. 2014;13:438.CrossRefPubMedPubMedCentral
44.
go back to reference Mourant AE, Kopeć AC, Ikin EW, Lehmann H, Bowen-Simpkins P, Fergusson ILC, et al. The blood groups and haemoglobins of the Kunama and Baria of Eritrea, Ethiopia. Ann Hum Biol. 1974;1:383–92.CrossRefPubMed Mourant AE, Kopeć AC, Ikin EW, Lehmann H, Bowen-Simpkins P, Fergusson ILC, et al. The blood groups and haemoglobins of the Kunama and Baria of Eritrea, Ethiopia. Ann Hum Biol. 1974;1:383–92.CrossRefPubMed
46.
go back to reference Woube M. Geographical distribution and dramatic increases in incidences of malaria: consequences of the resettlement scheme in Gambela, SW Ethiopia. Indian J Malariol. 1997;34:140–63.PubMed Woube M. Geographical distribution and dramatic increases in incidences of malaria: consequences of the resettlement scheme in Gambela, SW Ethiopia. Indian J Malariol. 1997;34:140–63.PubMed
47.
go back to reference Krafsur ES, Armstrong JC. An integrated view of entomological and parasitological observations on falciparum malaria in Gambela, Western Ethiopian Lowlands. Trans R Soc Trop Med Hyg. 1978;72:348–56.CrossRefPubMed Krafsur ES, Armstrong JC. An integrated view of entomological and parasitological observations on falciparum malaria in Gambela, Western Ethiopian Lowlands. Trans R Soc Trop Med Hyg. 1978;72:348–56.CrossRefPubMed
48.
go back to reference Krafsur ES. Malaria transmission in Gambela, Illubabor Province. Ethiop Med J. 1971;9:75–94.PubMed Krafsur ES. Malaria transmission in Gambela, Illubabor Province. Ethiop Med J. 1971;9:75–94.PubMed
49.
go back to reference Wakuma Abaya S, Mandere N, Ewald G. Floods and health in Gambella region, Ethiopia: a qualitative assessment of the strengths and weaknesses of coping mechanisms. Glob Health Action. 2009;2:1.CrossRef Wakuma Abaya S, Mandere N, Ewald G. Floods and health in Gambella region, Ethiopia: a qualitative assessment of the strengths and weaknesses of coping mechanisms. Glob Health Action. 2009;2:1.CrossRef
50.
go back to reference Allison AC. Glucose-6-phosphate dehydrogenase deficiency in red blood cells of East Africans. Nature. 1960;186:531–2.CrossRefPubMed Allison AC. Glucose-6-phosphate dehydrogenase deficiency in red blood cells of East Africans. Nature. 1960;186:531–2.CrossRefPubMed
51.
52.
go back to reference Carter TE, Mekonnen SK, Lopez K, Bonnell V, Damodaran L, Aseffa A, et al. Glucose-6-phosphate dehydrogenase deficiency genetic variants in malaria patients in Southwestern Ethiopia. Am J Trop Med Hyg. 2018;98:83–7.CrossRefPubMed Carter TE, Mekonnen SK, Lopez K, Bonnell V, Damodaran L, Aseffa A, et al. Glucose-6-phosphate dehydrogenase deficiency genetic variants in malaria patients in Southwestern Ethiopia. Am J Trop Med Hyg. 2018;98:83–7.CrossRefPubMed
53.
go back to reference Iancovici-Kidon M, Sthoeger D, Abrahamov A, Wolach B, Beutler E, Gelbart T, et al. A new exon 9 glucose-6-phosphate dehydrogenase mutation (G6PD “Rehovot”) in a Jewish Ethiopian family with variable phenotypes. Blood Cells Mol Dis. 2000;26:567–71.CrossRefPubMed Iancovici-Kidon M, Sthoeger D, Abrahamov A, Wolach B, Beutler E, Gelbart T, et al. A new exon 9 glucose-6-phosphate dehydrogenase mutation (G6PD “Rehovot”) in a Jewish Ethiopian family with variable phenotypes. Blood Cells Mol Dis. 2000;26:567–71.CrossRefPubMed
54.
go back to reference Valencia SH, Ocampo ID, Arce-Plata MI, Recht J, Arévalo-Herrera M. Glucose-6-phosphate dehydrogenase deficiency prevalence and genetic variants in malaria endemic areas of Colombia. Malar J. 2016;15:291.CrossRefPubMedPubMedCentral Valencia SH, Ocampo ID, Arce-Plata MI, Recht J, Arévalo-Herrera M. Glucose-6-phosphate dehydrogenase deficiency prevalence and genetic variants in malaria endemic areas of Colombia. Malar J. 2016;15:291.CrossRefPubMedPubMedCentral
55.
go back to reference Ghimire P, Singh N, Ortega L, Rijal KR, Adhikari B, Thakur GD, et al. Glucose-6-phosphate dehydrogenase deficiency in people living in malaria endemic districts of Nepal. Malar J. 2017;16:214.CrossRefPubMedPubMedCentral Ghimire P, Singh N, Ortega L, Rijal KR, Adhikari B, Thakur GD, et al. Glucose-6-phosphate dehydrogenase deficiency in people living in malaria endemic districts of Nepal. Malar J. 2017;16:214.CrossRefPubMedPubMedCentral
56.
