Skip to main content
Top
Published in: Malaria Journal 1/2017

Open Access 01-12-2017 | Research

Yeast lysates carrying the nucleoprotein from measles virus vaccine as a novel subunit vaccine platform to deliver Plasmodium circumsporozoite antigen

Authors: Daria Jacob, Claude Ruffie, Chantal Combredet, Pauline Formaglio, Rogerio Amino, Robert Ménard, Frédéric Tangy, Monica Sala

Published in: Malaria Journal | Issue 1/2017

Login to get access

Abstract

Background

Yeast cells represent an established bioreactor to produce recombinant proteins for subunit vaccine development. In addition, delivery of vaccine antigens directly within heat-inactivated yeast cells is attractive due to the adjuvancy provided by the yeast cell. In this study, Pichia pastoris yeast lysates carrying the nucleoprotein (N) from the measles vaccine virus were evaluated as a novel subunit vaccine platform to deliver the circumsporozoite surface antigen (CS) of Plasmodium. When expressed in Pichia pastoris yeast, the N protein auto-assembles into highly multimeric ribonucleoparticles (RNPs). The CS antigen from Plasmodium berghei (PbCS) was expressed in Pichia pastoris yeast in fusion with N, generating recombinant PbCS-carrying RNPs in the cytoplasm of yeast cells.

Results

When evaluated in mice after 3–5 weekly subcutaneous injections, yeast lysates containing N-PbCS RNPs elicited strong anti-PbCS humoral responses, which were PbCS-dose dependent and reached a plateau by the pre-challenge time point. Protective efficacy of yeast lysates was dose-dependent, although anti-PbCS antibody titers were not predictive of protection. Multimerization of PbCS on RNPs was essential for providing benefit against infection, as immunization with monomeric PbCS delivered in yeast lysates was not protective. Three weekly injections with N-PbCS yeast lysates in combination with alum adjuvant produced sterile protection in two out of six mice, and significantly reduced parasitaemia in the other individuals from the same group. This parasitaemia decrease was of the same extent as in mice immunized with non-adjuvanted N-PbCS yeast lysates, providing evidence that the yeast lysate formulation did not require accessory adjuvants for eliciting efficient parasitaemia reduction.

