Skip to main content
Top
Published in: Malaria Journal 1/2018

Open Access 01-12-2018 | Research

Global sequence diversity of the lactate dehydrogenase gene in Plasmodium falciparum

Authors: Phumin Simpalipan, Sittiporn Pattaradilokrat, Pongchai Harnyuttanakorn

Published in: Malaria Journal | Issue 1/2018

Login to get access

Abstract

Background

Antigen-detecting rapid diagnostic tests (RDTs) have been recommended by the World Health Organization for use in remote areas to improve malaria case management. Lactate dehydrogenase (LDH) of Plasmodium falciparum is one of the main parasite antigens employed by various commercial RDTs. It has been hypothesized that the poor detection of LDH-based RDTs is attributed in part to the sequence diversity of the gene. To test this, the present study aimed to investigate the genetic diversity of the P. falciparum ldh gene in Thailand and to construct the map of LDH sequence diversity in P. falciparum populations worldwide.

Methods

The ldh gene was sequenced for 50 P. falciparum isolates in Thailand and compared with hundreds of sequences from P. falciparum populations worldwide. Several indices of molecular variation were calculated, including the proportion of polymorphic sites, the average nucleotide diversity index (π), and the haplotype diversity index (H). Tests of positive selection and neutrality tests were performed to determine signatures of natural selection on the gene. Mean genetic distance within and between species of Plasmodium ldh was analysed to infer evolutionary relationships.

Results

Nucleotide sequences of P. falciparum ldh could be classified into 9 alleles, encoding 5 isoforms of LDH. L1a was the most common allelic type and was distributed in P. falciparum populations worldwide. Plasmodium falciparum ldh sequences were highly conserved, with haplotype and nucleotide diversity values of 0.203 and 0.0004, respectively. The extremely low genetic diversity was maintained by purifying selection, likely due to functional constraints. Phylogenetic analysis inferred the close genetic relationship of P. falciparum to malaria parasites of great apes, rather than to other human malaria parasites.

