Skip to main content
Top
Published in: Malaria Journal 1/2018

Open Access 01-12-2018 | Research

In vitro evaluation of chloroquine-loaded and heparin surface-functionalized solid lipid nanoparticles

Authors: Joseph O. Muga, Jeremiah W. Gathirwa, Matshawandile Tukulula, Walter G. Z. O. Jura

Published in: Malaria Journal | Issue 1/2018

Login to get access

Abstract

Background

Use of chloroquine, an otherwise safe and relatively affordable anti-malarial drug, was discontinued due to widespread prevalence of resistant parasites. Many entrant anti-malarial drugs for treatment of chloroquine resistant malaria raises the concerns of cost and safety among other challenges. Innovative ways of circumventing chloroquine resistance is of paramount importance. Such may include nanoparticulate delivery strategies and targeting. This study evaluated physicochemical properties and in vitro antiplasmodial activity of chloroquine encapsulated heparin functionalized solid lipid nanoparticles (CQ-Hep-SLNs) and non-heparin functionalized SLNs (CQ-SLN) against Plasmodium falciparum.

Methods

The modified double-emulsion solvent evaporation technique was used to prepare the nanoparticles. HPLC/UV was used to determine the in vitro drug release. The semi-automated micro-dilution technique was adapted in assessing the in vitro antiplasmodial activity to give drug concentration capable of inhibiting 50% of the P. falciparum (IC50), as a function of antiplasmodial efficacy.

Results

Prepared nanoparticles were below 500 nm in size with % drug loading (%DL) between 21 and 25% and encapsulation efficiency (%EE) of 78–90%. The drug-loaded SLN exhibited a biphasic drug release profile at pH 7.4, with an initial burst release during the first 24 h followed by sustained release in both formulations. Nanoformulated CQ-SLN (4.72 ± 0.14 ng/mL) and CQ-Hep-SLN (2.41 ± 0.27 ng/mL), showed enhanced in vitro antiplasmodial activities against chloroquine sensitive (D6) strain of P. falciparum, albeit with no activity against the chloroquine resistant W2 strain, compared to free CQ standard (5.81 ± 0.18 ng/mL).

