Skip to main content
Top
Published in: Malaria Journal 1/2017

Open Access 01-12-2017 | Research

Measuring the impact of seasonal malaria chemoprevention as part of routine malaria control in Kita, Mali

Authors: Fatou Diawara, Laura C. Steinhardt, Almahamoudou Mahamar, Tiangoua Traore, Daouda T. Kone, Halimatou Diawara, Beh Kamate, Diakalia Kone, Mouctar Diallo, Aboubacar Sadou, Jules Mihigo, Issaka Sagara, Abdoulaye A. Djimde, Erin Eckert, Alassane Dicko

Published in: Malaria Journal | Issue 1/2017

Login to get access

Abstract

Background

Seasonal malaria chemoprevention (SMC) is a new strategy recommended by WHO in areas of highly seasonal transmission in March 2012. Although randomized controlled trials (RCTs) have shown SMC to be highly effective, evidence and experience from routine implementation of SMC are limited.

Methods

A non-randomized pragmatic trial with pre-post design was used, with one intervention district (Kita), where four rounds of SMC with sulfadoxine + amodiaquine (SP + AQ) took place in August–November 2014, and one comparison district (Bafoulabe). The primary aims were to evaluate SMC coverage and reductions in prevalence of malaria and anaemia when SMC is delivered through routine programmes using existing community health workers. Children aged 3–59 months from 15 selected localities per district, sampled with probability proportional to size, were surveyed and blood samples collected for malaria blood smears, haemoglobin (Hb) measurement, and molecular markers of drug resistance in two cross-sectional surveys, one before SMC (July 2014) and one after SMC (December 2014). Difference-in-differences regression models were used to assess and compare changes in malaria and anaemia in the intervention and comparison districts. Adherence and tolerability of SMC were assessed by cross-sectional surveys 4–7 days after each SMC round. Coverage of SMC was assessed in the post-SMC survey.

Results

During round 1, 84% of targeted children received at least the first SMC dose, but coverage declined to 67% by round 4. Across the four treatment rounds, 54% of children received four complete SMC courses. Prevalence of parasitaemia was similar in intervention and comparison districts prior to SMC (23.4 vs 29.5%, p = 0.34) as was the prevalence of malaria illness (2.4 vs 1.9%, p = 0.75). After SMC, parasitaemia prevalence fell to 18% in the intervention district and increased to 46% in the comparison district [difference-in-differences (DD) OR = 0.35; 95% CI 0.20–0.60]. Prevalence of malaria illness fell to a greater degree in the intervention district versus the comparison district (DD OR = 0.20; 95% CI 0.04–0.94) and the same for moderate anaemia (Hb < 8 g/dL) (DD OR = 0.26, 95% CI 0.11–0.65). The frequency of the quintuple mutation (dhfr N51I, C59R and S108N + dhps A437G and K540E) remained low (5%) before and after intervention in both districts.

