Skip to main content
Top
Published in: Malaria Journal 1/2017

Open Access 01-12-2017 | Review

Statistical methods to derive efficacy estimates of anti-malarials for uncomplicated Plasmodium falciparum malaria: pitfalls and challenges

Authors: Prabin Dahal, Julie A. Simpson, Grant Dorsey, Philippe J. Guérin, Ric N. Price, Kasia Stepniewska

Published in: Malaria Journal | Issue 1/2017

Login to get access

Abstract

The Kaplan–Meier (K–M) method is currently the preferred approach to derive an efficacy estimate from anti-malarial trial data. In this approach event times are assumed to be continuous and estimates are generated on the assumption that there is only one cause of failure. In reality, failures are captured at pre-scheduled time points and patients can fail treatment due to a variety of causes other than the primary endpoint, commonly termed competing risk events. Ignoring these underlying assumptions can potentially distort the derived efficacy estimates and result in misleading conclusions. This review details the evolution of statistical methods used to derive anti-malarial efficacy for uncomplicated Plasmodium falciparum malaria and assesses the limitations of the current practices. Alternative approaches are explored and their implementation is discussed using example data from a large multi-site study.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference White NJ, Pongtavornpinyo W, Maude RJ, Saralamba S, Aguas R, Stepniewska K, et al. Hyperparasitaemia and low dosing are an important source of anti-malarial drug resistance. Malar J. 2009;8:253.CrossRefPubMedPubMedCentral White NJ, Pongtavornpinyo W, Maude RJ, Saralamba S, Aguas R, Stepniewska K, et al. Hyperparasitaemia and low dosing are an important source of anti-malarial drug resistance. Malar J. 2009;8:253.CrossRefPubMedPubMedCentral
3.
go back to reference WHO. Methods for surveillance of antimalarial drug efficacy. Geneva: World Health Organization; 2009. WHO. Methods for surveillance of antimalarial drug efficacy. Geneva: World Health Organization; 2009.
4.
go back to reference WHO. Guidelines for the treatment of malaria. 3rd ed. Geneva: World Health Organization; 2015. WHO. Guidelines for the treatment of malaria. 3rd ed. Geneva: World Health Organization; 2015.
5.
go back to reference Snounou G, Beck HP. The use of PCR genotyping in the assessment of recrudescence or reinfection after antimalarial drug treatment. Parasitol Today. 1998;14:462–7.CrossRefPubMed Snounou G, Beck HP. The use of PCR genotyping in the assessment of recrudescence or reinfection after antimalarial drug treatment. Parasitol Today. 1998;14:462–7.CrossRefPubMed
6.
go back to reference Slater M, Kiggundu M, Dokomajilar C, Kamya MR, Bakyaita N, Talisuna A, et al. Distinguishing recrudescences from new infections in antimalarial clinical trials: major impact of interpretation of genotyping results on estimates of drug efficacy. Am J Trop Med Hyg. 2005;73:256–62.PubMed Slater M, Kiggundu M, Dokomajilar C, Kamya MR, Bakyaita N, Talisuna A, et al. Distinguishing recrudescences from new infections in antimalarial clinical trials: major impact of interpretation of genotyping results on estimates of drug efficacy. Am J Trop Med Hyg. 2005;73:256–62.PubMed
7.
go back to reference Cattamanchi A, Kyabayinze D, Hubbard A, Rosenthal PJ, Dorsey G. Distinguishing recrudescence from reinfection in a longitudinal antimalarial drug efficacy study: comparison of results based on genotyping of MSP-1, MSP-2, and GLURP. Am J Trop Med Hyg. 2003;68:133–9.PubMed Cattamanchi A, Kyabayinze D, Hubbard A, Rosenthal PJ, Dorsey G. Distinguishing recrudescence from reinfection in a longitudinal antimalarial drug efficacy study: comparison of results based on genotyping of MSP-1, MSP-2, and GLURP. Am J Trop Med Hyg. 2003;68:133–9.PubMed
8.
