Skip to main content
Top
Published in: Malaria Journal 1/2018

Open Access 01-12-2018 | Research

Household-level and surrounding peri-domestic environmental characteristics associated with malaria vectors Anopheles arabiensis and Anopheles funestus along an urban–rural continuum in Blantyre, Malawi

Authors: Nicole F. Dear, Chifundo Kadangwe, Themba Mzilahowa, Andy Bauleni, Don P. Mathanga, Chifundo Duster, Edward D. Walker, Mark L. Wilson

Published in: Malaria Journal | Issue 1/2018

Login to get access

Abstract

Background

Malaria is increasing in some recently urbanized areas that historically were considered lower risk. Understanding what drives urban transmission is hampered by inconsistencies in how “urban” contexts are defined. A dichotomized “urban–rural” approach, based on political boundaries may misclassify environments or fail to capture local drivers of risk. Small-scale agriculture in urban or peri-urban settings has been shown to be a major risk determinant.

Methods

Household-level Anopheles abundance patterns in and around Malawi’s commercial capital of Blantyre (~ 1.9 M pop.) were analysed. Clusters (N = 64) of five houses each located at 2.5 km intervals along eight transects radiating out from Blantyre city centre were sampled during rainy and dry seasons of 2015 and 2016. Mosquito densities were measured inside houses using aspirators to sample resting mosquitoes, and un-baited CDC light traps to sample host seeking mosquitoes.

Results

Of 38,895 mosquitoes captured, 91% were female and 87% were Culex spp. Anopheles females (N = 5058) were primarily captured in light traps (97%). Anopheles abundance was greater during rainy seasons. Anopheles funestus was more abundant than Anopheles arabiensis, but both were found on all transects, and had similar associations with environmental risk factors. Anopheles funestus and An. arabiensis females significantly increased with distance from the urban centre, but this trend was not consistent across all transects. Presence of small-scale agriculture was predictive of greater Anopheles spp. abundance, even after controlling for urbanicity, number of nets per person, number of under-5-year olds, years of education, and season.