Conclusions

This study revealed the global genetic variation of the ldh gene in P. falciparum, providing knowledge for improving detection of LDH-based RDTs and supporting the candidacy of LDH as a therapeutic drug target.
Appendix
Available only for authorised users
Literature
1.
go back to reference Iqbal J, Munneer A, Khalid N, Ahmed MA. Performance of the OptiMAL test for malaria diagnosis among suspected malaria patients at the rural health centers. Am J Trop Med Hyg. 2003;68:624–8.CrossRefPubMed Iqbal J, Munneer A, Khalid N, Ahmed MA. Performance of the OptiMAL test for malaria diagnosis among suspected malaria patients at the rural health centers. Am J Trop Med Hyg. 2003;68:624–8.CrossRefPubMed
2.
go back to reference Palmer CJ, Lindo LF, Klaskala WI, Quesada JA, Kaminsky R, Baum MK, et al. Evaluation of the OptiMAL test for rapid diagnosis of Plasmodium vivax and Plasmodium falciparum malaria. J Clin Microbiol. 1998;36:203–6.PubMedPubMedCentral Palmer CJ, Lindo LF, Klaskala WI, Quesada JA, Kaminsky R, Baum MK, et al. Evaluation of the OptiMAL test for rapid diagnosis of Plasmodium vivax and Plasmodium falciparum malaria. J Clin Microbiol. 1998;36:203–6.PubMedPubMedCentral
3.
go back to reference Piper R, Lebras J, Wentworth L, Hunt-Cooke A, Houze S, Chiodini P, et al. Immuncapture diagnosis assays for malaria using Plasmodium lactate dehydrogenase (pLDH). Am J Trop Med Hyg. 1999;60:109–18.CrossRefPubMed Piper R, Lebras J, Wentworth L, Hunt-Cooke A, Houze S, Chiodini P, et al. Immuncapture diagnosis assays for malaria using Plasmodium lactate dehydrogenase (pLDH). Am J Trop Med Hyg. 1999;60:109–18.CrossRefPubMed
4.
go back to reference Iqbal J, Hira PR, Sher A, Al-Enezi A. Diagnosis of imported malaria by Plasmodium lactate dehydrogenase (pLDH) and histidine-rich protein 2 (PfHRP-2)-based immunocapture assays. Am J Trop Med Hyg. 2001;64:20–3.CrossRefPubMed Iqbal J, Hira PR, Sher A, Al-Enezi A. Diagnosis of imported malaria by Plasmodium lactate dehydrogenase (pLDH) and histidine-rich protein 2 (PfHRP-2)-based immunocapture assays. Am J Trop Med Hyg. 2001;64:20–3.CrossRefPubMed
5.
go back to reference Huong NM, Davis TME, Hewitt S, Huong NV, Uyen TT, Nhan DH, et al. Comparison of three antigen detection methods for diagnosis and therapeutic monitoring of malaria: a field study from southern Vietnam. Trop Med Int Health. 2002;7:304–8.CrossRefPubMed Huong NM, Davis TME, Hewitt S, Huong NV, Uyen TT, Nhan DH, et al. Comparison of three antigen detection methods for diagnosis and therapeutic monitoring of malaria: a field study from southern Vietnam. Trop Med Int Health. 2002;7:304–8.CrossRefPubMed
6.
go back to reference Mason DP, Kawamoto F, Lin K, Laoboonchai A, Wongsrichanalai C. A comparison of two rapid field immunochromatographic tests to expert microscopy in the diagnosis of malaria. Acta Trop. 2002;82:51–9.CrossRefPubMed Mason DP, Kawamoto F, Lin K, Laoboonchai A, Wongsrichanalai C. A comparison of two rapid field immunochromatographic tests to expert microscopy in the diagnosis of malaria. Acta Trop. 2002;82:51–9.CrossRefPubMed
7.
go back to reference Coleman RE, Maneechai N, Ponlawat A, Kumpitak C, Rachapaew N, Miller RS, et al. Short report: failure of the OptiMAL® rapid diagnosis test as a tool for the detection of asymptomatic malaria in an area of Thailand endemic for Plasmodium falciparum and P. vivax. Am J Trop Med Hyg. 2002;67:563–5.CrossRefPubMed Coleman RE, Maneechai N, Ponlawat A, Kumpitak C, Rachapaew N, Miller RS, et al. Short report: failure of the OptiMAL® rapid diagnosis test as a tool for the detection of asymptomatic malaria in an area of Thailand endemic for Plasmodium falciparum and P. vivax. Am J Trop Med Hyg. 2002;67:563–5.CrossRefPubMed
8.
go back to reference Baker J, McCarthy J, Gatton M, Kyle DE, Belizario V, Luchavez J, et al. Genetic diversity of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and its effect on the performance of PfHRP2-based rapid diagnostic tests. J Infect Dis. 2005;192:870–7.CrossRefPubMed Baker J, McCarthy J, Gatton M, Kyle DE, Belizario V, Luchavez J, et al. Genetic diversity of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and its effect on the performance of PfHRP2-based rapid diagnostic tests. J Infect Dis. 2005;192:870–7.CrossRefPubMed
9.