Conclusions

This study demonstrates that yeast lysates are an attractive auto-adjuvant and efficient platform for delivering multimeric PbCS on measles N-based RNPs. By combining yeast lysates that carry RNPs with a large panel of Plasmodium antigens, this technology could be applied to developing a multivalent vaccine against malaria.
Appendix
Available only for authorised users
Literature
1.
go back to reference Plotkin SL, Plotkin SA. A short history of vaccination. 6th Ed. Amsterdam: Elsevier; 2013. Plotkin SL, Plotkin SA. A short history of vaccination. 6th Ed. Amsterdam: Elsevier; 2013.
2.
go back to reference Haller AA, Lauer GM, King TH, Kemmler C, Fiolkoski V, Lu Y, et al. Whole recombinant yeast-based immunotherapy induces potent T cell responses targeting HCV NS3 and core proteins. Vaccine. 2007;25:1452–63.CrossRefPubMed Haller AA, Lauer GM, King TH, Kemmler C, Fiolkoski V, Lu Y, et al. Whole recombinant yeast-based immunotherapy induces potent T cell responses targeting HCV NS3 and core proteins. Vaccine. 2007;25:1452–63.CrossRefPubMed
3.
go back to reference Stubbs AC, Martin KS, Coeshott C, Skaates SV, Kuritzkes DR, Bellgrau D, et al. Whole recombinant yeast vaccine activates dendritic cells and elicits protective cell-mediated immunity. Nat Med. 2001;7:625–9.CrossRefPubMed Stubbs AC, Martin KS, Coeshott C, Skaates SV, Kuritzkes DR, Bellgrau D, et al. Whole recombinant yeast vaccine activates dendritic cells and elicits protective cell-mediated immunity. Nat Med. 2001;7:625–9.CrossRefPubMed
4.
go back to reference Bian G, Cheng Y, Wang Z, Hu Y, Zhang X, Wu M, et al. Whole recombinant Hansenula polymorpha expressing hepatitis B virus surface antigen (yeast-HBsAg) induces potent HBsAg-specific Th1 and Th2 immune responses. Vaccine. 2009;28:187–94.CrossRefPubMed Bian G, Cheng Y, Wang Z, Hu Y, Zhang X, Wu M, et al. Whole recombinant Hansenula polymorpha expressing hepatitis B virus surface antigen (yeast-HBsAg) induces potent HBsAg-specific Th1 and Th2 immune responses. Vaccine. 2009;28:187–94.CrossRefPubMed
5.
go back to reference Liu M, Clemons KV, Bigos M, Medovarska I, Brummer E, Stevens DA. Immune responses induced by heat killed Saccharomyces cerevisiae: a vaccine against fungal infection. Vaccine. 2011;29:1745–53.CrossRefPubMed Liu M, Clemons KV, Bigos M, Medovarska I, Brummer E, Stevens DA. Immune responses induced by heat killed Saccharomyces cerevisiae: a vaccine against fungal infection. Vaccine. 2011;29:1745–53.CrossRefPubMed
6.
go back to reference Jacob D, Ruffie C, Dubois M, Combredet C, Amino R, Formaglio P, et al. Whole Pichia pastoris Yeast expressing measles virus nucleoprotein as a production and delivery system to multimerize Plasmodium antigens. PLoS ONE. 2014;9:e86658.CrossRefPubMedPubMedCentral Jacob D, Ruffie C, Dubois M, Combredet C, Amino R, Formaglio P, et al. Whole Pichia pastoris Yeast expressing measles virus nucleoprotein as a production and delivery system to multimerize Plasmodium antigens. PLoS ONE. 2014;9:e86658.CrossRefPubMedPubMedCentral
7.
go back to reference Ardiani A, Higgins JP, Hodge JW. Vaccines based on whole recombinant Saccharomyces cerevisiae cells. FEMS Yeast Res. 2010;10:1060–9.CrossRefPubMed Ardiani A, Higgins JP, Hodge JW. Vaccines based on whole recombinant Saccharomyces cerevisiae cells. FEMS Yeast Res. 2010;10:1060–9.CrossRefPubMed
8.
go back to reference Combredet C, Labrousse V, Mollet L, Lorin C, Delebecque F, Hurtrel B, et al. A molecularly cloned Schwarz strain of measles virus vaccine induces strong immune responses in macaques and transgenic mice. J Virol. 2003;77:11546–54.CrossRefPubMedPubMedCentral Combredet C, Labrousse V, Mollet L, Lorin C, Delebecque F, Hurtrel B, et al. A molecularly cloned Schwarz strain of measles virus vaccine induces strong immune responses in macaques and transgenic mice. J Virol. 2003;77:11546–54.CrossRefPubMedPubMedCentral
9.
go back to reference Malik H, Khan FH, Ahsan H. Human papillomavirus: current status and issues of vaccination. Arch Virol. 2014;159:199–205.CrossRefPubMed Malik H, Khan FH, Ahsan H. Human papillomavirus: current status and issues of vaccination. Arch Virol. 2014;159:199–205.CrossRefPubMed
