Skip to main content
Top
Published in: Malaria Journal 1/2018

Open Access 01-12-2018 | Research

Optimal control of malaria: combining vector interventions and drug therapies

Authors: Doran Khamis, Claire El Mouden, Klodeta Kura, Michael B. Bonsall

Published in: Malaria Journal | Issue 1/2018

Login to get access

Abstract

Background

The sterile insect technique and transgenic equivalents are considered promising tools for controlling vector-borne disease in an age of increasing insecticide and drug-resistance. Combining vector interventions with artemisinin-based therapies may achieve the twin goals of suppressing malaria endemicity while managing artemisinin resistance. While the cost-effectiveness of these controls has been investigated independently, their combined usage has not been dynamically optimized in response to ecological and epidemiological processes.

Results

An optimal control framework based on coupled models of mosquito population dynamics and malaria epidemiology is used to investigate the cost-effectiveness of combining vector control with drug therapies in homogeneous environments with and without vector migration. The costs of endemic malaria are weighed against the costs of administering artemisinin therapies and releasing modified mosquitoes using various cost structures. Larval density dependence is shown to reduce the cost-effectiveness of conventional sterile insect releases compared with transgenic mosquitoes with a late-acting lethal gene. Using drug treatments can reduce the critical vector control release ratio necessary to cause disease fadeout.