go back to reference Greenhouse B, Dokomajilar C, Hubbard A, Rosenthal PJ, Dorsey G. Impact of transmission intensity on the accuracy of genotyping to distinguish recrudescence from new infection in antimalarial clinical trials. Antimicrob Agents Chemother. 2007;51:3096–103.CrossRefPubMedPubMedCentral Greenhouse B, Dokomajilar C, Hubbard A, Rosenthal PJ, Dorsey G. Impact of transmission intensity on the accuracy of genotyping to distinguish recrudescence from new infection in antimalarial clinical trials. Antimicrob Agents Chemother. 2007;51:3096–103.CrossRefPubMedPubMedCentral
9.
go back to reference Taylor AR, Flegg JA, Nsobya SL, Yeka A, Kamya MR, Rosenthal PJ, et al. Estimation of malaria haplotype and genotype frequencies: a statistical approach to overcome the challenge associated with multiclonal infections. Malar J. 2014;13:102.CrossRefPubMedPubMedCentral Taylor AR, Flegg JA, Nsobya SL, Yeka A, Kamya MR, Rosenthal PJ, et al. Estimation of malaria haplotype and genotype frequencies: a statistical approach to overcome the challenge associated with multiclonal infections. Malar J. 2014;13:102.CrossRefPubMedPubMedCentral
10.
go back to reference Messerli C, Hofmann NE, Beck H-P, Felger I. Critical evaluation of molecular monitoring in malaria drug efficacy trials: pitfalls of length polymorphic markers. Antimicrob Agents Chemother. 2016;61:01500–16. Messerli C, Hofmann NE, Beck H-P, Felger I. Critical evaluation of molecular monitoring in malaria drug efficacy trials: pitfalls of length polymorphic markers. Antimicrob Agents Chemother. 2016;61:01500–16.
11.
go back to reference Stepniewska K, Taylor WRJ, Mayxay M, Price R, Smithuis F, Guthmann J-P, et al. In vivo assessment of drug efficacy against Plasmodium falciparum malaria: duration of follow-up. Antimicrob Agents Chemother. 2004;48:4271–80.CrossRefPubMedPubMedCentral Stepniewska K, Taylor WRJ, Mayxay M, Price R, Smithuis F, Guthmann J-P, et al. In vivo assessment of drug efficacy against Plasmodium falciparum malaria: duration of follow-up. Antimicrob Agents Chemother. 2004;48:4271–80.CrossRefPubMedPubMedCentral
12.
go back to reference Stepniewska K, White NJ. Some considerations in the design and interpretation of antimalarial drug trials in uncomplicated falciparum malaria. Malar J. 2006;5:127.CrossRefPubMedPubMedCentral Stepniewska K, White NJ. Some considerations in the design and interpretation of antimalarial drug trials in uncomplicated falciparum malaria. Malar J. 2006;5:127.CrossRefPubMedPubMedCentral
13.
14.
go back to reference Guthmann J-P, Pinoges L, Checchi F, Cousens S, Balkan S, van Herp M, et al. Methodological issues in the assessment of antimalarial drug treatment: analysis of 13 studies in eight African countries from 2001 to 2004. Antimicrob Agents Chemother. 2006;50:3734–9.CrossRefPubMedPubMedCentral Guthmann J-P, Pinoges L, Checchi F, Cousens S, Balkan S, van Herp M, et al. Methodological issues in the assessment of antimalarial drug treatment: analysis of 13 studies in eight African countries from 2001 to 2004. Antimicrob Agents Chemother. 2006;50:3734–9.CrossRefPubMedPubMedCentral
15.
go back to reference Covell G, Coatney GR, Field JW SJ. Chemotherapy of malaria. Monogr Ser World Health Organ. 1955. Covell G, Coatney GR, Field JW SJ. Chemotherapy of malaria. Monogr Ser World Health Organ. 1955.
16.
go back to reference WHO. Resistance of malaria parasite to drugs. Geneva: World Health Organization; 1965. WHO. Resistance of malaria parasite to drugs. Geneva: World Health Organization; 1965.
17.
go back to reference WHO. Assessment and monitoring of antimalarial drug efficacy for the treatment of uncomplicated falciparum malaria. Geneva: World Health Organization; 2003. WHO. Assessment and monitoring of antimalarial drug efficacy for the treatment of uncomplicated falciparum malaria. Geneva: World Health Organization; 2003.
