Skip to main content
Top
Published in: Malaria Journal 1/2018

Open Access 01-12-2018 | Research

State-dependent domicile leaving rates in Anopheles gambiae

Authors: Simon P. W. Zappia, Alex M. Chubaty, Bernard D. Roitberg

Published in: Malaria Journal | Issue 1/2018

Login to get access

Abstract

Background

Transmission of Plasmodium greatly depends on the foraging behaviour of its mosquito vector (Anopheles spp.). The accessibility of blood hosts and availability of plant sugar (i.e., nectar) sources, together with mosquito energy state, have been shown to modulate blood feeding (and thus biting rates) of anopheline mosquitoes. In this study, the influence of mosquito starvation status and availability of nectar on the decision of female Anopheles gambiae mosquitoes to leave a bed net-protected blood host was examined.

Methods

Two small-scale mesocosm experiments were conducted using female mosquitoes starved for 0, 24 or 48 h, that were released inside a specially constructed hut with mesh-sealed exits and containing a bed net-protected human volunteer. Floral cues were positioned on one side of the hut or the other. Several biologically plausible exponential decay models were developed that characterized the emigration rates of mosquitoes from the huts. These varied from simple random loss to leaving rates dependent upon energy state and time. These model fits were evaluated by examining their fitted parameter estimates and comparing Akaike information criterion.

Results

Starved mosquitoes left domiciles at a higher rate than recently fed individuals however, there was no difference between 1- and 2-day-starved mosquitoes. There was also no effect of floral cue placement. The best fitting emigration model was one based on both mosquito energy state and time whereas the worst fitting model was one based on the assumption of constant leaving rates, independent of time and energy state.