Conclusions

These findings suggest that the nanoformulated drugs displayed enhanced anti-malarial activities against chloroquine sensitive (D6) strains of P. falciparum compared to the free CQ standard. There is some form of potential dual synergistic effect of CQ-loaded heparinized solid lipid nanoparticles (Hep-SLN), meaning that combining heparin and CQ in SLNs has beneficial effects, including potential for specific targeting of parasitized red blood cells as afforded by heparin. Thus, the study has produced SLNs nanoparticles that have superior in vitro activities than CQ on CQ-sensitive parasites.
Literature
1.
go back to reference Date AA, Joshi MD, Patravale VB. Parasitic diseases: liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv Drug Deliv Rev. 2007;59:505–21.CrossRefPubMed Date AA, Joshi MD, Patravale VB. Parasitic diseases: liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv Drug Deliv Rev. 2007;59:505–21.CrossRefPubMed
2.
go back to reference WHO. World malaria report 2016. Geneva: World Health Organization; 2016. WHO. World malaria report 2016. Geneva: World Health Organization; 2016.
3.
go back to reference Maina JK, Macharia PM, Ouma PO, Snow RW, Okiro EA. Coverage of routine reporting on malaria parasitological testing in Kenya, 2015–2016. Global Health Action. 2017;10:1413266.CrossRefPubMedPubMedCentral Maina JK, Macharia PM, Ouma PO, Snow RW, Okiro EA. Coverage of routine reporting on malaria parasitological testing in Kenya, 2015–2016. Global Health Action. 2017;10:1413266.CrossRefPubMedPubMedCentral
4.
go back to reference USAID, President’s Malaria Initiative. Kenya Malaria Operational Plan FY. Washington, D.C.: USAID; 2016. USAID, President’s Malaria Initiative. Kenya Malaria Operational Plan FY. Washington, D.C.: USAID; 2016.
5.
go back to reference Afrane YA, Zhou G, Githeko AK, Yan G. Clinical malaria case definition and malaria attributable fraction in the highlands of western Kenya. Malar J. 2014;13:405.CrossRefPubMedPubMedCentral Afrane YA, Zhou G, Githeko AK, Yan G. Clinical malaria case definition and malaria attributable fraction in the highlands of western Kenya. Malar J. 2014;13:405.CrossRefPubMedPubMedCentral
6.
go back to reference Santos-Magalhães NS, Mosqueira VCF. Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev. 2010;62:560–75.CrossRefPubMed Santos-Magalhães NS, Mosqueira VCF. Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev. 2010;62:560–75.CrossRefPubMed
7.
go back to reference WHO. World malaria report 2014. Geneva: World Health Organization; 2014. WHO. World malaria report 2014. Geneva: World Health Organization; 2014.
8.
go back to reference Nayyar GM, Breman JG, Newton PN, Herrington J. Poor-quality antimalarial drugs in southeast Asia and sub-Saharan Africa. Lancet Infect Dis. 2012;12:488–96.CrossRefPubMed Nayyar GM, Breman JG, Newton PN, Herrington J. Poor-quality antimalarial drugs in southeast Asia and sub-Saharan Africa. Lancet Infect Dis. 2012;12:488–96.CrossRefPubMed
10.
go back to reference WHO. World malaria report 2017. Geneva: World Health Organization; 2017. WHO. World malaria report 2017. Geneva: World Health Organization; 2017.
11.
go back to reference De Jong WH, Borm PJ. Drug delivery and nanoparticles: application and hazards. Int J Nanomed. 2008;3:133–49.CrossRef De Jong WH, Borm PJ. Drug delivery and nanoparticles: application and hazards. Int J Nanomed. 2008;3:133–49.CrossRef
12.
go back to reference Yan L, Chen X. Nanometerial for drug delivery. In: Tjong S-C, editor. Nanocrystalline materials: their application-structure-property relationships and application. Hong Kong: Elsevier; 2013. p. 221–68. Yan L, Chen X. Nanometerial for drug delivery. In: Tjong S-C, editor. Nanocrystalline materials: their application-structure-property relationships and application. Hong Kong: Elsevier; 2013. p. 221–68.
13.
go back to reference Yan Y, Yang Y, Zhang W, Chen X. Advanced materials and nanotechnology for drug delivery. Adv Mater. 2014;26:5533–40.CrossRefPubMed Yan Y, Yang Y, Zhang W, Chen X. Advanced materials and nanotechnology for drug delivery. Adv Mater. 2014;26:5533–40.CrossRefPubMed
14.
go back to reference Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Phathol. 2009;86:215–23.CrossRef Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Phathol. 2009;86:215–23.CrossRef
15.
16.
