Skip to main content
Top
Published in: Malaria Journal 1/2018

Open Access 01-12-2018 | Research

Targeted application of an organophosphate-based paint applied on windows and doors against Anopheles coluzzii resistant to pyrethroids under real life conditions in Vallée du Kou, Burkina Faso (West Africa)

Authors: Serge B. Poda, Dieudonné D. Soma, Aristide Hien, Moussa Namountougou, Olivier Gnankiné, Abdoulaye Diabaté, Florence Fournet, Thierry Baldet, Santiago Mas-Coma, Beatriz Mosqueira, Roch K. Dabiré

Published in: Malaria Journal | Issue 1/2018

Login to get access

Abstract

Background

A novel strategy applying an organophosphate-based insecticide paint on doors and windows in combination with long-lasting insecticide-treated nets (LLINs) was tested for the control of pyrethroid-resistant malaria vectors in a village setting in Vallée du Kou, a rice-growing area west of Burkina Faso.

Methods

Insecticide Paint Inesfly 5A IGR™, comprised of two organophosphates and an insect growth regulator, was applied to doors and windows and tested in combination with pyrethroid-treated LLINs. The killing effect was monitored for 5 months by early morning collections of anophelines and other culicids. The residual efficacy was evaluated monthly by WHO bioassays using Anopheles gambiae ‘Kisumu’ and local populations of Anopheles coluzzii resistant to pyrethroids. The spatial mortality efficacy (SME) at distances of 1 m was also assessed against pyrethroid-susceptible and -resistant malaria vectors. The frequency of L1014F kdr and Ace-1 R G119S mutations was, respectively, reported throughout the study. The Insecticide Paint Inesfly 5A IGR had been tested in past studies yielding a long-term mortality rate of 80% over 12 months against An. coluzzii, the local pyrethroid-resistant malaria vector. The purpose of the present study is to test if treating smaller, targeted surfaces (e.g. doors and windows) was also efficient in killing malaria vectors.

Results

Treating windows and doors alone yielded a killing efficacy of 100% for 1 month against An. coluzzii resistant to pyrethroids, but efficacy reduced quickly afterwards. Likewise, WHO cone bioassays yielded mortalities of 80–100% for 2 months but declined to 90 and 40% 2 and 3 months after treatment, respectively. Mosquitoes exposed to insecticide paint-treated surfaces at distances of 1 m, yielded mortality rates of about 90–80% against local pyrethroids-resistant An. coluzzii during the first 2 months, but decreased to 30% afterwards. Anopheles coluzzii was reported to be exclusively the local malaria vector and resistant to pyrethroids with high L1014 kdr frequency.