Conclusions

The results confirm that mosquito-leaving behaviour is energy-state dependent, and provide some of the first evidence of state-dependent domicile emigration in An. gambiae, which may play a role in malarial transmission dynamics. Employment of simple, first-principle, mechanistic models can be very useful to our understanding of why and how mosquitoes leave domiciles.
Appendix
Available only for authorised users
Literature
1.
go back to reference Stone CM, Jackson BT, Foster WA. Effects of plant-community composition on the vectorial capacity and fitness of the malaria mosquito Anopheles gambiae. Am J Trop Med Hyg. 2012;87:727–36.CrossRefPubMedPubMedCentral Stone CM, Jackson BT, Foster WA. Effects of plant-community composition on the vectorial capacity and fitness of the malaria mosquito Anopheles gambiae. Am J Trop Med Hyg. 2012;87:727–36.CrossRefPubMedPubMedCentral
2.
go back to reference Zhu L, Qualls WA, Marshall JM, Arheart KL, Deangelis DL, McManus JW, et al. A spatial individual-based model predicting a great impact of copious sugar sources and resting sites on survival of Anopheles gambiae and malaria parasite transmission. Malar J. 2015;14:59.CrossRefPubMedPubMedCentral Zhu L, Qualls WA, Marshall JM, Arheart KL, Deangelis DL, McManus JW, et al. A spatial individual-based model predicting a great impact of copious sugar sources and resting sites on survival of Anopheles gambiae and malaria parasite transmission. Malar J. 2015;14:59.CrossRefPubMedPubMedCentral
3.
go back to reference Briegel H. Physiological bases of mosquito ecology. J Vector Ecol. 2003;28:1–11.PubMed Briegel H. Physiological bases of mosquito ecology. J Vector Ecol. 2003;28:1–11.PubMed
4.
go back to reference Takken W, Knols BGJ. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol. 1999;44:131–57.CrossRefPubMed Takken W, Knols BGJ. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol. 1999;44:131–57.CrossRefPubMed
5.
go back to reference Gu W, Müller G, Schlein Y, Novak RJ, Beier JC. Natural plant sugar sources of Anopheles mosquitoes strongly impact malaria transmission potential. PLoS ONE. 2011;6:e15996.CrossRefPubMedPubMedCentral Gu W, Müller G, Schlein Y, Novak RJ, Beier JC. Natural plant sugar sources of Anopheles mosquitoes strongly impact malaria transmission potential. PLoS ONE. 2011;6:e15996.CrossRefPubMedPubMedCentral
6.
7.
go back to reference Nyasembe VO, Teal PEA, Mukabana WR, Tumlinson JH, Torto B. Behavioural response of the malaria vector Anopheles gambiae to host plant volatiles and synthetic blends. Parasit Vectors. 2012;5:234.CrossRefPubMedPubMedCentral Nyasembe VO, Teal PEA, Mukabana WR, Tumlinson JH, Torto B. Behavioural response of the malaria vector Anopheles gambiae to host plant volatiles and synthetic blends. Parasit Vectors. 2012;5:234.CrossRefPubMedPubMedCentral
8.
go back to reference Bernáth B, Anstett V, Guerin PM. Anopheles gambiae females readily learn to associate complex visual cues with the quality of sugar sources. J Insect Physiol. 2016;95:8–16.CrossRefPubMed Bernáth B, Anstett V, Guerin PM. Anopheles gambiae females readily learn to associate complex visual cues with the quality of sugar sources. J Insect Physiol. 2016;95:8–16.CrossRefPubMed
9.
go back to reference Manda H, Gouagna LC, Nyandat E, Kabiru EW, Jackson RR, Foster WA, et al. Discriminative feeding behaviour of Anopheles gambiae s.s. on endemic plants in western Kenya. Med Vet Entomol. 2007;21:103–11.CrossRefPubMedPubMedCentral Manda H, Gouagna LC, Nyandat E, Kabiru EW, Jackson RR, Foster WA, et al. Discriminative feeding behaviour of Anopheles gambiae s.s. on endemic plants in western Kenya. Med Vet Entomol. 2007;21:103–11.CrossRefPubMedPubMedCentral
10.
go back to reference Zhu L, Müller GC, Marshall JM, Arheart KL, Qualls WA, Hlaing WM, et al. Is outdoor vector control needed for malaria elimination? An individual-based modelling study. Malar J. 2017;16:266.CrossRefPubMedPubMedCentral Zhu L, Müller GC, Marshall JM, Arheart KL, Qualls WA, Hlaing WM, et al. Is outdoor vector control needed for malaria elimination? An individual-based modelling study. Malar J. 2017;16:266.CrossRefPubMedPubMedCentral
11.
go back to reference Ma BO, Roitberg BD. The role of resource availability and state-dependence in the foraging strategy of blood-feeding mosquitoes. Evol Ecol Res. 2008;10:1111–30. Ma BO, Roitberg BD. The role of resource availability and state-dependence in the foraging strategy of blood-feeding mosquitoes. Evol Ecol Res. 2008;10:1111–30.