18.
go back to reference WHO. Assessment of therapeutic efficacy of antimalarial drugs for uncomplicated falciparum malaria in areas with intense transmission. Geneva: World Health Organization; 1996. WHO. Assessment of therapeutic efficacy of antimalarial drugs for uncomplicated falciparum malaria in areas with intense transmission. Geneva: World Health Organization; 1996.
19.
go back to reference Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53:457–81.CrossRef Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53:457–81.CrossRef
20.
go back to reference Price RN, Nosten F, Luxemburger EK, Kham A, Brockman A, Chongsuphajaisiddhi T, et al. Artesunate versus artemether in combination with mefloquine for the treatment of multidrug-resistant falciparum malaria. Trans R Soc Trop Med Hyg. 1995;89:523.CrossRefPubMed Price RN, Nosten F, Luxemburger EK, Kham A, Brockman A, Chongsuphajaisiddhi T, et al. Artesunate versus artemether in combination with mefloquine for the treatment of multidrug-resistant falciparum malaria. Trans R Soc Trop Med Hyg. 1995;89:523.CrossRefPubMed
21.
go back to reference WHO. Monitoring antimalarial drug resistance. Geneva: World Health Organization; 2001. WHO. Monitoring antimalarial drug resistance. Geneva: World Health Organization; 2001.
22.
go back to reference Ashley EA, Pinoges L, Turyakira E, Dorsey G, Checchi F, Bukirwa H, et al. Different methodological approaches to the assessment of in vivo efficacy of three artemisinin-based combination antimalarial treatments for the treatment of uncomplicated falciparum malaria in African children. Malar J. 2008;7:154.CrossRefPubMedPubMedCentral Ashley EA, Pinoges L, Turyakira E, Dorsey G, Checchi F, Bukirwa H, et al. Different methodological approaches to the assessment of in vivo efficacy of three artemisinin-based combination antimalarial treatments for the treatment of uncomplicated falciparum malaria in African children. Malar J. 2008;7:154.CrossRefPubMedPubMedCentral
23.
go back to reference Price RN, Dorsey G, Ashley EA, Barnes KI, Baird JK, D’Alessandro U, et al. World antimalarial resistance network I: clinical efficacy of antimalarial drugs. Malar J. 2007;6:119.CrossRefPubMedPubMedCentral Price RN, Dorsey G, Ashley EA, Barnes KI, Baird JK, D’Alessandro U, et al. World antimalarial resistance network I: clinical efficacy of antimalarial drugs. Malar J. 2007;6:119.CrossRefPubMedPubMedCentral
24.
go back to reference Gooley TA, Leisenring W, Crowley J, Storer BE. Estimation of failure probabilities in the presence of competing risks: new representations of old estimators. Stat Med. 1999;18:695–706.CrossRefPubMed Gooley TA, Leisenring W, Crowley J, Storer BE. Estimation of failure probabilities in the presence of competing risks: new representations of old estimators. Stat Med. 1999;18:695–706.CrossRefPubMed
25.
go back to reference Yeka A, Banek K, Bakyaita N, Staedke SG, Kamya MR, Talisuna A, et al. Artemisinin versus nonartemisinin combination therapy for uncomplicated malaria: randomized clinical trials from four sites in Uganda. PLoS Med. 2005;2:654–62.CrossRef Yeka A, Banek K, Bakyaita N, Staedke SG, Kamya MR, Talisuna A, et al. Artemisinin versus nonartemisinin combination therapy for uncomplicated malaria: randomized clinical trials from four sites in Uganda. PLoS Med. 2005;2:654–62.CrossRef
27.
go back to reference Coviello V, Boggess M. Cumulative incidence estimation in the presence of competing risks. STATA J. 2004;4:103–12. Coviello V, Boggess M. Cumulative incidence estimation in the presence of competing risks. STATA J. 2004;4:103–12.
28.
go back to reference Pintilie M. Competing risks: a practical perspective. Chichester: Wiley; 2006.CrossRef Pintilie M. Competing risks: a practical perspective. Chichester: Wiley; 2006.CrossRef