Conclusions

This study revealed how small-scale agriculture along a rural-to-urban transition was associated with An. arabiensis and An. funestus indoor abundances, and that indoor Anopheles density can be high within Blantyre city limits, particularly where agriculture is present. Typical rural areas with lower house density and greater distance from urban centres reflected landscapes more suitable for Anopheles reproduction and house invasion. However, similar characteristics and elevated Anopheles abundances were also found around some houses within the city limits. Thus, dichotomous designations of “urban” or “rural” can obscure important heterogeneity in the landscape of Plasmodium transmission, suggesting the need for more nuanced assessment of urban malaria risk and prevention efforts.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. World malaria report. Geneva: World Health Organization; 2017. WHO. World malaria report. Geneva: World Health Organization; 2017.
2.
go back to reference Demographic and Health Surveys. Malawi malaria indicator survey. Rockville: Demographic and Health Surveys; 2017. Demographic and Health Surveys. Malawi malaria indicator survey. Rockville: Demographic and Health Surveys; 2017.
4.
go back to reference National Statistical Office. Population and housing census: preliminary, report. Malawi: National Statistical Office; 2008. National Statistical Office. Population and housing census: preliminary, report. Malawi: National Statistical Office; 2008.
5.
6.
go back to reference Holtz T, Marum L, Mkandala C, Chizani N, Roberts J, Macheso A, et al. Insecticide-treated bednet use, anaemia, and malaria parasitaemia in Blantyre District, Malawi. Trop Med Int Health. 2002;7:220–30.CrossRefPubMed Holtz T, Marum L, Mkandala C, Chizani N, Roberts J, Macheso A, et al. Insecticide-treated bednet use, anaemia, and malaria parasitaemia in Blantyre District, Malawi. Trop Med Int Health. 2002;7:220–30.CrossRefPubMed
7.
go back to reference Monasch R, Reinisch A, Steketee R, Korenromp E, Alnwick D, Bergevin Y. Child coverage with mosquito nets and malaria treatment from population-based surveys in African countries: a baseline for monitoring progress in Roll Back Malaria. Am J Trop Med Hyg. 2004;71(Suppl 2):232–8.PubMedCrossRef Monasch R, Reinisch A, Steketee R, Korenromp E, Alnwick D, Bergevin Y. Child coverage with mosquito nets and malaria treatment from population-based surveys in African countries: a baseline for monitoring progress in Roll Back Malaria. Am J Trop Med Hyg. 2004;71(Suppl 2):232–8.PubMedCrossRef
8.
9.
go back to reference Bousema T, Griffin J, Sauerwein R, Smith D, Churcher T, Takken W, et al. Hitting hotspots: spatial targeting of malaria for control and elimination. PLoS Med. 2012;9:e1001165.CrossRefPubMedPubMedCentral Bousema T, Griffin J, Sauerwein R, Smith D, Churcher T, Takken W, et al. Hitting hotspots: spatial targeting of malaria for control and elimination. PLoS Med. 2012;9:e1001165.CrossRefPubMedPubMedCentral
10.
go back to reference Trape J, Lefebvre-Zante E, Legros F, Ndiaye G, Bouganali H, Druilhe P, et al. Vector density gradients and the epidemiology of urban malaria in Dakar, Senegal. Am J Trop Med Hyg. 1992;47:181–9.CrossRefPubMed Trape J, Lefebvre-Zante E, Legros F, Ndiaye G, Bouganali H, Druilhe P, et al. Vector density gradients and the epidemiology of urban malaria in Dakar, Senegal. Am J Trop Med Hyg. 1992;47:181–9.CrossRefPubMed
11.
go back to reference Knudsen A, Slooff R. Vector-borne disease problems in rapid urbanization: new approaches to vector control. Bull World Health Organ. 1992;70:1–6.PubMedPubMedCentral Knudsen A, Slooff R. Vector-borne disease problems in rapid urbanization: new approaches to vector control. Bull World Health Organ. 1992;70:1–6.PubMedPubMedCentral
12.
go back to reference Keating J, MacIntyre K, Mbogo C, Githeko A, Regens J, Swalm C, et al. A geographic sampling strategy for studying relationships between human activity and malaria vectors in urban Africa. Am J Trop Med Hyg. 2003;68:357–65.PubMedCrossRef Keating J, MacIntyre K, Mbogo C, Githeko A, Regens J, Swalm C, et al. A geographic sampling strategy for studying relationships between human activity and malaria vectors in urban Africa. Am J Trop Med Hyg. 2003;68:357–65.PubMedCrossRef
13.