12.
go back to reference Zappia SPW, Roitberg BD. Energy-state dependent responses of Anopheles gambiae (Diptera: Culicidae) to simulated bednet-protected hosts. J. Vector Ecol. 2012;37:172–8.CrossRefPubMed Zappia SPW, Roitberg BD. Energy-state dependent responses of Anopheles gambiae (Diptera: Culicidae) to simulated bednet-protected hosts. J. Vector Ecol. 2012;37:172–8.CrossRefPubMed
13.
go back to reference Reid JN, Hoffmeister TS, Hoi AG, Roitberg BD. Bite or flight: the response of mosquitoes to disturbance while feeding on a defensive host. Entomol Exp Appl. 2014;153:240–5.CrossRef Reid JN, Hoffmeister TS, Hoi AG, Roitberg BD. Bite or flight: the response of mosquitoes to disturbance while feeding on a defensive host. Entomol Exp Appl. 2014;153:240–5.CrossRef
14.
go back to reference Walker ED, Edman JD. The influence of host defensive behavior on mosquito (Diptera: Culicidae) biting persistence. J Med Entomol. 1985;22:370–2.CrossRefPubMed Walker ED, Edman JD. The influence of host defensive behavior on mosquito (Diptera: Culicidae) biting persistence. J Med Entomol. 1985;22:370–2.CrossRefPubMed
15.
go back to reference Foster WA, Takken W. Nectar-related vs. human-related volatiles: behavioural response and choice by female and male Anopheles gambiae (Diptera: Culicidae) between emergence and first feeding. Bull Entomol Res. 2004;94:145–57.CrossRefPubMed Foster WA, Takken W. Nectar-related vs. human-related volatiles: behavioural response and choice by female and male Anopheles gambiae (Diptera: Culicidae) between emergence and first feeding. Bull Entomol Res. 2004;94:145–57.CrossRefPubMed
16.
go back to reference Roitberg BD, Mangel M. Mosquito biting and movement rates as an emergent community property and the implications for malarial interventions. Israel J Ecol Evol. 2010;56:297–312.CrossRef Roitberg BD, Mangel M. Mosquito biting and movement rates as an emergent community property and the implications for malarial interventions. Israel J Ecol Evol. 2010;56:297–312.CrossRef
17.
go back to reference Clark CW, Mangel M. Dynamic state variable models in ecology: methods and applications. New York: Oxford University Press; 2000. Clark CW, Mangel M. Dynamic state variable models in ecology: methods and applications. New York: Oxford University Press; 2000.
18.
go back to reference Fernandes L, Briegel H. Reproductive physiology of Anopheles gambiae and Anopheles atroparvus. J Vector Ecol. 2005;30:11–26.PubMed Fernandes L, Briegel H. Reproductive physiology of Anopheles gambiae and Anopheles atroparvus. J Vector Ecol. 2005;30:11–26.PubMed
19.
go back to reference Stone CM, Jackson BT, Foster WA. Effects of bed net use, female size, and plant abundance on the first meal choice (blood vs sugar) of the malaria mosquito Anopheles gambiae. Malar J. 2012;11:3.CrossRefPubMedPubMedCentral Stone CM, Jackson BT, Foster WA. Effects of bed net use, female size, and plant abundance on the first meal choice (blood vs sugar) of the malaria mosquito Anopheles gambiae. Malar J. 2012;11:3.CrossRefPubMedPubMedCentral
21.
go back to reference Killeen GF, Tatarsky A, Diabate A, Chaccour CJ, Marshall JM, Okumu FO, et al. Developing an expanded vector control toolbox for malaria elimination. BMJ Glob Health. 2017;2:e000211.CrossRefPubMedPubMedCentral Killeen GF, Tatarsky A, Diabate A, Chaccour CJ, Marshall JM, Okumu FO, et al. Developing an expanded vector control toolbox for malaria elimination. BMJ Glob Health. 2017;2:e000211.CrossRefPubMedPubMedCentral
22.
go back to reference Roitberg BD, Keiser S, Hoffmeister T. State-dependent attacks in a mosquito. Physiol Entomol. 2010;35:46–51.CrossRef Roitberg BD, Keiser S, Hoffmeister T. State-dependent attacks in a mosquito. Physiol Entomol. 2010;35:46–51.CrossRef
23.
go back to reference Otienoburu PE, Nikbakhtzadeh MR, Foster WA. Orientation of Anopheles gambiae (Diptera: Culicidae) to plant-host volatiles in a novel diffusion-cage olfactometer. J Med Entomol. 2016;53:237–40.CrossRefPubMed Otienoburu PE, Nikbakhtzadeh MR, Foster WA. Orientation of Anopheles gambiae (Diptera: Culicidae) to plant-host volatiles in a novel diffusion-cage olfactometer. J Med Entomol. 2016;53:237–40.CrossRefPubMed
25.
