Skip to main content
Top
Published in: Malaria Journal 1/2017

Open Access 01-12-2017 | Research

Comparative evaluation of fluorescent in situ hybridization and Giemsa microscopy with quantitative real-time PCR technique in detecting malaria parasites in a holoendemic region of Kenya

Authors: Joseph Osoga, John Waitumbi, Bernard Guyah, James Sande, Cornel Arima, Michael Ayaya, Caroline Moseti, Collins Morang’a, Martin Wahome, Rachel Achilla, George Awinda, Nancy Nyakoe, Elizabeth Wanja

Published in: Malaria Journal | Issue 1/2017

Login to get access

Abstract

Background

Early and accurate diagnosis of malaria is important in treatment as well as in the clinical evaluation of drugs and vaccines. Evaluation of Giemsa-stained smears remains the gold standard for malaria diagnosis, although diagnostic errors and potential bias estimates of protective efficacy have been reported in practice. Plasmodium genus fluorescent in situ hybridization (P-Genus FISH) is a microscopy-based method that uses fluorescent labelled oligonucleotide probes targeted to pathogen specific ribosomal RNA fragments to detect malaria parasites in whole blood. This study sought to evaluate the diagnostic performance of P-Genus FISH alongside Giemsa microscopy compared to quantitative reverse transcription polymerase chain reaction (qRT-PCR) in a clinical setting.

Method

Five hundred study participants were recruited prospectively and screened for Plasmodium parasites by P-Genus FISH assay, and Giemsa microscopy. The microscopic methods were performed by two trained personnel and were blinded, and if the results were discordant a third reading was performed as a tie breaker. The diagnostic performance of both methods was evaluated against qRT-PCR as a more sensitive method.

Results

The number of Plasmodium positive cases was 26.8% by P-Genus FISH, 33.2% by Giemsa microscopy, and 51.2% by qRT-PCR. The three methods had 46.8% concordant results with 61 positive cases and 173 negative cases. Compared to qRT-PCR the sensitivity and specificity of P-Genus FISH assay was 29.3 and 75.8%, respectively, while microscopy had 58.2 and 93.0% respectively. Microscopy had a higher positive and negative predictive values (89.8 and 68.0% respectively) compared to P-Genus FISH (56.0 and 50.5%). In overall, microscopy had a good measure of agreement (76%, k = 0.51) compared to P-Genus FISH (52%, k = 0.05).