10.
go back to reference Valenzuela P, Medina A, Rutter WJ, Ammerer G, Hall BD. Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature. 1982;298:347–50.CrossRefPubMed Valenzuela P, Medina A, Rutter WJ, Ammerer G, Hall BD. Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature. 1982;298:347–50.CrossRefPubMed
11.
go back to reference Michel M-L, Tiollais P. Hepatitis B vaccines: protective efficacy and therapeutic potential. Pathol Biol (Paris). 2009;58:288–95.CrossRef Michel M-L, Tiollais P. Hepatitis B vaccines: protective efficacy and therapeutic potential. Pathol Biol (Paris). 2009;58:288–95.CrossRef
12.
go back to reference Bourhis J-M, Canard B, Longhi S. Structural disorder within the replicative complex of measles virus: functional implications. Virology. 2006;344:94–110.CrossRefPubMed Bourhis J-M, Canard B, Longhi S. Structural disorder within the replicative complex of measles virus: functional implications. Virology. 2006;344:94–110.CrossRefPubMed
13.
go back to reference Warnes A, Fooks AR, Dowsett AB, Wilkinson GWG, Stephenson JR. Expression of the measles virus nucleoprotein gene in Escherichia coli and assembly of nucleocapsid-like structures. Gene. 1995;160:173–8.CrossRefPubMed Warnes A, Fooks AR, Dowsett AB, Wilkinson GWG, Stephenson JR. Expression of the measles virus nucleoprotein gene in Escherichia coli and assembly of nucleocapsid-like structures. Gene. 1995;160:173–8.CrossRefPubMed
14.
go back to reference Bhella D, Ralph A, Yeo RP. Conformational flexibility in recombinant measles virus nucleocapsids visualised by cryo-negative stain electron microscopy and real-space helical reconstruction. J Mol Biol. 2004;340:319–31.CrossRefPubMed Bhella D, Ralph A, Yeo RP. Conformational flexibility in recombinant measles virus nucleocapsids visualised by cryo-negative stain electron microscopy and real-space helical reconstruction. J Mol Biol. 2004;340:319–31.CrossRefPubMed
15.
go back to reference Slibinskas R, Samuel D, Gedvilaite A, Staniulis J, Sasnauskas K. Synthesis of the measles virus nucleoprotein in yeast Pichia pastoris and Saccharomyces cerevisiae. J Biotechnol. 2004;107:115–24.CrossRefPubMed Slibinskas R, Samuel D, Gedvilaite A, Staniulis J, Sasnauskas K. Synthesis of the measles virus nucleoprotein in yeast Pichia pastoris and Saccharomyces cerevisiae. J Biotechnol. 2004;107:115–24.CrossRefPubMed
16.
go back to reference Thorne N, Dermott E. Circular and elongated linear forms of measles virus nucleocapsid. Nature. 1976;264:473–4.CrossRefPubMed Thorne N, Dermott E. Circular and elongated linear forms of measles virus nucleocapsid. Nature. 1976;264:473–4.CrossRefPubMed
17.
go back to reference Scheller LF, Wirtz RA, Azad AF. Susceptibility of different strains of mice to hepatic infection with Plasmodium berghei. Infect Immun. 1994;62:4844–7.PubMedPubMedCentral Scheller LF, Wirtz RA, Azad AF. Susceptibility of different strains of mice to hepatic infection with Plasmodium berghei. Infect Immun. 1994;62:4844–7.PubMedPubMedCentral
18.
go back to reference Craig AG, Grau GE, Janse C, Kazura JW, Milner D, Barnwell JW, et al. The role of animal models for research on severe malaria. PLoS Pathog. 2012;8:e1002401.CrossRefPubMedPubMedCentral Craig AG, Grau GE, Janse C, Kazura JW, Milner D, Barnwell JW, et al. The role of animal models for research on severe malaria. PLoS Pathog. 2012;8:e1002401.CrossRefPubMedPubMedCentral
19.
go back to reference Hafalla JCR, Bauza K, Friesen J, Gonzalez-Aseguinolaza G, Hill AVS, Matuschewski K. Identification of targets of CD8+ T cell responses to malaria liver stages by genome-wide epitope profiling. PLoS Pathog. 2013;9:e1003303.CrossRefPubMedPubMedCentral Hafalla JCR, Bauza K, Friesen J, Gonzalez-Aseguinolaza G, Hill AVS, Matuschewski K. Identification of targets of CD8+ T cell responses to malaria liver stages by genome-wide epitope profiling. PLoS Pathog. 2013;9:e1003303.CrossRefPubMedPubMedCentral
20.