go back to reference Baker J, Ho MF, Pelecanos A, Gatton M, Chen N, Abdullah S, et al. Global sequence variation in the histidine-rich proteins 2 and 3 of Plasmodium falciparum: implications for the performance of malaria rapid diagnosis tests. Malar J. 2010;9:129.CrossRefPubMedPubMedCentral Baker J, Ho MF, Pelecanos A, Gatton M, Chen N, Abdullah S, et al. Global sequence variation in the histidine-rich proteins 2 and 3 of Plasmodium falciparum: implications for the performance of malaria rapid diagnosis tests. Malar J. 2010;9:129.CrossRefPubMedPubMedCentral
10.
go back to reference Talman AM, Duval L, Legrand E, Hubert V, Yen S, Bell D, et al. Evaluation of the intra- and inter-specific genetic variability of Plasmodium lactate dehydrogenase. Malar J. 2007;6:140–5.CrossRefPubMedPubMedCentral Talman AM, Duval L, Legrand E, Hubert V, Yen S, Bell D, et al. Evaluation of the intra- and inter-specific genetic variability of Plasmodium lactate dehydrogenase. Malar J. 2007;6:140–5.CrossRefPubMedPubMedCentral
11.
go back to reference Keluskar P, Singh V, Gupta P, Ingle S. Plasmodium falciparum and Plasmodium vivax specific lactate dehydrogenase: genetic polymorphism study from Indian isolates. Infect Genet Evol. 2014;26:313–22.CrossRefPubMed Keluskar P, Singh V, Gupta P, Ingle S. Plasmodium falciparum and Plasmodium vivax specific lactate dehydrogenase: genetic polymorphism study from Indian isolates. Infect Genet Evol. 2014;26:313–22.CrossRefPubMed
12.
go back to reference Getacher Feleke D, Nateghpour M, Motevalli Haghi A, Hajjaran H, Farivar L, Mohebali M, et al. DNA sequence polymorphism of the lactate dehydrogenase gene from Iranian Plasmodium vivax and Plasmodium falciparum isolates. Iran J Parasitol. 2015;10:505–16.PubMedPubMedCentral Getacher Feleke D, Nateghpour M, Motevalli Haghi A, Hajjaran H, Farivar L, Mohebali M, et al. DNA sequence polymorphism of the lactate dehydrogenase gene from Iranian Plasmodium vivax and Plasmodium falciparum isolates. Iran J Parasitol. 2015;10:505–16.PubMedPubMedCentral
13.
go back to reference Mariaette N, Barnadas C, Bouchier C, Tichit M, Menard D. Country-wide assessment of the genetic polymorphism in Plasmodium falciparum and Plasmodium vivax detected with rapid diagnostic tests for malaria. Malar J. 2008;7:219–27.CrossRef Mariaette N, Barnadas C, Bouchier C, Tichit M, Menard D. Country-wide assessment of the genetic polymorphism in Plasmodium falciparum and Plasmodium vivax detected with rapid diagnostic tests for malaria. Malar J. 2008;7:219–27.CrossRef
14.
go back to reference Simpalipan P, Pattaradilokrat S, Siripoon N, Seugorn A, Kaewthamasorn M, Butcher RDJ, et al. Diversity and population structure of Plasmodium falciparum in Thailand based on the spatial and temporal haplotype patterns of the C-terminal 19-kDa domain of merozoite surface protein-1. Malar J. 2014;13:54.CrossRefPubMedPubMedCentral Simpalipan P, Pattaradilokrat S, Siripoon N, Seugorn A, Kaewthamasorn M, Butcher RDJ, et al. Diversity and population structure of Plasmodium falciparum in Thailand based on the spatial and temporal haplotype patterns of the C-terminal 19-kDa domain of merozoite surface protein-1. Malar J. 2014;13:54.CrossRefPubMedPubMedCentral
15.
16.
go back to reference Pumpaiboon T, Arnathau C, Durand P, Kanchanakhan N, Siripoon N, Seugorn A, et al. Genetic diversity and population structure of Plasmodium falciparum in Thailand, a low transmission country. Malar J. 2009;8:155.CrossRef Pumpaiboon T, Arnathau C, Durand P, Kanchanakhan N, Siripoon N, Seugorn A, et al. Genetic diversity and population structure of Plasmodium falciparum in Thailand, a low transmission country. Malar J. 2009;8:155.CrossRef
17.
go back to reference Pattaradilokrat S, Sawaswong V, Simpalipan P, Kaewthamasorn M, Siripoon N, Harnyuttanakorn P. Genetic diversity of the merozoite surface protein-3 gene in Plasmodium falciparum populations in Thailand. Malar J. 2016;15:517.CrossRefPubMedPubMedCentral Pattaradilokrat S, Sawaswong V, Simpalipan P, Kaewthamasorn M, Siripoon N, Harnyuttanakorn P. Genetic diversity of the merozoite surface protein-3 gene in Plasmodium falciparum populations in Thailand. Malar J. 2016;15:517.CrossRefPubMedPubMedCentral
18.