Conclusions

Combining vector control and drug therapies is the most effective and efficient use of resources, and using optimized implementation strategies can substantially reduce costs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GRW, Simmons CP, Scott TW, Farrar JJ, Hay SI. The global distribution and burden of dengue. Nature. 2013;496(7446):504–7.CrossRefPubMedPubMedCentral Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GRW, Simmons CP, Scott TW, Farrar JJ, Hay SI. The global distribution and burden of dengue. Nature. 2013;496(7446):504–7.CrossRefPubMedPubMedCentral
2.
go back to reference WHO. World malaria report 2016. Geneva: World Health Organization; 2016. WHO. World malaria report 2016. Geneva: World Health Organization; 2016.
3.
go back to reference WHO. World malaria report 2013. Geneva: World Health Organization; 2013. WHO. World malaria report 2013. Geneva: World Health Organization; 2013.
4.
go back to reference Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, Battle KE, Moyes CL, Henry A, Eckhoff PA, Wenger EA, Briet O, Penny MA, Smith TA, Bennett A, Yukich J, Eisele TP, Griffin JT, Fergus CA, Lynch M, Lindgren F, Cohen JM, Murray CLJ, Smith DL, Hay SI, Cibulskis RE, Gething PW. The effect of malaria control on \(Plasmodium\, falciparum\) in africa between 2000 and 2015. Nature. 2015;526(7572):207–11.CrossRefPubMedPubMedCentral Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, Battle KE, Moyes CL, Henry A, Eckhoff PA, Wenger EA, Briet O, Penny MA, Smith TA, Bennett A, Yukich J, Eisele TP, Griffin JT, Fergus CA, Lynch M, Lindgren F, Cohen JM, Murray CLJ, Smith DL, Hay SI, Cibulskis RE, Gething PW. The effect of malaria control on \(Plasmodium\, falciparum\) in africa between 2000 and 2015. Nature. 2015;526(7572):207–11.CrossRefPubMedPubMedCentral
6.
go back to reference Meshnick SR, Taylor TE, Kamchonwongpaisan S. Artemisinin and the antimalarial endoperoxides: from herbal remedy to targeted chemotherapy. Microbiol Rev. 1996;60(2):301–15.PubMedPubMedCentral Meshnick SR, Taylor TE, Kamchonwongpaisan S. Artemisinin and the antimalarial endoperoxides: from herbal remedy to targeted chemotherapy. Microbiol Rev. 1996;60(2):301–15.PubMedPubMedCentral
10.
go back to reference WHO. Emergency response to artemisinin resistance in the Greater Mekong Subregion. Regional framework for action 2013–2015. Geneva: World Health Organization; 2013. p. 32. WHO. Emergency response to artemisinin resistance in the Greater Mekong Subregion. Regional framework for action 2013–2015. Geneva: World Health Organization; 2013. p. 32.
11.
go back to reference Ataide R, Ashley EA, Powell R, Chan J-A, Malloy MJ, O’Flaherty K, Takashima E, Langer C, Tsuboi T, Dondorp AM, Day NP, Dhorda M, Fairhurst RM, Lim P, Amaratunga C, Pukrittayakamee S, Hien TT, Htut Y, Mayxay M, Faiz MA, Beeson JG, Nosten F, Simpson JA, White NJ, Fowkes FJI. Host immunity to \(Plasmodium\, falciparum\) and the assessment of emerging artemisinin resistance in a multinational cohort. Proc Natl Acad Sci. 2017;114:3515–20. https://doi.org/10.1073/pnas.1615875114.CrossRefPubMedPubMedCentral Ataide R, Ashley EA, Powell R, Chan J-A, Malloy MJ, O’Flaherty K, Takashima E, Langer C, Tsuboi T, Dondorp AM, Day NP, Dhorda M, Fairhurst RM, Lim P, Amaratunga C, Pukrittayakamee S, Hien TT, Htut Y, Mayxay M, Faiz MA, Beeson JG, Nosten F, Simpson JA, White NJ, Fowkes FJI. Host immunity to \(Plasmodium\, falciparum\) and the assessment of emerging artemisinin resistance in a multinational cohort. Proc Natl Acad Sci. 2017;114:3515–20. https://​doi.​org/​10.​1073/​pnas.​1615875114.CrossRefPubMedPubMedCentral
13.