Conclusion

The combination of insecticide paint on doors and windows with LLINs yielded high mortality rates in the short term against wild pyrethroid-resistant malaria vector populations. A high SME was observed against laboratory strains of pyrethroid-resistant malaria vectors placed for 30 min at 1 m from the treated/control walls. The application of the insecticide paint on doors and windows led to high but short-lasting mortality rates. The strategy may be an option in a context where low cost, rapid responses need to be implemented in areas where malaria vectors are resistant to pyrethroids.
Literature
3.
go back to reference Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.CrossRefPubMedPubMedCentral Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.CrossRefPubMedPubMedCentral
4.
go back to reference Chandre F, Darriet F, Manga L, Akogbeto M, Faye O, Mouchet J, et al. Status of pyrethroid resistance in Anopheles gambiae sensu lato. Bull World Health Organ. 1999;77:230–4.PubMedPubMedCentral Chandre F, Darriet F, Manga L, Akogbeto M, Faye O, Mouchet J, et al. Status of pyrethroid resistance in Anopheles gambiae sensu lato. Bull World Health Organ. 1999;77:230–4.PubMedPubMedCentral
5.
go back to reference Diabaté A, Brengues C, Baldet T, Dabiré KR, Hougard JM, Akogbeto M, et al. The spread of the Leu-Phe kdr mutation through Anopheles gambiae complex in Burkina Faso: genetic introgression and de novo phenomena. Trop Med Int Health. 2004;9:1267–73.CrossRefPubMed Diabaté A, Brengues C, Baldet T, Dabiré KR, Hougard JM, Akogbeto M, et al. The spread of the Leu-Phe kdr mutation through Anopheles gambiae complex in Burkina Faso: genetic introgression and de novo phenomena. Trop Med Int Health. 2004;9:1267–73.CrossRefPubMed
7.
go back to reference Briët OJ, Penny MA, Hardy D, Awolola TS, Van Bortel W, Corbel V, et al. Effects of pyrethroid resistance on the cost effectiveness of a mass distribution of long-lasting insecticidal nets: a modelling study. Malar J. 2013;12:77.CrossRefPubMedPubMedCentral Briët OJ, Penny MA, Hardy D, Awolola TS, Van Bortel W, Corbel V, et al. Effects of pyrethroid resistance on the cost effectiveness of a mass distribution of long-lasting insecticidal nets: a modelling study. Malar J. 2013;12:77.CrossRefPubMedPubMedCentral
8.
go back to reference Hemingway J. The role of vector control in stopping the transmission of malaria: threats and opportunities. Philos Trans R Soc B Biol Sci. 2014;369:20130431.CrossRef Hemingway J. The role of vector control in stopping the transmission of malaria: threats and opportunities. Philos Trans R Soc B Biol Sci. 2014;369:20130431.CrossRef
9.
go back to reference Toé KH, Jones CM, N’Fale S, Ismail HM, Dabiré RK, Ranson H. Increased pyrethroid resistance in malaria vectors and decreased bed net effectiveness, Burkina Faso. Emerg Infect Dis. 2014;20:1691–6.CrossRefPubMedPubMedCentral Toé KH, Jones CM, N’Fale S, Ismail HM, Dabiré RK, Ranson H. Increased pyrethroid resistance in malaria vectors and decreased bed net effectiveness, Burkina Faso. Emerg Infect Dis. 2014;20:1691–6.CrossRefPubMedPubMedCentral
10.
go back to reference Ranson H, Lissenden N. Insecticide resistance in African Anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 2016;32:187–96.CrossRefPubMed Ranson H, Lissenden N. Insecticide resistance in African Anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 2016;32:187–96.CrossRefPubMed
11.
go back to reference Najera JA, Zaim M. Malaria vector control. Insecticides for indoor residual spraying. Geneva: World Health Organization. 2001; WHO/CDS/WHOPES/2001.3. Najera JA, Zaim M. Malaria vector control. Insecticides for indoor residual spraying. Geneva: World Health Organization. 2001; WHO/CDS/WHOPES/2001.3.
12.
go back to reference Toé L, Skovmand O, Dabiré K, Diabaté A, Diallo Y, Guiguemdé T, et al. Decreased motivation in the use of insecticide-treated nets in a malaria endemic area in Burkina Faso. Malar J. 2009;8:175.CrossRefPubMedPubMedCentral Toé L, Skovmand O, Dabiré K, Diabaté A, Diallo Y, Guiguemdé T, et al. Decreased motivation in the use of insecticide-treated nets in a malaria endemic area in Burkina Faso. Malar J. 2009;8:175.CrossRefPubMedPubMedCentral
13.
go back to reference MCHIP/USAID/PNLP. Rapport sur la mise en œuvre du programme de lutte contre le paludisme au Burkina Faso. 2013;59. MCHIP/USAID/PNLP. Rapport sur la mise en œuvre du programme de lutte contre le paludisme au Burkina Faso. 2013;59.
14.
15.
go back to reference The malERA consultative group on vector control. A research agenda for malaria eradication: vector control. PLos Med. 2011;8:e1000401.CrossRefPubMedCentral The malERA consultative group on vector control. A research agenda for malaria eradication: vector control. PLos Med. 2011;8:e1000401.CrossRefPubMedCentral
16.