go back to reference Shin HI, Kim JY, Lee WJ, Sohn Y, Lee SW, Kang YJ, et al. Polymorphism of the parasite lactate dehydrogenase gene from Plasmodium vivax Korean isolates. Malar J. 2013;12:166.CrossRefPubMedPubMedCentral Shin HI, Kim JY, Lee WJ, Sohn Y, Lee SW, Kang YJ, et al. Polymorphism of the parasite lactate dehydrogenase gene from Plasmodium vivax Korean isolates. Malar J. 2013;12:166.CrossRefPubMedPubMedCentral
19.
go back to reference Brown WM, Yowell CA, Hoard A, Vander Jagt TA, Hunsaker LA, Deck LM, et al. Comparative structure analysis and kinetic properties of lactate dehydrogenase from the four species of human malarial parasites. Biochemistry. 2004;43:6219–29.CrossRefPubMed Brown WM, Yowell CA, Hoard A, Vander Jagt TA, Hunsaker LA, Deck LM, et al. Comparative structure analysis and kinetic properties of lactate dehydrogenase from the four species of human malarial parasites. Biochemistry. 2004;43:6219–29.CrossRefPubMed
20.
go back to reference Liu W, Li Y, Learn GH, Rudicell RS, Robertson JD, Keele BF, et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature. 2010;467:420–5.CrossRefPubMedPubMedCentral Liu W, Li Y, Learn GH, Rudicell RS, Robertson JD, Keele BF, et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature. 2010;467:420–5.CrossRefPubMedPubMedCentral
21.
go back to reference Liu W, Sundararaman SA, Loy DE, Learn GH, Li Y, Plenderleith LJ, et al. Multigenomic delineation of Plasmodium species of the Laverania subgenus infecting wild-living chimpanzees and gorillas. Genome Biol Evol. 2016;8:1929–39.CrossRefPubMedPubMedCentral Liu W, Sundararaman SA, Loy DE, Learn GH, Li Y, Plenderleith LJ, et al. Multigenomic delineation of Plasmodium species of the Laverania subgenus infecting wild-living chimpanzees and gorillas. Genome Biol Evol. 2016;8:1929–39.CrossRefPubMedPubMedCentral
23.
go back to reference Pain A, Bohme U, Berry AE, Mungall K, Finn RD, Jackson AP, et al. The genome of the simian and human malaria parasite Plasmodium knowlesi. Nature. 2008;455:799–803.CrossRefPubMedPubMedCentral Pain A, Bohme U, Berry AE, Mungall K, Finn RD, Jackson AP, et al. The genome of the simian and human malaria parasite Plasmodium knowlesi. Nature. 2008;455:799–803.CrossRefPubMedPubMedCentral
24.
go back to reference Tachibana S, Sullivan SA, Kawai S, Nakamura S, Kim HR, Goto N, et al. Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade. Nat Genet. 2012;44:1051–5.CrossRefPubMedPubMedCentral Tachibana S, Sullivan SA, Kawai S, Nakamura S, Kim HR, Goto N, et al. Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade. Nat Genet. 2012;44:1051–5.CrossRefPubMedPubMedCentral
25.
go back to reference Sundararaman SA, Plenderleith LJ, Liu W, Loy DE, Learn GH, Li Y, et al. Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria. Nat Commun. 2016;7:11078.CrossRefPubMedPubMedCentral Sundararaman SA, Plenderleith LJ, Liu W, Loy DE, Learn GH, Li Y, et al. Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria. Nat Commun. 2016;7:11078.CrossRefPubMedPubMedCentral
26.
go back to reference Otto TD, Rayner JC, Böhme U, Pain A, Spottiswoode N, Sanders M, et al. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts. Nat Commun. 2014;5:4754.CrossRefPubMedPubMedCentral Otto TD, Rayner JC, Böhme U, Pain A, Spottiswoode N, Sanders M, et al. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts. Nat Commun. 2014;5:4754.CrossRefPubMedPubMedCentral
28.
go back to reference Kumar S, Stecher G, Tamura K. MEGA7: molecular evolution genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.CrossRefPubMed Kumar S, Stecher G, Tamura K. MEGA7: molecular evolution genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.CrossRefPubMed
29.
go back to reference Librado P, Roza J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–2.CrossRefPubMed Librado P, Roza J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–2.CrossRefPubMed
30.
go back to reference Nei M. Genetic distance and molecular phylogeny. In: Ryman N, Utter F, editors. Population genetics and Fishery management. Seattle: University of Washington Press; 1987. p. 193–223. Nei M. Genetic distance and molecular phylogeny. In: Ryman N, Utter F, editors. Population genetics and Fishery management. Seattle: University of Washington Press; 1987. p. 193–223.
32.
go back to reference Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986;3:418–26.PubMed Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986;3:418–26.PubMed
33.