go back to reference Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Sreng S, Anderson JM, Mao S, Sam B, Sopha C, Chuor CM, Nguon C, Sovannaroth S, Pukrittayakamee S, Jittamala P, Chotivanich K, Chutasmit K, Suchatsoonthorn C, Runcharoen R, Hien TT, Thuy-Nhien NT, Thanh NV, Phu NH, Htut Y, Han K-T, Aye KH, Mokuolu OA, Olaosebikan RR, Folaranmi OO, Mayxay M, Khanthavong M, Hongvanthong B, Newton PN, Onyamboko MA, Fanello CI, Tshefu AK, Mishra N, Valecha N, Phyo AP, Nosten F, Yi P, Tripura R, Borrmann S, Bashraheil M, Peshu J, Faiz MA, Ghose A, Hossain MA, Samad R, Rahman MR, Hasan MM, Islam A, Miotto O, Amato R, MacInnis B, Stalker J, Kwiatkowski DP, Bozdech Z, Jeeyapant A, Cheah PY, Sakulthaew T, Chalk J, Intharabut B, Silamut K, Lee SJ, Vihokhern B, Kunasol C, Imwong M, Tarning J, Taylor WJ, Yeung S, Woodrow CJ, Flegg JA, Das D, Smith J, Venkatesan M, Plowe CV, Stepniewska K, Guerin PJ, Dondorp AM, Day NP, White NJ. Spread of artemisinin resistance in \(Plasmodium\, falciparum\) malaria. N Engl J Med. 2014;371(5):411–23. https://doi.org/10.1056/NEJMoa1314981.CrossRefPubMedPubMedCentral Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Sreng S, Anderson JM, Mao S, Sam B, Sopha C, Chuor CM, Nguon C, Sovannaroth S, Pukrittayakamee S, Jittamala P, Chotivanich K, Chutasmit K, Suchatsoonthorn C, Runcharoen R, Hien TT, Thuy-Nhien NT, Thanh NV, Phu NH, Htut Y, Han K-T, Aye KH, Mokuolu OA, Olaosebikan RR, Folaranmi OO, Mayxay M, Khanthavong M, Hongvanthong B, Newton PN, Onyamboko MA, Fanello CI, Tshefu AK, Mishra N, Valecha N, Phyo AP, Nosten F, Yi P, Tripura R, Borrmann S, Bashraheil M, Peshu J, Faiz MA, Ghose A, Hossain MA, Samad R, Rahman MR, Hasan MM, Islam A, Miotto O, Amato R, MacInnis B, Stalker J, Kwiatkowski DP, Bozdech Z, Jeeyapant A, Cheah PY, Sakulthaew T, Chalk J, Intharabut B, Silamut K, Lee SJ, Vihokhern B, Kunasol C, Imwong M, Tarning J, Taylor WJ, Yeung S, Woodrow CJ, Flegg JA, Das D, Smith J, Venkatesan M, Plowe CV, Stepniewska K, Guerin PJ, Dondorp AM, Day NP, White NJ. Spread of artemisinin resistance in \(Plasmodium\, falciparum\) malaria. N Engl J Med. 2014;371(5):411–23. https://​doi.​org/​10.​1056/​NEJMoa1314981.CrossRefPubMedPubMedCentral
14.
go back to reference WHO/GMP, G.M.P. Insecticide-treated mosquito nets: a WHO position statement. Geneva: World Health Organization; 2011. WHO/GMP, G.M.P. Insecticide-treated mosquito nets: a WHO position statement. Geneva: World Health Organization; 2011.
15.
go back to reference Hawley WA, Phillips-Howard PA, ter Kuile FO, Terlouw DJ, Vulule JM, Ombok M, Nahlen BL, Gimnig JE, Kariuki SK, Kolczak MS, Hightower AW. Community-wide effects of permethrin-treated bed nets on child mortality and malaria morbidity in western kenya. Am J Trop Med Hyg. 2003;68(4 Suppl.):121–7.PubMed Hawley WA, Phillips-Howard PA, ter Kuile FO, Terlouw DJ, Vulule JM, Ombok M, Nahlen BL, Gimnig JE, Kariuki SK, Kolczak MS, Hightower AW. Community-wide effects of permethrin-treated bed nets on child mortality and malaria morbidity in western kenya. Am J Trop Med Hyg. 2003;68(4 Suppl.):121–7.PubMed
16.
go back to reference Elissa N, Mouchet J, Riviere F, Meunier JY, Yao K. Resistance of \(Anopheles\, gambiae\) s.s. to pyrethroids in Côte d’Ivoire. Ann Soc Belg Med Trop. 1993;73(4):291–4.PubMed Elissa N, Mouchet J, Riviere F, Meunier JY, Yao K. Resistance of \(Anopheles\, gambiae\) s.s. to pyrethroids in Côte d’Ivoire. Ann Soc Belg Med Trop. 1993;73(4):291–4.PubMed
22.
go back to reference Krafsur E. Sterile insect technique for suppressing and eradicating insect population: 55 years and counting. J Agric Entomol. 1998;15(4):303–17. Krafsur E. Sterile insect technique for suppressing and eradicating insect population: 55 years and counting. J Agric Entomol. 1998;15(4):303–17.
23.
go back to reference Dyck VA, Hendrichs J, Robinson AS. Sterile insect technique: principles and practice in area-wide integrated pest management. Dordrecht: Springer; 2005.CrossRef Dyck VA, Hendrichs J, Robinson AS. Sterile insect technique: principles and practice in area-wide integrated pest management. Dordrecht: Springer; 2005.CrossRef
24.
go back to reference Thistlewood HMA, Judd GJR. Area-wide management of codling moth, Cydia pomonella, in rural and orchard areas. IOBC WPRS Bull. 2003;26(11):103–9. Thistlewood HMA, Judd GJR. Area-wide management of codling moth, Cydia pomonella, in rural and orchard areas. IOBC WPRS Bull. 2003;26(11):103–9.
25.