go back to reference Tenywa FC, Kambagha A, Saddler A, Maia MF. The development of an ivermectin-based attractive toxic sugar bait (ATSB) to target Anopheles arabiensis. Malar J. 2017;16:338.CrossRefPubMedPubMedCentral Tenywa FC, Kambagha A, Saddler A, Maia MF. The development of an ivermectin-based attractive toxic sugar bait (ATSB) to target Anopheles arabiensis. Malar J. 2017;16:338.CrossRefPubMedPubMedCentral
26.
go back to reference Müller GC, Junnila A, Traore MM, Revay EE, Traore SF, Doumbia S, et al. A novel window entry/exit trap for the study of endophilic behavior of mosquitoes. Acta Trop. 2017;167:137–41.CrossRefPubMed Müller GC, Junnila A, Traore MM, Revay EE, Traore SF, Doumbia S, et al. A novel window entry/exit trap for the study of endophilic behavior of mosquitoes. Acta Trop. 2017;167:137–41.CrossRefPubMed
28.
go back to reference Koella JC, Lyimo EO. Variability in the relationship between weight and wing length of Anopheles gambiae (Diptera: Culicidae). J Med Entomol. 1996;33:261–4.CrossRefPubMed Koella JC, Lyimo EO. Variability in the relationship between weight and wing length of Anopheles gambiae (Diptera: Culicidae). J Med Entomol. 1996;33:261–4.CrossRefPubMed
30.
go back to reference Manda H, Gouagna LC, Foster WA, Jackson RR, Beier JC, Githure JI, et al. Effect of discriminative plant-sugar feeding on the survival and fecundity of Anopheles gambiae. Malar J. 2007;6:113.CrossRefPubMedPubMedCentral Manda H, Gouagna LC, Foster WA, Jackson RR, Beier JC, Githure JI, et al. Effect of discriminative plant-sugar feeding on the survival and fecundity of Anopheles gambiae. Malar J. 2007;6:113.CrossRefPubMedPubMedCentral
31.
go back to reference Perkins TA, Scott TW, Le Menach A, Smith DL. Heterogeneity, mixing, and the spatial scales of mosquito-borne pathogen transmission. PLoS Comput Biol. 2013;9:e1003327.CrossRefPubMedPubMedCentral Perkins TA, Scott TW, Le Menach A, Smith DL. Heterogeneity, mixing, and the spatial scales of mosquito-borne pathogen transmission. PLoS Comput Biol. 2013;9:e1003327.CrossRefPubMedPubMedCentral
32.
go back to reference Smith DL, Perkins TA, Reiner RC, Barker CM, Niu T, Chaves LF, et al. Recasting the theory of mosquito-borne pathogen transmission dynamics and control. Trans R Soc Trop Med Hyg. 2014;108:185–97.CrossRefPubMedPubMedCentral Smith DL, Perkins TA, Reiner RC, Barker CM, Niu T, Chaves LF, et al. Recasting the theory of mosquito-borne pathogen transmission dynamics and control. Trans R Soc Trop Med Hyg. 2014;108:185–97.CrossRefPubMedPubMedCentral
33.
go back to reference Fornace KM, Abidin TR, Alexander N, Brock P, Grigg MJ, Murphy A, et al. Association between landscape factors and spatial patterns of Plasmodium knowlesi infections in Sabah, Malaysia. Emerg Infect Dis. 2016;22:201–9.CrossRefPubMedPubMedCentral Fornace KM, Abidin TR, Alexander N, Brock P, Grigg MJ, Murphy A, et al. Association between landscape factors and spatial patterns of Plasmodium knowlesi infections in Sabah, Malaysia. Emerg Infect Dis. 2016;22:201–9.CrossRefPubMedPubMedCentral
34.
go back to reference Manore CA, Hickmann KS, Hyman JM, Foppa IM, Davis JK, Wesson DM, et al. A network-patch methodology for adapting agent-based models for directly transmitted disease to mosquito-borne disease. J Biol Dyn. 2015;9:52–72.CrossRefPubMedPubMedCentral Manore CA, Hickmann KS, Hyman JM, Foppa IM, Davis JK, Wesson DM, et al. A network-patch methodology for adapting agent-based models for directly transmitted disease to mosquito-borne disease. J Biol Dyn. 2015;9:52–72.CrossRefPubMedPubMedCentral
37.
go back to reference Koudou BG, Koffi AA, Malone D, Hemingway J. Efficacy of PermaNet® 2.0 and PermaNet® 3.0 against insecticide-resistant Anopheles gambiae in experimental huts in Côte d’Ivoire. Malar J. 2011;10:172.CrossRefPubMedPubMedCentral Koudou BG, Koffi AA, Malone D, Hemingway J. Efficacy of PermaNet® 2.0 and PermaNet® 3.0 against insecticide-resistant Anopheles gambiae in experimental huts in Côte d’Ivoire. Malar J. 2011;10:172.CrossRefPubMedPubMedCentral
Metadata
Title
State-dependent domicile leaving rates in Anopheles gambiae
Authors
Simon P. W. Zappia
Alex M. Chubaty
Bernard D. Roitberg
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2018
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-017-2166-4

Other articles of this Issue 1/2018

Malaria Journal 1/2018 Go to the issue