go back to reference Suzuki Y, Gojobori T. A method for detecting positive selection at single amino acid sites. Mol Biol Evol. 1999;16:1315–28.CrossRefPubMed Suzuki Y, Gojobori T. A method for detecting positive selection at single amino acid sites. Mol Biol Evol. 1999;16:1315–28.CrossRefPubMed
34.
go back to reference Pond SL, Frost SD, Muse SV. HyPhy: hypothesis testing using phylogenies. Bioinformatics. 2005;21:676–9.CrossRefPubMed Pond SL, Frost SD, Muse SV. HyPhy: hypothesis testing using phylogenies. Bioinformatics. 2005;21:676–9.CrossRefPubMed
35.
go back to reference Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–95.PubMedPubMedCentral Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–95.PubMedPubMedCentral
36.
go back to reference Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics. 1993;133:697–709. Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics. 1993;133:697–709.
37.
go back to reference Excoffier L, Lischer HE. Arlequin suite ver 35: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564–7.CrossRefPubMed Excoffier L, Lischer HE. Arlequin suite ver 35: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564–7.CrossRefPubMed
38.
go back to reference Posada D. Selection of models of DNA evolution with jModelTest. Methods Mol Biol. 2009;537:93–112.CrossRefPubMed Posada D. Selection of models of DNA evolution with jModelTest. Methods Mol Biol. 2009;537:93–112.CrossRefPubMed
39.
go back to reference Ali M, Hidayatullah TA, Alimuddin Z, Sabrina Y. Sequence diversity of pfmdr1 and sequence conserve of pfldh in Plasmodium falciparum from Indonesia: its implications on designing a novel antimalarial drug with less prone to resistance. Iran J Parasitol. 2013;8:522–9.PubMedPubMedCentral Ali M, Hidayatullah TA, Alimuddin Z, Sabrina Y. Sequence diversity of pfmdr1 and sequence conserve of pfldh in Plasmodium falciparum from Indonesia: its implications on designing a novel antimalarial drug with less prone to resistance. Iran J Parasitol. 2013;8:522–9.PubMedPubMedCentral
40.
go back to reference Bryant C, Voller A, Smith MJH. The incorporation of radioactivity from (C14) glucose into the soluble metabolic intermediates of malaria parasite. Am J Trop Med Hyg. 1964;13:515–9.CrossRefPubMed Bryant C, Voller A, Smith MJH. The incorporation of radioactivity from (C14) glucose into the soluble metabolic intermediates of malaria parasite. Am J Trop Med Hyg. 1964;13:515–9.CrossRefPubMed
41.
go back to reference Scheibel LW, Pflaum WK. Carbohydrate metabolism in Plasmodium knowlesi. Comp Biochem Physiol. 1970;37:543–53.CrossRef Scheibel LW, Pflaum WK. Carbohydrate metabolism in Plasmodium knowlesi. Comp Biochem Physiol. 1970;37:543–53.CrossRef
42.
go back to reference Shakespeare P, Trigg P, Kyd S, Tappenden L. Glucose metabolism in the simian malaria parasite Plasmodium knowlesi: activities of the glycolytic and pentose phosphate pathways during the intraerythrocytic cycle. Ann Trop Med Parasitol. 1979;73:407–15.CrossRefPubMed Shakespeare P, Trigg P, Kyd S, Tappenden L. Glucose metabolism in the simian malaria parasite Plasmodium knowlesi: activities of the glycolytic and pentose phosphate pathways during the intraerythrocytic cycle. Ann Trop Med Parasitol. 1979;73:407–15.CrossRefPubMed
43.
go back to reference Vander Jagt DL, Hunsaker LA, Campos NM, Baack BR. d-Lactate production in erythrocytes infected with Plasmodium falciparum. Mol Biochem Parasitol. 1990;42:277–84.CrossRefPubMed Vander Jagt DL, Hunsaker LA, Campos NM, Baack BR. d-Lactate production in erythrocytes infected with Plasmodium falciparum. Mol Biochem Parasitol. 1990;42:277–84.CrossRefPubMed
44.
go back to reference Dunn CR, Banfield MJ, Barker JJ, Higham CW, Moreton KM, Turgut-Balik D, et al. The structure of lactate dehydrogenase from Plasmodium falciparum reveals a new target for anti-malarial design. Nat Struct Biol. 1996;3:912–5.CrossRefPubMed Dunn CR, Banfield MJ, Barker JJ, Higham CW, Moreton KM, Turgut-Balik D, et al. The structure of lactate dehydrogenase from Plasmodium falciparum reveals a new target for anti-malarial design. Nat Struct Biol. 1996;3:912–5.CrossRefPubMed
45.
go back to reference Chaikuad A, Fairweather V, Conners R, Joseph-Horne T, Turgut-Balik D, Brady RL. Structural of lactate dehydrogenase from Plasmodium vivax: complexes with NADH and APADH. Biochemistry. 2005;44:16221–8.CrossRefPubMed Chaikuad A, Fairweather V, Conners R, Joseph-Horne T, Turgut-Balik D, Brady RL. Structural of lactate dehydrogenase from Plasmodium vivax: complexes with NADH and APADH. Biochemistry. 2005;44:16221–8.CrossRefPubMed