go back to reference Thistlewood HMA, Judd GJR, Clodius MEO. Sustainable management and monitoring of codling moth, \(Cydia\, pomonella\) in an area-wide program employing sit. In: IAEA, editor. Improvement of codling moth SIT to facilitate expansion of field application. Working Paper series. Vienna: Atomic Energy Agency; 2004. p. 79– 87. Thistlewood HMA, Judd GJR, Clodius MEO. Sustainable management and monitoring of codling moth, \(Cydia\, pomonella\) in an area-wide program employing sit. In: IAEA, editor. Improvement of codling moth SIT to facilitate expansion of field application. Working Paper series. Vienna: Atomic Energy Agency; 2004. p. 79– 87.
26.
go back to reference Robinson AS, Hendrichs J. Prospects for the future development and application of the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS, editors. Sterile insect technique: principles and practice in area-wide integrated pest management. Berlin: Springer; 2005. p. 727–60.CrossRef Robinson AS, Hendrichs J. Prospects for the future development and application of the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS, editors. Sterile insect technique: principles and practice in area-wide integrated pest management. Berlin: Springer; 2005. p. 727–60.CrossRef
27.
go back to reference Esteva L, Yang HM. Mathematical model to assess the control of \(Aedes\, aegypti\) mosquitoes by the sterile insect technique. Math Biosci. 2005;198(2):132–47.CrossRefPubMed Esteva L, Yang HM. Mathematical model to assess the control of \(Aedes\, aegypti\) mosquitoes by the sterile insect technique. Math Biosci. 2005;198(2):132–47.CrossRefPubMed
28.
go back to reference White SM, Rohani P, Sait SM. Modelling pulsed releases for sterile insect techniques: fitness costs of sterile and transgenic males and the effects on mosquito dynamics. J Appl Ecol. 2010;47(6):1329–39.CrossRef White SM, Rohani P, Sait SM. Modelling pulsed releases for sterile insect techniques: fitness costs of sterile and transgenic males and the effects on mosquito dynamics. J Appl Ecol. 2010;47(6):1329–39.CrossRef
35.
go back to reference Thomas DD, Donnelly CA, Wood RJ, Alphey LS. Insect population control using a dominant, repressible, lethal genetic system. Science. 2000;287(5462):2474–6.CrossRefPubMed Thomas DD, Donnelly CA, Wood RJ, Alphey LS. Insect population control using a dominant, repressible, lethal genetic system. Science. 2000;287(5462):2474–6.CrossRefPubMed
36.
go back to reference Alphey L, Nimmo D, O’Connell S, Alphey N. Insect population suppression using engineered insects. In: Aksoy S, editor. Transgenesis and the management of vector-borne disease. New York: Springer; 2008. p. 93–103.CrossRef Alphey L, Nimmo D, O’Connell S, Alphey N. Insect population suppression using engineered insects. In: Aksoy S, editor. Transgenesis and the management of vector-borne disease. New York: Springer; 2008. p. 93–103.CrossRef
42.
go back to reference Mumford JD. Application of benefit/cost analysis to insect pest control using the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS, editors. Sterile insect technique: principles and practice in area-wide integrated pest management. Berlin: Springer; 2005. p. 481–98.CrossRef Mumford JD. Application of benefit/cost analysis to insect pest control using the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS, editors. Sterile insect technique: principles and practice in area-wide integrated pest management. Berlin: Springer; 2005. p. 481–98.CrossRef
44.
go back to reference Gurney WSC, Blythe SP, Nisbet RM. Nicholson’s blowflies revisited. Nature. 1980;287:17–21.CrossRef Gurney WSC, Blythe SP, Nisbet RM. Nicholson’s blowflies revisited. Nature. 1980;287:17–21.CrossRef
45.
go back to reference Gurney WSC, Nisbet RM, Lawton JH. The systematic formulation of tractable single-species population models incorporating age structure. J Animal Ecol. 1983;52(2):479–95.CrossRef Gurney WSC, Nisbet RM, Lawton JH. The systematic formulation of tractable single-species population models incorporating age structure. J Animal Ecol. 1983;52(2):479–95.CrossRef
46.
go back to reference Ross R. The prevention of malaria. London: J. Murray; 1910. Ross R. The prevention of malaria. London: J. Murray; 1910.
48.
go back to reference MacDonald G. The analysis of equilibrium in malaria. Trop Dis Bull. 1952;49(9):813–29.PubMed MacDonald G. The analysis of equilibrium in malaria. Trop Dis Bull. 1952;49(9):813–29.PubMed