go back to reference Qi Q, Guerra C, Moyes C, Elyazar I, Gething P, Hay S, et al. The effects of urbanization on global Plasmodium vivax malaria transmission. Malar J. 2012;11:403.CrossRefPubMedPubMedCentral Qi Q, Guerra C, Moyes C, Elyazar I, Gething P, Hay S, et al. The effects of urbanization on global Plasmodium vivax malaria transmission. Malar J. 2012;11:403.CrossRefPubMedPubMedCentral
14.
15.
go back to reference Lindsay S, Campbell H, Adiamah J, Greenwood A, Bangali J, Greenwood B. Malaria in a peri-urban area of the Gambia. Ann Trop Med Parasitol. 1990;84:553–62.CrossRefPubMed Lindsay S, Campbell H, Adiamah J, Greenwood A, Bangali J, Greenwood B. Malaria in a peri-urban area of the Gambia. Ann Trop Med Parasitol. 1990;84:553–62.CrossRefPubMed
16.
17.
18.
go back to reference Afrane Y, Klinkenberg E, Drechsel P, Owusu-Daaku K, Garms R, Kruppa T. Does irrigated urban agriculture influence the transmission of malaria in the city of Kumasi, Ghana? Acta Trop. 2004;89:125–34.CrossRefPubMed Afrane Y, Klinkenberg E, Drechsel P, Owusu-Daaku K, Garms R, Kruppa T. Does irrigated urban agriculture influence the transmission of malaria in the city of Kumasi, Ghana? Acta Trop. 2004;89:125–34.CrossRefPubMed
19.
go back to reference Matthys B, N’Goran E, Koné M, Koudou B, Vounatsou P, Cissé G, et al. Urban agricultural land use and characterization of mosquito larval habitats in a medium-sized town of Côte d’Ivoire. J Vector Ecol. 2006;31:319–33.CrossRefPubMed Matthys B, N’Goran E, Koné M, Koudou B, Vounatsou P, Cissé G, et al. Urban agricultural land use and characterization of mosquito larval habitats in a medium-sized town of Côte d’Ivoire. J Vector Ecol. 2006;31:319–33.CrossRefPubMed
20.
go back to reference United Nations Population Division. World urbanization prospects: the 2001 revision. New York: United Nations Population Division; 2002. United Nations Population Division. World urbanization prospects: the 2001 revision. New York: United Nations Population Division; 2002.
22.
go back to reference McDade T, Adair L. Defining the ‘urban’ in urbanization and health: a factor analysis approach. Soc Sci Med. 2001;53:55–70.CrossRefPubMed McDade T, Adair L. Defining the ‘urban’ in urbanization and health: a factor analysis approach. Soc Sci Med. 2001;53:55–70.CrossRefPubMed
23.
go back to reference Dahly D, Adair L. Quantifying the urban environment: a scale measure of urbanicity outperforms the urban-rural dichotomy. Soc Sci Med. 2007;67:1407–19.CrossRef Dahly D, Adair L. Quantifying the urban environment: a scale measure of urbanicity outperforms the urban-rural dichotomy. Soc Sci Med. 2007;67:1407–19.CrossRef
24.
go back to reference Mathanga D, Kapito Tembo A, Mzilahowa T, Bauleni A, Mtimaukenena K, Taylor T, et al. Patterns and determinants of malaria risk in urban and peri-urban areas of Blantyre, Malawi. Malar J. 2016;15:590.CrossRefPubMedPubMedCentral Mathanga D, Kapito Tembo A, Mzilahowa T, Bauleni A, Mtimaukenena K, Taylor T, et al. Patterns and determinants of malaria risk in urban and peri-urban areas of Blantyre, Malawi. Malar J. 2016;15:590.CrossRefPubMedPubMedCentral
25.
go back to reference Walker E, Mathanga D, Wilson ML, Mzilahowa T, Taylor T, Kapito-Tembo A. Anopheles mosquito abundance along an urban-to-rural gradient in Blantyre. Protocol. 2014;1–20. Walker E, Mathanga D, Wilson ML, Mzilahowa T, Taylor T, Kapito-Tembo A. Anopheles mosquito abundance along an urban-to-rural gradient in Blantyre. Protocol. 2014;1–20.
26.
go back to reference John W. Hock (Gainesville, Florida). Improved prokopack aspirator. Model 1419. 2009. John W. Hock (Gainesville, Florida). Improved prokopack aspirator. Model 1419. 2009.
27.
go back to reference John W. Hock (Gainesville, Florida). CDC miniature light trap. Model 512. 2012. John W. Hock (Gainesville, Florida). CDC miniature light trap. Model 512. 2012.
28.
go back to reference Gillies M, Coetzee M. A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical Region). South African Inst Med Res. 1987;55:1–143. Gillies M, Coetzee M. A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical Region). South African Inst Med Res. 1987;55:1–143.
30.
go back to reference Landsat 8 OLI/TIRS C1 Level-1. USGS. Accessed 18 May 2018. Landsat 8 OLI/TIRS C1 Level-1. USGS. Accessed 18 May 2018.
31.
go back to reference Kellndorfer J, Cartus O, Bishop J, Walker W, Holecz F. Large scale mapping of forests and land cover with synthetic aperture radar data. In: Holecz F, Pasquali P, Milisavljevic N, Closson D, editors. Land applications of radar remote sensing. Rijeka: InTech; 2014. p. 59–94. Kellndorfer J, Cartus O, Bishop J, Walker W, Holecz F. Large scale mapping of forests and land cover with synthetic aperture radar data. In: Holecz F, Pasquali P, Milisavljevic N, Closson D, editors. Land applications of radar remote sensing. Rijeka: InTech; 2014. p. 59–94.