29.
go back to reference Kalbfleisch JD, Prentice RL. Competing risks and multistate models. Stat. Anal. Fail. Time Data. 2nd ed. New York: Wiley; 2002. p. 247–77. Kalbfleisch JD, Prentice RL. Competing risks and multistate models. Stat. Anal. Fail. Time Data. 2nd ed. New York: Wiley; 2002. p. 247–77.
30.
go back to reference Scrucca L, Santucci A, Aversa F. Competing risk analysis using R: an easy guide for clinicians. Bone Marrow Transplant. 2007;40:381–7.CrossRefPubMed Scrucca L, Santucci A, Aversa F. Competing risk analysis using R: an easy guide for clinicians. Bone Marrow Transplant. 2007;40:381–7.CrossRefPubMed
32.
go back to reference Turnbull BW. The empirical distribution function with arbitrarily grouped, censored and truncated data point in time is to be incorporated. J R Stat Soc. 1975;38:290–5. Turnbull BW. The empirical distribution function with arbitrarily grouped, censored and truncated data point in time is to be incorporated. J R Stat Soc. 1975;38:290–5.
33.
go back to reference Lindsey JC, Ryan LM. Tutorial in biostatistics. Methods for interval-censored data. Stat Med. 1998;17:219–38.CrossRefPubMed Lindsey JC, Ryan LM. Tutorial in biostatistics. Methods for interval-censored data. Stat Med. 1998;17:219–38.CrossRefPubMed
34.
go back to reference Gomez G, Calle ML, Oller R, Langohr K. Tutorial on methods for interval-censored data and their implementation in R. Stat Model. 2009;9:259–97.CrossRef Gomez G, Calle ML, Oller R, Langohr K. Tutorial on methods for interval-censored data and their implementation in R. Stat Model. 2009;9:259–97.CrossRef
35.
go back to reference Singh RS, Totawattage DP. The statistical analysis of interval-censored failure time data with applications. Open J Stat. 2013;2013:155–66.CrossRef Singh RS, Totawattage DP. The statistical analysis of interval-censored failure time data with applications. Open J Stat. 2013;2013:155–66.CrossRef
36.
38.
go back to reference Srinivasan C, Zhou M. A note on pooling Kaplan–Meier estimates. Biometrics. 1993;49:861–4.CrossRef Srinivasan C, Zhou M. A note on pooling Kaplan–Meier estimates. Biometrics. 1993;49:861–4.CrossRef
39.
go back to reference Rubin DB. An alternative to pooling Kaplan–Meier curves in time-to-event meta-analysis. Int J Biostat. 2011;7:1–26.CrossRef Rubin DB. An alternative to pooling Kaplan–Meier curves in time-to-event meta-analysis. Int J Biostat. 2011;7:1–26.CrossRef
40.
go back to reference Combescure C, Foucher Y, Jackson D. Meta-analysis of single-arm survival studies: a distribution-free approach for estimating summary survival curves with random effects. Stat Med. 2014;33:2521–37.CrossRefPubMed Combescure C, Foucher Y, Jackson D. Meta-analysis of single-arm survival studies: a distribution-free approach for estimating summary survival curves with random effects. Stat Med. 2014;33:2521–37.CrossRefPubMed
42.
go back to reference Klein JP, Logan B, Harhoff M, Andersen PK. Analyzing survival curves at a fixed point in time. Stat Med. 2007;26:4505–19.CrossRefPubMed Klein JP, Logan B, Harhoff M, Andersen PK. Analyzing survival curves at a fixed point in time. Stat Med. 2007;26:4505–19.CrossRefPubMed
43.
go back to reference Arinaitwe E, Sandison TG, Wanzira H, Kakuru A, Homsy J, Kalamya J, et al. Artemether–lumefantrine versus dihydroartemisinin–piperaquine for falciparum malaria: a longitudinal, randomized trial in young Ugandan children. Clin Infect Dis. 2009;49:1629–37.CrossRefPubMed Arinaitwe E, Sandison TG, Wanzira H, Kakuru A, Homsy J, Kalamya J, et al. Artemether–lumefantrine versus dihydroartemisinin–piperaquine for falciparum malaria: a longitudinal, randomized trial in young Ugandan children. Clin Infect Dis. 2009;49:1629–37.CrossRefPubMed
45.
go back to reference Gray RJ. A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann Stat. 1988;16:1141–54.CrossRef Gray RJ. A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann Stat. 1988;16:1141–54.CrossRef