Conclusion

The diagnostic performance of P-Genus FISH was shown to be inferior to Giemsa microscopy in the clinical samples. This hinders the possible application of the method in the field despite the many advantages of the method especially diagnosis of low parasite density infections. The P-Genus assay has great potential but application of the method in clinical setting would rely on extensive training of microscopist and continuous proficiency testing.
Literature
1.
go back to reference Ohrt C, Obare P, Nanakorn A, Adhiambo C, Awuondo K, O’Meara WP, et al. Establishing a malaria diagnostics centre of excellence in Kisumu, Kenya. Malar J. 2007;6:79.CrossRefPubMedPubMedCentral Ohrt C, Obare P, Nanakorn A, Adhiambo C, Awuondo K, O’Meara WP, et al. Establishing a malaria diagnostics centre of excellence in Kisumu, Kenya. Malar J. 2007;6:79.CrossRefPubMedPubMedCentral
2.
go back to reference Payne D. Use and limitations of light microscopy for diagnosing malaria at the primary health care level. Bull World Health Organ. 1988;66:62–6. Payne D. Use and limitations of light microscopy for diagnosing malaria at the primary health care level. Bull World Health Organ. 1988;66:62–6.
3.
go back to reference Joanny F, Lohr SJ, Engleitner T, Lell B, Mordmuller B. Limit of blank and limit of detection of Plasmodium falciparum thick blood smear microscopy in a routine setting in Central Africa. Malar J. 2014;13:234.CrossRefPubMedPubMedCentral Joanny F, Lohr SJ, Engleitner T, Lell B, Mordmuller B. Limit of blank and limit of detection of Plasmodium falciparum thick blood smear microscopy in a routine setting in Central Africa. Malar J. 2014;13:234.CrossRefPubMedPubMedCentral
4.
go back to reference Bosch I, Bracho C, Pérez HA. Diagnosis of malaria by acridine orange fluorescent microscopy in an endemic area of Venezuela. Mem Inst Oswaldo Cruz. 1996;91:83–6.CrossRefPubMed Bosch I, Bracho C, Pérez HA. Diagnosis of malaria by acridine orange fluorescent microscopy in an endemic area of Venezuela. Mem Inst Oswaldo Cruz. 1996;91:83–6.CrossRefPubMed
6.
go back to reference Delong E, Ebenezer V, Linda K, SI J. Fluorescent, ribosomal RNA probes for clinical applications: a research review. Diagn Clin Test. 1990;28:41. Delong E, Ebenezer V, Linda K, SI J. Fluorescent, ribosomal RNA probes for clinical applications: a research review. Diagn Clin Test. 1990;28:41.
7.
go back to reference Shah J, Mark O, Weltman H, Barcelo N, Lo W, Wronska D, et al. Fluorescence in situ hybridization (FISH) assays for diagnosing malaria in endemic areas. PLoS ONE. 2015;10:e0136726.CrossRefPubMedPubMedCentral Shah J, Mark O, Weltman H, Barcelo N, Lo W, Wronska D, et al. Fluorescence in situ hybridization (FISH) assays for diagnosing malaria in endemic areas. PLoS ONE. 2015;10:e0136726.CrossRefPubMedPubMedCentral
8.
go back to reference Shah JS, Harris NS. In situ-hybridization for detecting target nucleic acid. US Patent No. 6,165,723. 2000. Shah JS, Harris NS. In situ-hybridization for detecting target nucleic acid. US Patent No. 6,165,723. 2000.
9.
go back to reference Graczyk TK, Grimes BH, Knight R, Da Silva AJ, Pieniazek NJ, Veal DA. Detection of Cryptosporidium parvum and Giardia lamblia carried by synanthropic flies by combined fluorescent in situ hybridization and a monoclonal antibody. Am J Trop Med Hyg. 2003;68:228–32.PubMed Graczyk TK, Grimes BH, Knight R, Da Silva AJ, Pieniazek NJ, Veal DA. Detection of Cryptosporidium parvum and Giardia lamblia carried by synanthropic flies by combined fluorescent in situ hybridization and a monoclonal antibody. Am J Trop Med Hyg. 2003;68:228–32.PubMed
10.
go back to reference Ismail MB, Nekoye O, Awinda G, Spring M, Schneider P, Waitumbi JN. Comparison of PfHRP-2/pLDH ELISA, qPCR and microscopy for the detection of Plasmodium events and prediction of sick visits during a malaria vaccine study. PLoS ONE. 2013;8:e56828.CrossRef Ismail MB, Nekoye O, Awinda G, Spring M, Schneider P, Waitumbi JN. Comparison of PfHRP-2/pLDH ELISA, qPCR and microscopy for the detection of Plasmodium events and prediction of sick visits during a malaria vaccine study. PLoS ONE. 2013;8:e56828.CrossRef
11.
go back to reference Kamau E, LaDonna ST, Luke K, Michael P, Nyakoe N, Muringo L, et al. Development of a highly sensitive genus-specific quantitative reverse transcriptase real-time PCR assay for detection and quantitation of Plasmodium by amplifying RNA and DNA of the 18S rRNA genes. J Clin Microbiol. 2011;49:2946–53.CrossRefPubMedPubMedCentral Kamau E, LaDonna ST, Luke K, Michael P, Nyakoe N, Muringo L, et al. Development of a highly sensitive genus-specific quantitative reverse transcriptase real-time PCR assay for detection and quantitation of Plasmodium by amplifying RNA and DNA of the 18S rRNA genes. J Clin Microbiol. 2011;49:2946–53.CrossRefPubMedPubMedCentral