46.
go back to reference Bzik DJ, Fox BA, Gonyer K. Expression of Plasmodium falciparum lactate dehydrogenase in Escherichia coli. Mol Biochem Parasitol. 1993;59:155–66.CrossRefPubMed Bzik DJ, Fox BA, Gonyer K. Expression of Plasmodium falciparum lactate dehydrogenase in Escherichia coli. Mol Biochem Parasitol. 1993;59:155–66.CrossRefPubMed
47.
go back to reference Vivas L, Easton A, Kendrick H, Cameron A, Lavandera JL, Barros D, et al. Plasmodium falciparum: stage specific effects of a selective inhibitor of lactate dehydrogenase. Exp Parasitol. 2005;11:105–14.CrossRef Vivas L, Easton A, Kendrick H, Cameron A, Lavandera JL, Barros D, et al. Plasmodium falciparum: stage specific effects of a selective inhibitor of lactate dehydrogenase. Exp Parasitol. 2005;11:105–14.CrossRef
48.
go back to reference Tomar D, Biswas S, Tripathi V, Rao DN. Development of diagnostic reagents: raising antibodies against synthetic peptides of PfHRP-2 and LDH using microsphere delivery. Immunobiology. 2006;211:797–805.CrossRefPubMed Tomar D, Biswas S, Tripathi V, Rao DN. Development of diagnostic reagents: raising antibodies against synthetic peptides of PfHRP-2 and LDH using microsphere delivery. Immunobiology. 2006;211:797–805.CrossRefPubMed
49.
go back to reference Hurdayal R, Achilonu I, Choveaux D, Coetzer TH, Dean Goldring JP. Anti-peptide antibodies differentiate between plasmodial lactate dehydrogenases. Peptides. 2010;31:525–32.CrossRefPubMed Hurdayal R, Achilonu I, Choveaux D, Coetzer TH, Dean Goldring JP. Anti-peptide antibodies differentiate between plasmodial lactate dehydrogenases. Peptides. 2010;31:525–32.CrossRefPubMed
50.
go back to reference Kaushal NA, Kaushal DC. Production and characterization of monoclonal antibodies against substrate specific loop region of Plasmodium falciparum lactate dehydrogenase. Immunol Invest. 2014;43:556–71.CrossRefPubMed Kaushal NA, Kaushal DC. Production and characterization of monoclonal antibodies against substrate specific loop region of Plasmodium falciparum lactate dehydrogenase. Immunol Invest. 2014;43:556–71.CrossRefPubMed
51.
go back to reference Kaushal DC, Kaushal NA, Chandra D. Monoclonal antibodies against lactate dehydrogenase of Plasmodium knowlesi. Indian J Exp Biol. 1995;33:6–11.PubMed Kaushal DC, Kaushal NA, Chandra D. Monoclonal antibodies against lactate dehydrogenase of Plasmodium knowlesi. Indian J Exp Biol. 1995;33:6–11.PubMed
52.
go back to reference Yalcindag E, Elguero E, Arnathau C, Durand P, Akiana J, Anderson TJ, et al. Multiple independent introductions of Plasmodium falciparum in South America. Proc Natl Acad Sci USA. 2012;109:511–6.CrossRefPubMed Yalcindag E, Elguero E, Arnathau C, Durand P, Akiana J, Anderson TJ, et al. Multiple independent introductions of Plasmodium falciparum in South America. Proc Natl Acad Sci USA. 2012;109:511–6.CrossRefPubMed
53.
go back to reference Neafsey DE, Galinsky K, Jiang RHY, Young L, Sykes SM, Saif S, et al. The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum. Nat Genet. 2012;44:1046–50.CrossRefPubMedPubMedCentral Neafsey DE, Galinsky K, Jiang RHY, Young L, Sykes SM, Saif S, et al. The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum. Nat Genet. 2012;44:1046–50.CrossRefPubMedPubMedCentral
54.
55.
go back to reference Escalante AA, Freeland DE, Collins WE, Lal AA. The evolution of primate malaria parasites based on the gene encoding cytochrome b from the linear mitochondrial genome. Proc Natl Acad Sci USA. 1998;95:8124–9.CrossRefPubMedPubMedCentral Escalante AA, Freeland DE, Collins WE, Lal AA. The evolution of primate malaria parasites based on the gene encoding cytochrome b from the linear mitochondrial genome. Proc Natl Acad Sci USA. 1998;95:8124–9.CrossRefPubMedPubMedCentral
Metadata
Title
Global sequence diversity of the lactate dehydrogenase gene in Plasmodium falciparum
Authors
Phumin Simpalipan
Sittiporn Pattaradilokrat
Pongchai Harnyuttanakorn
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2018
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-017-2157-5

Other articles of this Issue 1/2018

Malaria Journal 1/2018 Go to the issue