go back to reference Nimmerjahn F, Ravetch JV. Fcγ receptors as regulators of immune responses. Nature. 2008;8:34–47. Nimmerjahn F, Ravetch JV. Fcγ receptors as regulators of immune responses. Nature. 2008;8:34–47.
21.
22.
go back to reference Hitzeman RA, Leung DW, Perry LJ, Kohr WJ, Levine HL, Goeddel DV. Secretion of human interferons by yeast. Science. 1983;219:620–5.CrossRefPubMed Hitzeman RA, Leung DW, Perry LJ, Kohr WJ, Levine HL, Goeddel DV. Secretion of human interferons by yeast. Science. 1983;219:620–5.CrossRefPubMed
23.
go back to reference Thim L, Hansen MT, Sørensen AR. Secretion of human insulin by a transformed yeast cell. FEBS Lett. 1987;212:307–12.CrossRefPubMed Thim L, Hansen MT, Sørensen AR. Secretion of human insulin by a transformed yeast cell. FEBS Lett. 1987;212:307–12.CrossRefPubMed
24.
25.
go back to reference The RTS,S Clinical Trials Partnership. A phase 3 trial of RTS, S/AS01 malaria vaccine in African Infants. N Engl J Med. 2012;367:2284–95.CrossRef The RTS,S Clinical Trials Partnership. A phase 3 trial of RTS, S/AS01 malaria vaccine in African Infants. N Engl J Med. 2012;367:2284–95.CrossRef
26.
go back to reference Gauglitz GG, Callenberg H, Weindl G, Korting HC. Host defence against Candida albicans and the role of pattern-recognition receptors. Acta Derm Venereol. 2012;92:291–8.CrossRefPubMed Gauglitz GG, Callenberg H, Weindl G, Korting HC. Host defence against Candida albicans and the role of pattern-recognition receptors. Acta Derm Venereol. 2012;92:291–8.CrossRefPubMed
27.
go back to reference Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nature. 2010;10:787–96. Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nature. 2010;10:787–96.
28.
go back to reference Singh M, Chakrapani A, O’Hagan D. Nanoparticles and microparticles as vaccine-delivery systems. Expert Rev Vaccines. 2007;6:797–808.CrossRefPubMed Singh M, Chakrapani A, O’Hagan D. Nanoparticles and microparticles as vaccine-delivery systems. Expert Rev Vaccines. 2007;6:797–808.CrossRefPubMed
29.
go back to reference Rutgers T, Gordon D, Gathoye AM, Hollingdale M, Hockmeyer W, Rosenberg M, et al. Hepatitis B surface antigen as carrier matrix for the repetitive epitope of the circumsporozoite protein of Plasmodium falciparum. Nat Biotechnol. 1988;6:1065–70.CrossRef Rutgers T, Gordon D, Gathoye AM, Hollingdale M, Hockmeyer W, Rosenberg M, et al. Hepatitis B surface antigen as carrier matrix for the repetitive epitope of the circumsporozoite protein of Plasmodium falciparum. Nat Biotechnol. 1988;6:1065–70.CrossRef
30.
31.
go back to reference Friesen J, Matuschewski K. Comparative efficacy of pre-erythrocytic whole organism vaccine strategies against the malaria parasite. Vaccine. 2010;29:7002–8.CrossRef Friesen J, Matuschewski K. Comparative efficacy of pre-erythrocytic whole organism vaccine strategies against the malaria parasite. Vaccine. 2010;29:7002–8.CrossRef
32.
go back to reference Jaffe RI, Lowell GH, Gordon DM. Differences in susceptibility among mouse strains to infection with Plasmodium berghei (ANKA clone) sporozoites and its relationship to protection by gamma-irradiated sporozoites. Am J Trop Med Hyg. 1990;42:309–13.CrossRefPubMed Jaffe RI, Lowell GH, Gordon DM. Differences in susceptibility among mouse strains to infection with Plasmodium berghei (ANKA clone) sporozoites and its relationship to protection by gamma-irradiated sporozoites. Am J Trop Med Hyg. 1990;42:309–13.CrossRefPubMed
33.
go back to reference Nussenzweig RS, Vanderberg J, Most H, Orton C. Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. Nature. 1967;216:160–2.CrossRefPubMed Nussenzweig RS, Vanderberg J, Most H, Orton C. Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. Nature. 1967;216:160–2.CrossRefPubMed
34.
go back to reference Purcell LA, Yanow SK, Lee M, Spithill TW, Rodriguez A. Chemical attenuation of Plasmodium berghei sporozoites induces sterile immunity in mice. Infect Immun. 2008;76:1193–9.CrossRefPubMedPubMedCentral Purcell LA, Yanow SK, Lee M, Spithill TW, Rodriguez A. Chemical attenuation of Plasmodium berghei sporozoites induces sterile immunity in mice. Infect Immun. 2008;76:1193–9.CrossRefPubMedPubMedCentral