57.
go back to reference Beutler E, Yeh M, Fairbanks VF. The normal human female as a mosaic of X-chromosome activity: studies using the gene for C-6-PD-deficiency as a marker. Proc Natl Acad Sci USA. 1962;48:9–16.CrossRefPubMed Beutler E, Yeh M, Fairbanks VF. The normal human female as a mosaic of X-chromosome activity: studies using the gene for C-6-PD-deficiency as a marker. Proc Natl Acad Sci USA. 1962;48:9–16.CrossRefPubMed
58.
go back to reference Baird JK, Dewi M, Subekti D, Elyazar I, Satyagraha AW. Noninferiority of glucose-6-phosphate dehydrogenase deficiency diagnosis by a point-of-care rapid test vs the laboratory fluorescent spot test demonstrated by copper inhibition in normal human red blood cells. Transl Res. 2015;165:677–88.CrossRefPubMedPubMedCentral Baird JK, Dewi M, Subekti D, Elyazar I, Satyagraha AW. Noninferiority of glucose-6-phosphate dehydrogenase deficiency diagnosis by a point-of-care rapid test vs the laboratory fluorescent spot test demonstrated by copper inhibition in normal human red blood cells. Transl Res. 2015;165:677–88.CrossRefPubMedPubMedCentral
59.
go back to reference Roca-Feltrer A, Khim N, Kim S, Chy S, Canier L, Kerleguer A, et al. Field trial evaluation of the performances of point-of-care tests for screening G6PD deficiency in Cambodia. PLoS ONE. 2014;9:e116143.CrossRefPubMedPubMedCentral Roca-Feltrer A, Khim N, Kim S, Chy S, Canier L, Kerleguer A, et al. Field trial evaluation of the performances of point-of-care tests for screening G6PD deficiency in Cambodia. PLoS ONE. 2014;9:e116143.CrossRefPubMedPubMedCentral
60.
go back to reference Weppelmann TA, von Fricken ME, Wilfong TD, Aguenza E, Philippe TT, Okech BA. Field Trial of the Carestart Biosensor analyzer for the determination of glucose-6-phosphate dehydrogenase activity in Haiti. Am J Trop Med Hyg. 2017;97:1262–70.CrossRefPubMed Weppelmann TA, von Fricken ME, Wilfong TD, Aguenza E, Philippe TT, Okech BA. Field Trial of the Carestart Biosensor analyzer for the determination of glucose-6-phosphate dehydrogenase activity in Haiti. Am J Trop Med Hyg. 2017;97:1262–70.CrossRefPubMed
61.
go back to reference Ley B, Bancone G, von Seidlein L, Thriemer K, Richards JS, Domingo GJ, et al. Methods for the field evaluation of quantitative G6PD diagnostics: a review. Malar J. 2017;16:361.CrossRefPubMedPubMedCentral Ley B, Bancone G, von Seidlein L, Thriemer K, Richards JS, Domingo GJ, et al. Methods for the field evaluation of quantitative G6PD diagnostics: a review. Malar J. 2017;16:361.CrossRefPubMedPubMedCentral
62.
go back to reference Thriemer K, Ley B, Bobogare A, Dysoley L, Alam MS, Pasaribu AP, et al. Challenges for achieving safe and effective radical cure of Plasmodium vivax: a round table discussion of the APMEN Vivax Working Group. Malar J. 2017;16:141.CrossRefPubMedPubMedCentral Thriemer K, Ley B, Bobogare A, Dysoley L, Alam MS, Pasaribu AP, et al. Challenges for achieving safe and effective radical cure of Plasmodium vivax: a round table discussion of the APMEN Vivax Working Group. Malar J. 2017;16:141.CrossRefPubMedPubMedCentral
63.
go back to reference Getahun B, Nkosi ZZ. Is directly observed tuberculosis treatment strategy patient-centered? A mixed method study in Addis Ababa, Ethiopia. PLoS ONE. 2017;12:e0181205.CrossRefPubMedPubMedCentral Getahun B, Nkosi ZZ. Is directly observed tuberculosis treatment strategy patient-centered? A mixed method study in Addis Ababa, Ethiopia. PLoS ONE. 2017;12:e0181205.CrossRefPubMedPubMedCentral
64.
go back to reference Tadesse FG, Slater HC, Chali W, Teelen K, Lanke K, Belachew M, et al. The relative contribution of symptomatic and asymptomatic Plasmodium vivax and Plasmodium falciparum infections to the infectious reservoir in a low-endemic setting in Ethiopia. Clin Infect Dis. 2018;66:1883–91.CrossRefPubMed Tadesse FG, Slater HC, Chali W, Teelen K, Lanke K, Belachew M, et al. The relative contribution of symptomatic and asymptomatic Plasmodium vivax and Plasmodium falciparum infections to the infectious reservoir in a low-endemic setting in Ethiopia. Clin Infect Dis. 2018;66:1883–91.CrossRefPubMed
Metadata
Title
Low and heterogeneous prevalence of glucose-6-phosphate dehydrogenase deficiency in different settings in Ethiopia using phenotyping and genotyping approaches
Authors
Getasew Shitaye
Endalamaw Gadisa
Lynn Grignard
Girma Shumie
Wakweya Chali
Temesgen Menberu
Mulualem Belachew
Getaneh Tegegn
Sagni Challi
Jonathan Curry
Laleta Mahey
Tsegaye Hailu
Hassen Mamo
Menakath Menon
Taye Balcha
Abraham Aseffa
Chris Drakeley
Teun Bousema
Fitsum G. Tadesse
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2018
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-018-2437-8

Other articles of this Issue 1/2018

Malaria Journal 1/2018 Go to the issue