go back to reference Marques J, Vilanova E, Mourão PAS, Fernàndez-Busquets X. Marine organism sulfated polysaccharides exhibiting significant antimalarial activity and inhibition of red blood cell invasion by Plasmodium. Sci Rep. 2016;6:24368.CrossRefPubMedPubMedCentral Marques J, Vilanova E, Mourão PAS, Fernàndez-Busquets X. Marine organism sulfated polysaccharides exhibiting significant antimalarial activity and inhibition of red blood cell invasion by Plasmodium. Sci Rep. 2016;6:24368.CrossRefPubMedPubMedCentral
17.
go back to reference Marques J, Moles E, Urbán P, Prohens R, Busquets MA, Sevrin C, et al. Application of heparin as dual agent with antimalarial and liposome targeting activties towards Plasmodium-infected red blood cells. Nanomedicine. 2014;10:1719–28.CrossRefPubMed Marques J, Moles E, Urbán P, Prohens R, Busquets MA, Sevrin C, et al. Application of heparin as dual agent with antimalarial and liposome targeting activties towards Plasmodium-infected red blood cells. Nanomedicine. 2014;10:1719–28.CrossRefPubMed
18.
go back to reference Aláez-Versón CR, Lantero E, Fernàndez-Busquets X. Heparin: new life for an old drug. Nanomedicine. 2017;12:1719–28.CrossRef Aláez-Versón CR, Lantero E, Fernàndez-Busquets X. Heparin: new life for an old drug. Nanomedicine. 2017;12:1719–28.CrossRef
19.
go back to reference Passirani C, Barrat G, Devissaguet JP, Labarre D. Interactions of nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate) with the complement system. Life Sci. 1998;62:775–85.CrossRefPubMed Passirani C, Barrat G, Devissaguet JP, Labarre D. Interactions of nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate) with the complement system. Life Sci. 1998;62:775–85.CrossRefPubMed
20.
go back to reference Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Frontiers Pharmacol. 2015;6:286.CrossRef Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Frontiers Pharmacol. 2015;6:286.CrossRef
21.
go back to reference Zhang L, Granick S. How to stabilize phospholipid liposomes (Using nanoparticles). Nano Lett. 2006;6:694–8.CrossRefPubMed Zhang L, Granick S. How to stabilize phospholipid liposomes (Using nanoparticles). Nano Lett. 2006;6:694–8.CrossRefPubMed
22.
go back to reference Omwoyo WN, Melariri P, Gathirwa JW, Olo F, Mahanga GM, Kalombo L, et al. Development, characterization and antimalarial efficacy of dihydroartemisinin loaded solid lipid nanoparticles. Nanomedicine. 2016;12:801–9.CrossRefPubMed Omwoyo WN, Melariri P, Gathirwa JW, Olo F, Mahanga GM, Kalombo L, et al. Development, characterization and antimalarial efficacy of dihydroartemisinin loaded solid lipid nanoparticles. Nanomedicine. 2016;12:801–9.CrossRefPubMed
23.
go back to reference Omwoyo WN, Ogutu B, Olo F, Swai H, Kalombo L, Melariri P, Mahanga GM, et al. Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles. Int J Nanomedicine. 2014;9:3865–74.PubMedPubMedCentral Omwoyo WN, Ogutu B, Olo F, Swai H, Kalombo L, Melariri P, Mahanga GM, et al. Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles. Int J Nanomedicine. 2014;9:3865–74.PubMedPubMedCentral
24.
go back to reference Miranda TA, Silva PHR, Pianetti GA, César IC. Simultaneous quantitation of chloroquine and primaquine by UPLC-DAD and comparison with HPLC-DAD method. Malar J. 2015;14:29.CrossRefPubMedPubMedCentral Miranda TA, Silva PHR, Pianetti GA, César IC. Simultaneous quantitation of chloroquine and primaquine by UPLC-DAD and comparison with HPLC-DAD method. Malar J. 2015;14:29.CrossRefPubMedPubMedCentral
25.
26.
go back to reference Moll K, Ljungström I, Perlmann H, Scherf A, Wahlgren M. Methods in malaria research. 6th ed. Glasgow: EVIMalaR; 2013. Moll K, Ljungström I, Perlmann H, Scherf A, Wahlgren M. Methods in malaria research. 6th ed. Glasgow: EVIMalaR; 2013.
27.
go back to reference Desjardins RE, Canfield CJ, Haynes JD, Chulay JD. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979;16:710–8.CrossRefPubMedPubMedCentral Desjardins RE, Canfield CJ, Haynes JD, Chulay JD. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979;16:710–8.CrossRefPubMedPubMedCentral
28.
go back to reference Sixsmith DG, Watkins WM, Chulay JD, Spencer HC. In vitro antimalarial activity of tetrahydrofolate dehydrogenase inhibitors. Am J Trop Med Hyg. 1984;33:772–6.CrossRefPubMed Sixsmith DG, Watkins WM, Chulay JD, Spencer HC. In vitro antimalarial activity of tetrahydrofolate dehydrogenase inhibitors. Am J Trop Med Hyg. 1984;33:772–6.CrossRefPubMed
Metadata
Title
In vitro evaluation of chloroquine-loaded and heparin surface-functionalized solid lipid nanoparticles
Authors
Joseph O. Muga
Jeremiah W. Gathirwa
Matshawandile Tukulula
Walter G. Z. O. Jura
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2018
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-018-2302-9

Other articles of this Issue 1/2018

Malaria Journal 1/2018 Go to the issue