35.
go back to reference Migliorini P, Boulanger N, Betschart B, Corradin G. Plasmodium berghei subunit vaccine: repeat synthetic peptide of circumsporozoite protein comprising T- and B-cell epitopes fails to confer immunity. Scand J Immunol. 1990;31:237–42.CrossRefPubMed Migliorini P, Boulanger N, Betschart B, Corradin G. Plasmodium berghei subunit vaccine: repeat synthetic peptide of circumsporozoite protein comprising T- and B-cell epitopes fails to confer immunity. Scand J Immunol. 1990;31:237–42.CrossRefPubMed
36.
go back to reference Tewari K, Flynn BJ, Boscardin SB, Kastenmueller K, Salazar AM, Anderson CA, et al. Poly(I:C) is an effective adjuvant for antibody and multi-functional CD4+ T cell responses to Plasmodium falciparum circumsporozoite protein (CSP) and Î ± DEC-CSP in non human primates. Vaccine. 2010;28:7256–66.CrossRefPubMedPubMedCentral Tewari K, Flynn BJ, Boscardin SB, Kastenmueller K, Salazar AM, Anderson CA, et al. Poly(I:C) is an effective adjuvant for antibody and multi-functional CD4+ T cell responses to Plasmodium falciparum circumsporozoite protein (CSP) and Π± DEC-CSP in non human primates. Vaccine. 2010;28:7256–66.CrossRefPubMedPubMedCentral
37.
go back to reference Kai O, Jongert E, Lievens M, Leach A, Villafana T. Circumsporozoite-specific T Cell responses in children vaccinated with RTS, S/AS01E and protection against P. falciparum clinical malaria. PLoS ONE. 2011;6:e25786.CrossRefPubMedPubMedCentral Kai O, Jongert E, Lievens M, Leach A, Villafana T. Circumsporozoite-specific T Cell responses in children vaccinated with RTS, S/AS01E and protection against P. falciparum clinical malaria. PLoS ONE. 2011;6:e25786.CrossRefPubMedPubMedCentral
38.
go back to reference Bouche FB, Ertl OT, Muller CP. Neutralizing B Cell response in measles. Viral Immunol. 2002;15:451–71.CrossRefPubMed Bouche FB, Ertl OT, Muller CP. Neutralizing B Cell response in measles. Viral Immunol. 2002;15:451–71.CrossRefPubMed
39.
go back to reference Cáceres VM, Strebel PM, Sutter RW. Factors determining prevalence of maternal antibody to measles virus throughout infancy: a review. Clin Infect Dis. 2000;31:110–9.CrossRefPubMed Cáceres VM, Strebel PM, Sutter RW. Factors determining prevalence of maternal antibody to measles virus throughout infancy: a review. Clin Infect Dis. 2000;31:110–9.CrossRefPubMed
40.
go back to reference Hervé P-L, Raliou M, Bourdieu C, Dubuquoy C, Petit-Camurdan A, Bertho N, et al. A novel subnucleocapsid nanoplatform for mucosal vaccination against influenza virus that targets the ectodomain of matrix protein 2. J Virol. 2014;88:325–38.CrossRefPubMedPubMedCentral Hervé P-L, Raliou M, Bourdieu C, Dubuquoy C, Petit-Camurdan A, Bertho N, et al. A novel subnucleocapsid nanoplatform for mucosal vaccination against influenza virus that targets the ectodomain of matrix protein 2. J Virol. 2014;88:325–38.CrossRefPubMedPubMedCentral
41.
go back to reference Brandler S, Ruffie C, Combredet C, Brault J-B, Najburg V, Prevost M-C, et al. A recombinant measles vaccine expressing chikungunya virus-like particles is strongly immunogenic and protects mice from lethal challenge with chikungunya virus. Vaccine. 2013;31:3718–25.CrossRefPubMed Brandler S, Ruffie C, Combredet C, Brault J-B, Najburg V, Prevost M-C, et al. A recombinant measles vaccine expressing chikungunya virus-like particles is strongly immunogenic and protects mice from lethal challenge with chikungunya virus. Vaccine. 2013;31:3718–25.CrossRefPubMed
Metadata
Title
Yeast lysates carrying the nucleoprotein from measles virus vaccine as a novel subunit vaccine platform to deliver Plasmodium circumsporozoite antigen
Authors
Daria Jacob
Claude Ruffie
Chantal Combredet
Pauline Formaglio
Rogerio Amino
Robert Ménard
Frédéric Tangy
Monica Sala
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2017
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-017-1908-7

Other articles of this Issue 1/2017

Malaria Journal 1/2017 Go to the issue