32.
go back to reference Ke Y, Im J, Lee J, Gong H, Ryu Y. Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in situ observations. Rem Sens Environ. 2015;164:298–313.CrossRef Ke Y, Im J, Lee J, Gong H, Ryu Y. Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in situ observations. Rem Sens Environ. 2015;164:298–313.CrossRef
33.
go back to reference Roy D, Wulder M, Loveland T, Woodcock C, Allen R, Anderson M, et al. Landsat-8: science and product vision for terrestrial global change research. Rem Sens Environ. 2014;145:154–72.CrossRef Roy D, Wulder M, Loveland T, Woodcock C, Allen R, Anderson M, et al. Landsat-8: science and product vision for terrestrial global change research. Rem Sens Environ. 2014;145:154–72.CrossRef
34.
go back to reference ARSET Advanced NDVI Webinar Series. NASA. 2016. ARSET Advanced NDVI Webinar Series. NASA. 2016.
35.
go back to reference Kelley-Hope L, Hemingway J, McKenzie F. Environmental factors associated with the malaria vectors Anopheles gambiae and Anopheles funestus in Kenya. Malar J. 2009;8:268.CrossRef Kelley-Hope L, Hemingway J, McKenzie F. Environmental factors associated with the malaria vectors Anopheles gambiae and Anopheles funestus in Kenya. Malar J. 2009;8:268.CrossRef
36.
go back to reference Ghebreyesus T, Haile M, Witten K, Getachew A, Yohannes M, Lindsay S, et al. Household risk factors for malaria among children in the Ethiopian highlands. Trans R Soc Trop Med Hyg. 2000;94:17–21.CrossRefPubMed Ghebreyesus T, Haile M, Witten K, Getachew A, Yohannes M, Lindsay S, et al. Household risk factors for malaria among children in the Ethiopian highlands. Trans R Soc Trop Med Hyg. 2000;94:17–21.CrossRefPubMed
37.
go back to reference Kirby M, Green C, Milligan P, Sismanidis C, Jasseh M, Conway D, et al. Risk factors for house-entry by malaria vectors in a rural town and satellite villages in The Gambia. Malar J. 2008;7:2.CrossRefPubMedPubMedCentral Kirby M, Green C, Milligan P, Sismanidis C, Jasseh M, Conway D, et al. Risk factors for house-entry by malaria vectors in a rural town and satellite villages in The Gambia. Malar J. 2008;7:2.CrossRefPubMedPubMedCentral
38.
go back to reference Peterson I, Borrell L, El-Sadr W, Teklehaimanot A. Individual and household level factors associated with malaria incidence in a Highland Region of Ethiopia: a multilevel analysis. Am J Trop Med Hyg. 2009;80:103–11.PubMedCrossRef Peterson I, Borrell L, El-Sadr W, Teklehaimanot A. Individual and household level factors associated with malaria incidence in a Highland Region of Ethiopia: a multilevel analysis. Am J Trop Med Hyg. 2009;80:103–11.PubMedCrossRef
39.
go back to reference Mzilahowa T, Luka-Banda M, Uzalili V, Mathanga D, Campbell C, Mukaka M, et al. Risk factors for Anopheles mosquitoes in rural and urban areas of Blantyre District, southern Malawi. Malawi Med J. 2016;28:154–8.CrossRefPubMedPubMedCentral Mzilahowa T, Luka-Banda M, Uzalili V, Mathanga D, Campbell C, Mukaka M, et al. Risk factors for Anopheles mosquitoes in rural and urban areas of Blantyre District, southern Malawi. Malawi Med J. 2016;28:154–8.CrossRefPubMedPubMedCentral
40.
go back to reference McCann R, Messina J, MacFarlane D, Bayoh M, Gimnig J, Giorgi E, et al. Explaining variation in adult Anopheles indoor resting abundance: the relative effects of larval habitat proximity and insecticide-treated bed net use. Malar J. 2017;16:288.CrossRefPubMedPubMedCentral McCann R, Messina J, MacFarlane D, Bayoh M, Gimnig J, Giorgi E, et al. Explaining variation in adult Anopheles indoor resting abundance: the relative effects of larval habitat proximity and insecticide-treated bed net use. Malar J. 2017;16:288.CrossRefPubMedPubMedCentral
Metadata
Title
Household-level and surrounding peri-domestic environmental characteristics associated with malaria vectors Anopheles arabiensis and Anopheles funestus along an urban–rural continuum in Blantyre, Malawi
Authors
Nicole F. Dear
Chifundo Kadangwe
Themba Mzilahowa
Andy Bauleni
Don P. Mathanga
Chifundo Duster
Edward D. Walker
Mark L. Wilson
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2018
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-018-2375-5

Other articles of this Issue 1/2018

Malaria Journal 1/2018 Go to the issue