49.
go back to reference MacDonald G. The Epidemiology and control of malaria. Oxford: Oxford Medical Publications. Oxford University Press; 1957. MacDonald G. The Epidemiology and control of malaria. Oxford: Oxford Medical Publications. Oxford University Press; 1957.
50.
go back to reference Aron JL, May RM. The population dynamics of malaria. In: Anderson RM, editor. Population dynamics of infectious diseases: theory and application. Population and community biology. London: Chapman and Hall; 1982. p. 139–79.CrossRef Aron JL, May RM. The population dynamics of malaria. In: Anderson RM, editor. Population dynamics of infectious diseases: theory and application. Population and community biology. London: Chapman and Hall; 1982. p. 139–79.CrossRef
52.
go back to reference Kilama M, Smith DL, Hutchinson R, Kigozi R, Yeka A, Lavoy G, Kamya MR, Staedke SG, Donnelly MJ, Drakeley C, Greenhouse B, Dorsey G, Lindsay SW. Estimating the annual entomological inoculation rate for \(Plasmodium\, falciparum\) transmitted by \(Anopheles\, gambiae\) s.l. using three sampling methods in three sites in uganda. Malaria J. 2014;13(1):111. https://doi.org/10.1186/1475-2875-13-111.CrossRef Kilama M, Smith DL, Hutchinson R, Kigozi R, Yeka A, Lavoy G, Kamya MR, Staedke SG, Donnelly MJ, Drakeley C, Greenhouse B, Dorsey G, Lindsay SW. Estimating the annual entomological inoculation rate for \(Plasmodium\, falciparum\) transmitted by \(Anopheles\, gambiae\) s.l. using three sampling methods in three sites in uganda. Malaria J. 2014;13(1):111. https://​doi.​org/​10.​1186/​1475-2875-13-111.CrossRef
53.
go back to reference Takken W, Klowden MJ, Chambers GM. Effect of body size on host seeking and blood meal utilization in \(Anopheles\, gambiae\) sensu stricto (diptera: Culicidae): the disadvantage of being small. J Med Entomol. 1998;35(5):639–45.CrossRefPubMed Takken W, Klowden MJ, Chambers GM. Effect of body size on host seeking and blood meal utilization in \(Anopheles\, gambiae\) sensu stricto (diptera: Culicidae): the disadvantage of being small. J Med Entomol. 1998;35(5):639–45.CrossRefPubMed
54.
go back to reference Bellows TS. The descriptive properties of some models for density dependence. J Animal Ecol. 1981;50(1):139–56.CrossRef Bellows TS. The descriptive properties of some models for density dependence. J Animal Ecol. 1981;50(1):139–56.CrossRef
57.
go back to reference Clark CW. Mathematical bioeconomics: the mathematics of conservation. Pure and applied mathematics: a Wiley series of texts, monographs and tracts. Hoboken: John Wiley & Sons; 2010. Clark CW. Mathematical bioeconomics: the mathematics of conservation. Pure and applied mathematics: a Wiley series of texts, monographs and tracts. Hoboken: John Wiley & Sons; 2010.
59.
go back to reference May RM, Anderson RM. Endemic infections in growing populations. Math Biosci. 1985;77:141–56.CrossRef May RM, Anderson RM. Endemic infections in growing populations. Math Biosci. 1985;77:141–56.CrossRef
60.
go back to reference Diekmann O, Heesterbeek JAP, Metz JAJ. On the definition and the computation of the basic reproduction ratio \(r_0\) in models for infectious diseases in heterogeneous populations. J Math Biol. 1990;28(4):365–82.CrossRefPubMed Diekmann O, Heesterbeek JAP, Metz JAJ. On the definition and the computation of the basic reproduction ratio \(r_0\) in models for infectious diseases in heterogeneous populations. J Math Biol. 1990;28(4):365–82.CrossRefPubMed
62.
go back to reference Khamis SH. A new system of index numbers for national and international purposes. J R Stat Soc Ser A Gen. 1972;135(1):96–121.CrossRef Khamis SH. A new system of index numbers for national and international purposes. J R Stat Soc Ser A Gen. 1972;135(1):96–121.CrossRef
63.
go back to reference Taylor C, Touré YT, Carnahan J, Norris DE, Dolo G, Traoré SF, Edillo FE, Lanzaro GC. Gene flow among populations of the malaria vector, \(Anopheles\, gambiae\), in Mali, West Africa. Genetics. 2001;157(2):743–50.PubMedPubMedCentral Taylor C, Touré YT, Carnahan J, Norris DE, Dolo G, Traoré SF, Edillo FE, Lanzaro GC. Gene flow among populations of the malaria vector, \(Anopheles\, gambiae\), in Mali, West Africa. Genetics. 2001;157(2):743–50.PubMedPubMedCentral