go back to reference Hemingway J, Shretta R, Wells TNC, Bell D, Djimdé AA, Achee N, et al. Tools and strategies for malaria control and elimination: what do we need to achieve a grand convergence in malaria? PLoS Biol. 2016;14:e1002380.CrossRefPubMedPubMedCentral Hemingway J, Shretta R, Wells TNC, Bell D, Djimdé AA, Achee N, et al. Tools and strategies for malaria control and elimination: what do we need to achieve a grand convergence in malaria? PLoS Biol. 2016;14:e1002380.CrossRefPubMedPubMedCentral
17.
go back to reference Spanish Ministry of Health and Consumer Affairs (SMHCA). Report on the study of the toxicity and irritability of Inesfly 5A. Madrid: Health Institute Carlos III; 1996. Spanish Ministry of Health and Consumer Affairs (SMHCA). Report on the study of the toxicity and irritability of Inesfly 5A. Madrid: Health Institute Carlos III; 1996.
19.
go back to reference Mosqueira B, Duchon S, Chandre F, Hougard J-M, Carnevale P, Mas-Coma S, et al. Efficacy of an insecticide paint against insecticide-susceptible and resistant mosquitoes-Part 1: laboratory evaluation. Malar J. 2010;9:340.CrossRefPubMedPubMedCentral Mosqueira B, Duchon S, Chandre F, Hougard J-M, Carnevale P, Mas-Coma S, et al. Efficacy of an insecticide paint against insecticide-susceptible and resistant mosquitoes-Part 1: laboratory evaluation. Malar J. 2010;9:340.CrossRefPubMedPubMedCentral
20.
go back to reference Mosqueira B, Chabi J, Chandre F, Akogbeto M, Hougard J-M, Carnevale P, et al. Efficacy of an insecticide paint against malaria vectors and nuisance in West Africa-part 2: field evaluation. Malar J. 2010;9:341.CrossRefPubMedPubMedCentral Mosqueira B, Chabi J, Chandre F, Akogbeto M, Hougard J-M, Carnevale P, et al. Efficacy of an insecticide paint against malaria vectors and nuisance in West Africa-part 2: field evaluation. Malar J. 2010;9:341.CrossRefPubMedPubMedCentral
21.
go back to reference Mosqueira B, Chabi J, Chandre F, Akogbeto M, Hougard J-M, Carnevale P, et al. Proposed use of spatial mortality assessments as part of the pesticide evaluation scheme for vector control. Malar J. 2013;12:366.CrossRefPubMedPubMedCentral Mosqueira B, Chabi J, Chandre F, Akogbeto M, Hougard J-M, Carnevale P, et al. Proposed use of spatial mortality assessments as part of the pesticide evaluation scheme for vector control. Malar J. 2013;12:366.CrossRefPubMedPubMedCentral
22.
go back to reference Mosqueira B, Soma DD, Namountougou M, Poda S, Diabaté A, Ali O, et al. Pilot study on the combination of an organophosphate-based insecticide paint and pyrethroid-treated long lasting nets against pyrethroid resistant malaria vectors in Burkina Faso. Acta Trop. 2015;148:162–9.CrossRefPubMed Mosqueira B, Soma DD, Namountougou M, Poda S, Diabaté A, Ali O, et al. Pilot study on the combination of an organophosphate-based insecticide paint and pyrethroid-treated long lasting nets against pyrethroid resistant malaria vectors in Burkina Faso. Acta Trop. 2015;148:162–9.CrossRefPubMed
23.
go back to reference Dabiré K, Diabaté A, Djogbenou L, Ouari A, N’Guessan R, Ouédraogo J-B, et al. Dynamics of multiple insecticide resistance in the malaria vector Anopheles gambiae in a rice growing area in South-Western Burkina Faso. Malar J. 2008;7:188.CrossRefPubMedPubMedCentral Dabiré K, Diabaté A, Djogbenou L, Ouari A, N’Guessan R, Ouédraogo J-B, et al. Dynamics of multiple insecticide resistance in the malaria vector Anopheles gambiae in a rice growing area in South-Western Burkina Faso. Malar J. 2008;7:188.CrossRefPubMedPubMedCentral
24.
go back to reference Dabiré KR, Diabaté A, Namountougou M, Toé KH, Ouari A, Kengne P, et al. Distribution of pyrethroid and DDT resistance and the L1014F kdr mutation in Anopheles gambiae s.l. from Burkina Faso (West Africa). Trans R Soc Trop Med Hyg. 2009;103:1113–20.CrossRefPubMed Dabiré KR, Diabaté A, Namountougou M, Toé KH, Ouari A, Kengne P, et al. Distribution of pyrethroid and DDT resistance and the L1014F kdr mutation in Anopheles gambiae s.l. from Burkina Faso (West Africa). Trans R Soc Trop Med Hyg. 2009;103:1113–20.CrossRefPubMed
25.
go back to reference Santolamazza F, Mancini E, Simard F, Qi Y, Tu Z, della Torre A. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar J. 2008;7:163.CrossRefPubMedPubMedCentral Santolamazza F, Mancini E, Simard F, Qi Y, Tu Z, della Torre A. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar J. 2008;7:163.CrossRefPubMedPubMedCentral
26.
go back to reference WHO. Evaluation and testing of insecticides. Report of the WHO informal consultation WHO/HQ, 7–11 October 1996, (document CTD/WHOPES/IC/96.1). Geneva: World Health Organization. 1996. WHO. Evaluation and testing of insecticides. Report of the WHO informal consultation WHO/HQ, 7–11 October 1996, (document CTD/WHOPES/IC/96.1). Geneva: World Health Organization. 1996.