46.
48.
go back to reference Borrmann S, Peto T, Snow RW, Gutteridge W, White NJ. Revisiting the design of phase III clinical trials of antimalarial drugs for uncomplicated Plasmodium falciparum malaria. PLoS Med. 2008;5:e227.CrossRefPubMedPubMedCentral Borrmann S, Peto T, Snow RW, Gutteridge W, White NJ. Revisiting the design of phase III clinical trials of antimalarial drugs for uncomplicated Plasmodium falciparum malaria. PLoS Med. 2008;5:e227.CrossRefPubMedPubMedCentral
50.
go back to reference Com-Nougue C, Rodary C, Patte C. How to establish equivalence when data are censored: a randomized trial of treatments for B non-Hodgkin lymphoma. Stat Med. 1993;12:1353–64.CrossRefPubMed Com-Nougue C, Rodary C, Patte C. How to establish equivalence when data are censored: a randomized trial of treatments for B non-Hodgkin lymphoma. Stat Med. 1993;12:1353–64.CrossRefPubMed
51.
go back to reference da Silva GT, Logan BR, Klein JP. Methods for equivalence and noninferiority testing. Biol Blood Marrow Transplant. 2009;15:120–7.CrossRef da Silva GT, Logan BR, Klein JP. Methods for equivalence and noninferiority testing. Biol Blood Marrow Transplant. 2009;15:120–7.CrossRef
53.
go back to reference Porter KA, Burch CL, Poole C, Juliano JJ, Cole SR, Meshnick SR. Uncertain outcomes: adjusting for misclassification in antimalarial efficacy studies. Epidemiol Infect. 2011;139:544–51.CrossRefPubMed Porter KA, Burch CL, Poole C, Juliano JJ, Cole SR, Meshnick SR. Uncertain outcomes: adjusting for misclassification in antimalarial efficacy studies. Epidemiol Infect. 2011;139:544–51.CrossRefPubMed
54.
go back to reference Jaki T, Parry A, Winter K, Hastings I. Analysing malaria drug trials on a per-individual or per-clone basis: a comparison of methods. Stat Med. 2013;32:3020–38.CrossRefPubMed Jaki T, Parry A, Winter K, Hastings I. Analysing malaria drug trials on a per-individual or per-clone basis: a comparison of methods. Stat Med. 2013;32:3020–38.CrossRefPubMed
55.
go back to reference Plucinski MM, Morton L, Bushman M, Dimbu PR, Udhayakumar V. Robust algorithm for systematic classification of malaria late treatment failures as recrudescence or reinfection using microsatellite genotyping. Antimicrob Agents Chemother. 2015;59:6096–100.CrossRefPubMedPubMedCentral Plucinski MM, Morton L, Bushman M, Dimbu PR, Udhayakumar V. Robust algorithm for systematic classification of malaria late treatment failures as recrudescence or reinfection using microsatellite genotyping. Antimicrob Agents Chemother. 2015;59:6096–100.CrossRefPubMedPubMedCentral
56.
go back to reference Ken-Dror G, Hastings IM. Markov chain Monte Carlo and expectation maximization approaches for estimation of haplotype frequencies for multiply infected human blood samples. Malar J. 2016;15:430.CrossRefPubMedPubMedCentral Ken-Dror G, Hastings IM. Markov chain Monte Carlo and expectation maximization approaches for estimation of haplotype frequencies for multiply infected human blood samples. Malar J. 2016;15:430.CrossRefPubMedPubMedCentral
57.
go back to reference Fay MP. Weighted logrank tests and NPMLE for interval censored data. R package “interval.” CRAN Repos. 2015. Fay MP. Weighted logrank tests and NPMLE for interval censored data. R package “interval.” CRAN Repos. 2015.
Metadata
Title
Statistical methods to derive efficacy estimates of anti-malarials for uncomplicated Plasmodium falciparum malaria: pitfalls and challenges
Authors
Prabin Dahal
Julie A. Simpson
Grant Dorsey
Philippe J. Guérin
Ric N. Price
Kasia Stepniewska
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2017
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-017-2074-7

Other articles of this Issue 1/2017

Malaria Journal 1/2017 Go to the issue