Conclusions

Routine implementation of SMC in Mali substantially reduced malaria and anaemia, with reductions of similar magnitude to those seen in previous RCTs. Improving coverage could further strengthen SMC impact.
Trial registration clinical trial registration number NCT02894294
Literature
1.
go back to reference WHO. World malaria report 2015. Geneva: World Health Organization; 2015. WHO. World malaria report 2015. Geneva: World Health Organization; 2015.
3.
go back to reference WHO. Policy recommendation: seasonal malaria chemoprevention (SMC) for Plasmodium falciparum malaria control in highly seasonal transmission areas of the Sahel sub-region in Africa. Geneva: World Health Organization; 2012. WHO. Policy recommendation: seasonal malaria chemoprevention (SMC) for Plasmodium falciparum malaria control in highly seasonal transmission areas of the Sahel sub-region in Africa. Geneva: World Health Organization; 2012.
5.
go back to reference Dicko A, Diallo AI, Tembine I, Dicko Y, Dara N, Sidibe Y, et al. Intermittent preventive treatment of malaria provides substantial protection against malaria in children already protected by an insecticide-treated bednet in Mali: a randomised, double-blind, placebo-controlled trial. PLoS Med. 2011;8:e1000407.CrossRefPubMedPubMedCentral Dicko A, Diallo AI, Tembine I, Dicko Y, Dara N, Sidibe Y, et al. Intermittent preventive treatment of malaria provides substantial protection against malaria in children already protected by an insecticide-treated bednet in Mali: a randomised, double-blind, placebo-controlled trial. PLoS Med. 2011;8:e1000407.CrossRefPubMedPubMedCentral
6.
go back to reference Konate AT, Yaro JB, Ouedraogo AZ, Diarra A, Gansane A, Soulama I, et al. Intermittent preventive treatment of malaria provides substantial protection against malaria in children already protected by an insecticide-treated bednet in Burkina Faso: a randomised, double-blind, placebo-controlled trial. PLoS Med. 2011;8:e1000408.CrossRefPubMedPubMedCentral Konate AT, Yaro JB, Ouedraogo AZ, Diarra A, Gansane A, Soulama I, et al. Intermittent preventive treatment of malaria provides substantial protection against malaria in children already protected by an insecticide-treated bednet in Burkina Faso: a randomised, double-blind, placebo-controlled trial. PLoS Med. 2011;8:e1000408.CrossRefPubMedPubMedCentral
7.
go back to reference Wilson AL. A systematic review and meta-analysis of the efficacy and safety of intermittent preventive treatment in children (IPTc). PLoS ONE. 2011;6:e16976.CrossRefPubMedPubMedCentral Wilson AL. A systematic review and meta-analysis of the efficacy and safety of intermittent preventive treatment in children (IPTc). PLoS ONE. 2011;6:e16976.CrossRefPubMedPubMedCentral
8.
go back to reference Griffin JT, Bhatt S, Sinka ME, Gething PW, Lynch M, Patouillard E, et al. Potential for reduction of burden and local elimination of malaria by reducing Plasmodium falciparum malaria transmission: a mathematical modelling study. Lancet Infect Dis. 2016;16:465–72.CrossRefPubMedPubMedCentral Griffin JT, Bhatt S, Sinka ME, Gething PW, Lynch M, Patouillard E, et al. Potential for reduction of burden and local elimination of malaria by reducing Plasmodium falciparum malaria transmission: a mathematical modelling study. Lancet Infect Dis. 2016;16:465–72.CrossRefPubMedPubMedCentral
9.
go back to reference Noor AM, Kibuchi E, Mitto B, Coulibaly D, Doumbo OK, Snow RW. Sub-national targeting of seasonal malaria chemoprevention in the Sahelian countries of the Nouakchott Initiative. PLoS ONE. 2015;10:e0136919.CrossRefPubMedPubMedCentral Noor AM, Kibuchi E, Mitto B, Coulibaly D, Doumbo OK, Snow RW. Sub-national targeting of seasonal malaria chemoprevention in the Sahelian countries of the Nouakchott Initiative. PLoS ONE. 2015;10:e0136919.CrossRefPubMedPubMedCentral
10.
go back to reference Cairns M, Cheung YB, Xu Y, Asante KP, Owusu-Agyei S, Diallo D, et al. Analysis of preventive interventions for malaria: exploring partial and complete protection and total and primary intervention effects. Am J Epidemiol. 2015;181:1008–17.CrossRefPubMedPubMedCentral Cairns M, Cheung YB, Xu Y, Asante KP, Owusu-Agyei S, Diallo D, et al. Analysis of preventive interventions for malaria: exploring partial and complete protection and total and primary intervention effects. Am J Epidemiol. 2015;181:1008–17.CrossRefPubMedPubMedCentral
12.
go back to reference Henderson RH, Sundaresan T. Cluster sampling to assess immunization coverage: a review of experience with a simplified sampling method. Bull World Health Organ. 1982;60:253–60.PubMedPubMedCentral Henderson RH, Sundaresan T. Cluster sampling to assess immunization coverage: a review of experience with a simplified sampling method. Bull World Health Organ. 1982;60:253–60.PubMedPubMedCentral