68.
go back to reference Tyson R, Newton KD, Thistlewood HMA, Judd GJR. Mating rates between sterile and wild codling moths (\(Cydia\, pomonella\)) in springtime: a simulation study. J Theor Biol. 2008;254:319–30.CrossRefPubMed Tyson R, Newton KD, Thistlewood HMA, Judd GJR. Mating rates between sterile and wild codling moths (\(Cydia\, pomonella\)) in springtime: a simulation study. J Theor Biol. 2008;254:319–30.CrossRefPubMed
69.
go back to reference Alegana VA, Kigozi SP, Nankabirwa J, Arinaitwe E, Kigozi R, Mawejje H, Kilama M, Ruktanonchai NW, Ruktanonchai CW, Drakeley C, Lindsay SW, Greenhouse B, Kamya MR, Smith DL, Atkinson PM, Dorsey G, Tatem AJ. Spatio-temporal analysis of malaria vector density from baseline through intervention in a high transmission setting. Parasites Vectors. 2016;9(1):637. https://doi.org/10.1186/s13071-016-1917-3.CrossRefPubMedPubMedCentral Alegana VA, Kigozi SP, Nankabirwa J, Arinaitwe E, Kigozi R, Mawejje H, Kilama M, Ruktanonchai NW, Ruktanonchai CW, Drakeley C, Lindsay SW, Greenhouse B, Kamya MR, Smith DL, Atkinson PM, Dorsey G, Tatem AJ. Spatio-temporal analysis of malaria vector density from baseline through intervention in a high transmission setting. Parasites Vectors. 2016;9(1):637. https://​doi.​org/​10.​1186/​s13071-016-1917-3.CrossRefPubMedPubMedCentral
70.
go back to reference Bonsall MB, Yakob L, Alphey N, Alphey L. Transgenic control of vectors: the effects of interspecific interactions. Isr J Ecol Evol. 2010;56:353–70.CrossRef Bonsall MB, Yakob L, Alphey N, Alphey L. Transgenic control of vectors: the effects of interspecific interactions. Isr J Ecol Evol. 2010;56:353–70.CrossRef
73.
go back to reference Molineaux L, Gramiccia G. The garki project: research on the epidemiology and control of malaria in the Sudan Savanna of West Africa. Geneva: World Health Organization; 1980. Molineaux L, Gramiccia G. The garki project: research on the epidemiology and control of malaria in the Sudan Savanna of West Africa. Geneva: World Health Organization; 1980.
74.
go back to reference Newton EA, Reiter P. A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ULV) insecticide applications on dengue epidemics. Am J Trop Med Hyg. 1992;47(6):709–20.CrossRefPubMed Newton EA, Reiter P. A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ULV) insecticide applications on dengue epidemics. Am J Trop Med Hyg. 1992;47(6):709–20.CrossRefPubMed
75.
go back to reference Churcher TS, Sinden RE, Edwards NJ, Poulton ID, Rampling TW, Brock PM, Griffin JT, Upton LM, Zakutansky SE, Sala KA, Angrisano F, Hill AVS, Blagborough AM. Probability of transmission of malaria from mosquito to human is regulated by mosquito parasite density in naïve and vaccinated hosts. PLoS Pathog. 2017;13(1):1–18. https://doi.org/10.1371/journal.ppat.1006108.CrossRef Churcher TS, Sinden RE, Edwards NJ, Poulton ID, Rampling TW, Brock PM, Griffin JT, Upton LM, Zakutansky SE, Sala KA, Angrisano F, Hill AVS, Blagborough AM. Probability of transmission of malaria from mosquito to human is regulated by mosquito parasite density in naïve and vaccinated hosts. PLoS Pathog. 2017;13(1):1–18. https://​doi.​org/​10.​1371/​journal.​ppat.​1006108.CrossRef
78.
go back to reference Ajayi IO, Browne EN, Bateganya F, Yar D, Happi C, Falade CO, Gbotosho GO, Yusuf B, Boateng S, Mugittu K, Cousens S, Nanyunja M. Effectiveness of artemisinin-based combination therapy used in the context of home management of malaria: a report from three study sites in sub-saharan africa. Malaria J. 2008;7:190.CrossRef Ajayi IO, Browne EN, Bateganya F, Yar D, Happi C, Falade CO, Gbotosho GO, Yusuf B, Boateng S, Mugittu K, Cousens S, Nanyunja M. Effectiveness of artemisinin-based combination therapy used in the context of home management of malaria: a report from three study sites in sub-saharan africa. Malaria J. 2008;7:190.CrossRef
79.
go back to reference Dye C. Models for the population dynamics of the yellow fever mosquito, \(Aedes\, aegypti\). J Animal Ecol. 1984;53(1):247–68.CrossRef Dye C. Models for the population dynamics of the yellow fever mosquito, \(Aedes\, aegypti\). J Animal Ecol. 1984;53(1):247–68.CrossRef