27.
go back to reference WHO. Test procedures for insecticide resistance monitoring in malaria vectors, bio efficacy and persistence of insecticides on treated surfaces. Geneva: World Health Organization; Report of the WHO informal consultation. Who/Cds/Cpc/Mal/98.12. 1998. pp. 1–43. WHO. Test procedures for insecticide resistance monitoring in malaria vectors, bio efficacy and persistence of insecticides on treated surfaces. Geneva: World Health Organization; Report of the WHO informal consultation. Who/Cds/Cpc/Mal/98.12. 1998. pp. 1–43.
28.
go back to reference Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Bergé JB, Devonshire AL, et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998;7(2):179–84CrossRefPubMed Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Bergé JB, Devonshire AL, et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998;7(2):179–84CrossRefPubMed
29.
go back to reference Weill M, Malcolm C, Chandre F, Mogensen K, Berthomieu A, Marquine M, et al. The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol Biol. 2004;13:1–7.CrossRefPubMed Weill M, Malcolm C, Chandre F, Mogensen K, Berthomieu A, Marquine M, et al. The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol Biol. 2004;13:1–7.CrossRefPubMed
30.
go back to reference Abbott WS. A method of computing the effectiveness of an insecticide. J Econ Entomol. 1925;18:265–7.CrossRef Abbott WS. A method of computing the effectiveness of an insecticide. J Econ Entomol. 1925;18:265–7.CrossRef
31.
go back to reference Raymond M, Rousset F. GENEPOP: population genetics software for exact tests and ecumenicism. J Hered. 1995;86:248–9.CrossRef Raymond M, Rousset F. GENEPOP: population genetics software for exact tests and ecumenicism. J Hered. 1995;86:248–9.CrossRef
33.
go back to reference Tusting LS, Ippolito MM, Willey BA, Kleinschmidt I, Dorsey G, Gosling RD, et al. The evidence for improving housing to reduce malaria: a systematic review and meta-analysis. Malar J. 2015;14:209.CrossRefPubMedPubMedCentral Tusting LS, Ippolito MM, Willey BA, Kleinschmidt I, Dorsey G, Gosling RD, et al. The evidence for improving housing to reduce malaria: a systematic review and meta-analysis. Malar J. 2015;14:209.CrossRefPubMedPubMedCentral
34.
go back to reference Kirby MJ, Ameh D, Bottomley C, Green C, Jawara M, Milligan PJ, et al. Effect of two different house screening interventions on exposure to malaria vectors and on anaemia in children in The Gambia: a randomised controlled trial. Lancet. 2009;374:998–1009.CrossRefPubMedPubMedCentral Kirby MJ, Ameh D, Bottomley C, Green C, Jawara M, Milligan PJ, et al. Effect of two different house screening interventions on exposure to malaria vectors and on anaemia in children in The Gambia: a randomised controlled trial. Lancet. 2009;374:998–1009.CrossRefPubMedPubMedCentral
35.
go back to reference Majori G, Sabatinelli G, Coluzzii M. Efficacy of permethrin-impregnated curtains for malaria vector control Med Vet Entomol. 1987;1:185–92.PubMed Majori G, Sabatinelli G, Coluzzii M. Efficacy of permethrin-impregnated curtains for malaria vector control Med Vet Entomol. 1987;1:185–92.PubMed
36.
go back to reference Lwetoijera DW, Kiware SS, Mageni ZD, Dongus S, Harris C, Devine GJ, et al. A need for better housing to further reduce indoor malaria transmission in areas with high bed net coverage. Parasit Vectors. 2013;6:57.CrossRefPubMedPubMedCentral Lwetoijera DW, Kiware SS, Mageni ZD, Dongus S, Harris C, Devine GJ, et al. A need for better housing to further reduce indoor malaria transmission in areas with high bed net coverage. Parasit Vectors. 2013;6:57.CrossRefPubMedPubMedCentral
37.
go back to reference Killeen GF, Seyoum A, Gimnig JE, Stevenson JC, Drakeley CJ, Chitnis N. Made-to measure malaria vector control strategies: rational design based on insecticide properties and coverage of blood resources for mosquitoes. Malar J. 2014;13:146.CrossRefPubMedPubMedCentral Killeen GF, Seyoum A, Gimnig JE, Stevenson JC, Drakeley CJ, Chitnis N. Made-to measure malaria vector control strategies: rational design based on insecticide properties and coverage of blood resources for mosquitoes. Malar J. 2014;13:146.CrossRefPubMedPubMedCentral
Metadata
Title
Targeted application of an organophosphate-based paint applied on windows and doors against Anopheles coluzzii resistant to pyrethroids under real life conditions in Vallée du Kou, Burkina Faso (West Africa)
Authors
Serge B. Poda
Dieudonné D. Soma
Aristide Hien
Moussa Namountougou
Olivier Gnankiné
Abdoulaye Diabaté
Florence Fournet
Thierry Baldet
Santiago Mas-Coma
Beatriz Mosqueira
Roch K. Dabiré
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2018
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-018-2273-x

Other articles of this Issue 1/2018

Malaria Journal 1/2018 Go to the issue