13.
go back to reference Wongsrichanalai C, Barcus MJ, Muth S, Sutamihardja A, Wernsdorfer HW. A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT). Am J Trop Med Hyg. 2007;77:119–27.PubMed Wongsrichanalai C, Barcus MJ, Muth S, Sutamihardja A, Wernsdorfer HW. A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT). Am J Trop Med Hyg. 2007;77:119–27.PubMed
14.
go back to reference Kasetsirikul S, Buranapong J, Srituravanich W, Kaewthamasorn M, Pimpin A. The development of malaria diagnostic techniques: a review of the approaches with focus on dielectrophoretic and magnetophoretic methods. Malar J. 2016;15:358.CrossRefPubMedPubMedCentral Kasetsirikul S, Buranapong J, Srituravanich W, Kaewthamasorn M, Pimpin A. The development of malaria diagnostic techniques: a review of the approaches with focus on dielectrophoretic and magnetophoretic methods. Malar J. 2016;15:358.CrossRefPubMedPubMedCentral
15.
go back to reference Shah JS, Pieciak W, Liu J, Buharin A, Lane DJ. Diversity of host species and strains of Pneumocystis carinii is based on rRNA sequences. Clin Diagn Lab Immunol. 1996;3:119–27.PubMedPubMedCentral Shah JS, Pieciak W, Liu J, Buharin A, Lane DJ. Diversity of host species and strains of Pneumocystis carinii is based on rRNA sequences. Clin Diagn Lab Immunol. 1996;3:119–27.PubMedPubMedCentral
16.
go back to reference Alemayehu S, Feghali KC, Cowden J, Komisar J, Ockenhouse CF, Kamau E. Comparative evaluation of published real-time PCR assays for the detection of malaria following MIQE guidelines. Malar J. 2013;12:277.CrossRefPubMedPubMedCentral Alemayehu S, Feghali KC, Cowden J, Komisar J, Ockenhouse CF, Kamau E. Comparative evaluation of published real-time PCR assays for the detection of malaria following MIQE guidelines. Malar J. 2013;12:277.CrossRefPubMedPubMedCentral
18.
go back to reference Ndao M, Bandyayera E, Kokoskin E, Gyorkos TW, MacLean JD, Ward BJ. Comparison of blood smear, antigen detection, and nested-PCR methods for screening refugees from regions where malaria is endemic after a malaria outbreak in Quebec, Canada. J Clin Microbiol. 2004;42:2694–700.CrossRefPubMedPubMedCentral Ndao M, Bandyayera E, Kokoskin E, Gyorkos TW, MacLean JD, Ward BJ. Comparison of blood smear, antigen detection, and nested-PCR methods for screening refugees from regions where malaria is endemic after a malaria outbreak in Quebec, Canada. J Clin Microbiol. 2004;42:2694–700.CrossRefPubMedPubMedCentral
19.
go back to reference Johnston SP, Pieniazek NJ, Xayavong MV, Slemenda SB, Wilkins PP, da Silva AJ. PCR as a confirmatory technique for laboratory diagnosis of malaria. J Clin Microbiol. 2006;44:1087–9.CrossRefPubMedPubMedCentral Johnston SP, Pieniazek NJ, Xayavong MV, Slemenda SB, Wilkins PP, da Silva AJ. PCR as a confirmatory technique for laboratory diagnosis of malaria. J Clin Microbiol. 2006;44:1087–9.CrossRefPubMedPubMedCentral
21.
go back to reference Leslie T, Mikhail A, Mayan I, Anwar M, Bakhtash S, Nader M, et al. Overdiagnosis and mistreatment of malaria among febrile patients at primary healthcare level in Afghanistan: observational study. BMJ. 2012;345:e4389.CrossRefPubMedPubMedCentral Leslie T, Mikhail A, Mayan I, Anwar M, Bakhtash S, Nader M, et al. Overdiagnosis and mistreatment of malaria among febrile patients at primary healthcare level in Afghanistan: observational study. BMJ. 2012;345:e4389.CrossRefPubMedPubMedCentral
22.
go back to reference Shah JS, Weltman H, Mark O, Barcelo N, Harris N, Caoili E, et al. Fluorescent in situ hybridization assays (P-Genus and PFV-FISH) for detection and differentiation of Plasmodium species directly on blood smears. Am Soc Trop Med Hyg. 2009;81:18–22. Shah JS, Weltman H, Mark O, Barcelo N, Harris N, Caoili E, et al. Fluorescent in situ hybridization assays (P-Genus and PFV-FISH) for detection and differentiation of Plasmodium species directly on blood smears. Am Soc Trop Med Hyg. 2009;81:18–22.
Metadata
Title
Comparative evaluation of fluorescent in situ hybridization and Giemsa microscopy with quantitative real-time PCR technique in detecting malaria parasites in a holoendemic region of Kenya
Authors
Joseph Osoga
John Waitumbi
Bernard Guyah
James Sande
Cornel Arima
Michael Ayaya
Caroline Moseti
Collins Morang’a
Martin Wahome
Rachel Achilla
George Awinda
Nancy Nyakoe
Elizabeth Wanja
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2017
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-017-1943-4

Other articles of this Issue 1/2017

Malaria Journal 1/2017 Go to the issue