80.
go back to reference Southwood TRE, Murdie G, Yasuno M, Tonn RJ, Reader PM. Studies on the life budget of \(Aedes\, aegypti\) in Wat Samphaya, Bangkok, Thailand. Bull World Health Org. 1972;46(2):211–26.PubMedPubMedCentral Southwood TRE, Murdie G, Yasuno M, Tonn RJ, Reader PM. Studies on the life budget of \(Aedes\, aegypti\) in Wat Samphaya, Bangkok, Thailand. Bull World Health Org. 1972;46(2):211–26.PubMedPubMedCentral
81.
go back to reference Sheppard PM, Macdonald WW, Tonn RJ, Grab B. The dynamics of an adult population of \(Aedes\, aegypti\) in relation to dengue haemorrhagic fever in bangkok. J Animal Ecol. 1969;38(3):661–702.CrossRef Sheppard PM, Macdonald WW, Tonn RJ, Grab B. The dynamics of an adult population of \(Aedes\, aegypti\) in relation to dengue haemorrhagic fever in bangkok. J Animal Ecol. 1969;38(3):661–702.CrossRef
84.
go back to reference Clements AN, Paterson GD. The analysis of mortality and survival rates in wild populations of mosquitoes. J Appl Ecol. 1981;18(2):373–99.CrossRef Clements AN, Paterson GD. The analysis of mortality and survival rates in wild populations of mosquitoes. J Appl Ecol. 1981;18(2):373–99.CrossRef
85.
go back to reference Jannat KN-E, Roitberg BD. Effects of larval density and feeding rates on larval life history traits in \(Anopheles\, gambiae\) s.s. (diptera: Culicidae). J Vector Ecol. 2013;38(1):120–6.CrossRefPubMed Jannat KN-E, Roitberg BD. Effects of larval density and feeding rates on larval life history traits in \(Anopheles\, gambiae\) s.s. (diptera: Culicidae). J Vector Ecol. 2013;38(1):120–6.CrossRefPubMed
86.
go back to reference Parker A. Mass-rearing for sterile insect release. In: Dyck VA, Hendrichs J, Robinson AS, editors. Sterile insect technique: principles and practice in area-wide integrated pest management. Dordrecht: Springer; 2005. p. 209–32.CrossRef Parker A. Mass-rearing for sterile insect release. In: Dyck VA, Hendrichs J, Robinson AS, editors. Sterile insect technique: principles and practice in area-wide integrated pest management. Dordrecht: Springer; 2005. p. 209–32.CrossRef
87.
go back to reference Bailey DL, Lowe RE, Dame DA, Seawright JA. Mass rearing the genetically altered macho strain of \(Anopheles\, albimanus\) Wiedemann. Am J Trop Med Hyg. 1980;29(1):141–9.CrossRefPubMed Bailey DL, Lowe RE, Dame DA, Seawright JA. Mass rearing the genetically altered macho strain of \(Anopheles\, albimanus\) Wiedemann. Am J Trop Med Hyg. 1980;29(1):141–9.CrossRefPubMed
88.
go back to reference Dame DA. Genetic control by sterilized mosquitoes. In: Chapman HCEA, editor. Biological control of mosquitoes. Township: American Mosquito Control Association; 1985. p. 159–72. Dame DA. Genetic control by sterilized mosquitoes. In: Chapman HCEA, editor. Biological control of mosquitoes. Township: American Mosquito Control Association; 1985. p. 159–72.
89.
go back to reference Singh KRP, Razdan RK. Mass rearing of Culex pipiens fatigans Wied. Under ambient conditions. WHO VBC. 1975;75:537. Singh KRP, Razdan RK. Mass rearing of Culex pipiens fatigans Wied. Under ambient conditions. WHO VBC. 1975;75:537.
90.
go back to reference International Atomic Energy Agency. Model Business Plan for a Sterile Insect Production Facility. Vienna: IAEA; 2008. International Atomic Energy Agency. Model Business Plan for a Sterile Insect Production Facility. Vienna: IAEA; 2008.
91.
go back to reference Lenhart S, Workman JT. Optimal control applied to biological models. Chapman & Hall/CRC mathematical and computational biology. Abingdon: Taylor & Francis; 2007. Lenhart S, Workman JT. Optimal control applied to biological models. Chapman & Hall/CRC mathematical and computational biology. Abingdon: Taylor & Francis; 2007.
Metadata
Title
Optimal control of malaria: combining vector interventions and drug therapies
Authors
Doran Khamis
Claire El Mouden
Klodeta Kura
Michael B. Bonsall
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2018
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-018-2321-6

Other articles of this Issue 1/2018

Malaria Journal 1/2018 Go to the issue