13.
go back to reference Plowe CV, Djimde A, Bouare M, Doumbo O, Wellems TE. Pyrimethamine and proguanil resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase: polymerase chain reaction methods for surveillance in Africa. Am J Trop Med Hyg. 1995;52:565–8.CrossRefPubMed Plowe CV, Djimde A, Bouare M, Doumbo O, Wellems TE. Pyrimethamine and proguanil resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase: polymerase chain reaction methods for surveillance in Africa. Am J Trop Med Hyg. 1995;52:565–8.CrossRefPubMed
14.
go back to reference Djimde A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, et al. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med. 2001;344:257–63.CrossRefPubMed Djimde A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, et al. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med. 2001;344:257–63.CrossRefPubMed
15.
go back to reference Card D, Krueger AB. Minimum wages and employment: a case study of the fast-food industry in New Jersey and Pennsylvania. Am Econ Rev. 1994;84:772–93. Card D, Krueger AB. Minimum wages and employment: a case study of the fast-food industry in New Jersey and Pennsylvania. Am Econ Rev. 1994;84:772–93.
16.
go back to reference Cisse B, Sokhna C, Boulanger D, Milet J, el Ba H, Richardson K, et al. Seasonal intermittent preventive treatment with artesunate and sulfadoxine–pyrimethamine for prevention of malaria in Senegalese children: a randomised, placebo-controlled, double-blind trial. Lancet. 2006;367:659–67.CrossRefPubMed Cisse B, Sokhna C, Boulanger D, Milet J, el Ba H, Richardson K, et al. Seasonal intermittent preventive treatment with artesunate and sulfadoxine–pyrimethamine for prevention of malaria in Senegalese children: a randomised, placebo-controlled, double-blind trial. Lancet. 2006;367:659–67.CrossRefPubMed
17.
go back to reference Happi CT, Gbotosho GO, Folarin OA, Akinboye DO, Yusuf BO, Ebong OO, et al. Polymorphisms in Plasmodium falciparum dhfr and dhps genes and age related in vivo sulfadoxine–pyrimethamine resistance in malaria-infected patients from Nigeria. Acta Trop. 2005;95:183–93.CrossRefPubMed Happi CT, Gbotosho GO, Folarin OA, Akinboye DO, Yusuf BO, Ebong OO, et al. Polymorphisms in Plasmodium falciparum dhfr and dhps genes and age related in vivo sulfadoxine–pyrimethamine resistance in malaria-infected patients from Nigeria. Acta Trop. 2005;95:183–93.CrossRefPubMed
19.
go back to reference Lo AC, Faye B, Ba E-H, Cisse B, Tine R, Abiola A, et al. Prevalence of molecular markers of drug resistance in an area of seasonal malaria chemoprevention in children in Senegal. Malar J. 2013;12:137.CrossRefPubMedPubMedCentral Lo AC, Faye B, Ba E-H, Cisse B, Tine R, Abiola A, et al. Prevalence of molecular markers of drug resistance in an area of seasonal malaria chemoprevention in children in Senegal. Malar J. 2013;12:137.CrossRefPubMedPubMedCentral
20.
go back to reference Dicko A, Sagara I, Djimde´ AA, Toure SO, Traore M, et al. Molecular markers of resistance to sulphadoxine–pyrimethamine one year after implementation of intermittent preventive treatment of malaria in infants in Mali. Malar J. 2010;9:9.CrossRefPubMedPubMedCentral Dicko A, Sagara I, Djimde´ AA, Toure SO, Traore M, et al. Molecular markers of resistance to sulphadoxine–pyrimethamine one year after implementation of intermittent preventive treatment of malaria in infants in Mali. Malar J. 2010;9:9.CrossRefPubMedPubMedCentral
21.
go back to reference Faye B, Ndiaye M, Ndiaye JL, Annie A, Tine RC, Lo AC, et al. Prevalence of molecular markers of Plasmodium falciparum resistance to sulfadoxine–pyrimethamine during the intermittent preventive treatment in infants coupled with the expanded program immunization in Senegal. Parasitol Res. 2011;109:133–8.CrossRefPubMed Faye B, Ndiaye M, Ndiaye JL, Annie A, Tine RC, Lo AC, et al. Prevalence of molecular markers of Plasmodium falciparum resistance to sulfadoxine–pyrimethamine during the intermittent preventive treatment in infants coupled with the expanded program immunization in Senegal. Parasitol Res. 2011;109:133–8.CrossRefPubMed
Metadata
Title
Measuring the impact of seasonal malaria chemoprevention as part of routine malaria control in Kita, Mali
Authors
Fatou Diawara
Laura C. Steinhardt
Almahamoudou Mahamar
Tiangoua Traore
Daouda T. Kone
Halimatou Diawara
Beh Kamate
Diakalia Kone
Mouctar Diallo
Aboubacar Sadou
Jules Mihigo
Issaka Sagara
Abdoulaye A. Djimde
Erin Eckert
Alassane Dicko
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2017
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-017-1974-x

Other articles of this Issue 1/2017

Malaria Journal 1/2017 Go to the issue